Doctoral Consortium – ADBIS 2019 – Bled, Slovenia

Textual Data Analysis from Data Lakes

Pegdwendé N. Sawadogo
pegdwende.sawadogo@univ-lyon2.fr

Supervised by Pr. Jérôme Darmont

September 8, 2019
Outline

1. Introduction
2. Thesis Objectives
3. Metadata Models
4. First Results
5. Conclusion
We are in big data era

Innovations in IT until the 2000s

- RDBMSs
- World Wide Web
- Data Warehouses
We are in big data era

Innovations in IT until the 2000s
- RDBMSs
- World Wide Web
- Data Warehouses

Innovations in IT since the 2000s
- NoSQL DBMSs
- Internet of Things
- Data Lakes
What is a data lake?

Definition (Sawadogo et al., 2019)

A data lake is a **scalable storage** and **analysis** system for data of any type, retained in their **native format** and used **mainly** by **data specialists** for knowledge extraction.
Benefits of data lakes

- Data governance
- Dealing with unstructured data
- Data polymorphism
- Scalability
- Cheap storage
- Advanced analyses and KPIs
Data lakes challenges

“Data swamp” syndrome

- Data swamp: inoperable DL
- Poor metadata management
- Poor data governance
Data lakes challenges

“Data swamp” syndrome

- Data swamp: inoperable DL
- Poor metadata management
- Poor data governance

Enabling industrialized analyses

- Opening DLs to business users
- Rich and intuitive metadata
- OLAP analysis
2 Thesis Objectives
Main Purposes

- Enable industrialized analyses from data lakes
- Focus on textual data analysis
- Alternative solution to text data warehouses
Main Purposes

- Enable industrialized analyses from data lakes
- Focus on textual data analysis
- Alternative solution to text data warehouses
1 Introduction

2 Thesis Objectives

3 Metadata Models

4 First Results

5 Conclusion
Data provenance-centric models

- DAG organization: nodes = data objects
- Vertices = operations (users, transformations, etc.)
- Help to understand, explain and repair inconsistencies in the data.
Similarity-centric models

- Allow to recommend related data
- Make it possible to detect data clusters

Simple variant

- Unoriented graph
- Nodes = data objects
- Edges = similarity strengths

Maccioni and Torlone, 2018
Similarity-centric models

- Allow to recommend related data
- Make it possible to detect data clusters

Simple variant
- Unoriented graph
- Nodes = data objects
- Edges = similarity strengths

Decomposition into droplets
- Data object = several nodes
- Connections are deduced from similarity between related “droplets”

[Maccioni and Torlone, 2018]
Discussion (Sawadogo et al., 2019)

<table>
<thead>
<tr>
<th>Metadata model/system</th>
<th>SE</th>
<th>DI</th>
<th>LG</th>
<th>DP</th>
<th>DV</th>
<th>UT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAR (Fauduet and Peyrard, 2010)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Terrizzano et al. (2015)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Singh et al. (2016)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GOODS (Halevy et al., 2016)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ground (Hellerstein et al., 2017)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>KAYAK (Maccioni and Torlone, 2018)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoreKG (Beheshti et al., 2018)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diamantini et al. (2018)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

SE: Semantic Enrichment - **DI**: Data Indexing - **LG**: Links Generation
DP: Data Polymorphism - **DV**: Data Versioning - **UT**: Usage Tracking

[Sawadogo et al., 2019b] - BBIGAP@ADBIS 2019
Discussion (Sawadogo et al., 2019)

<table>
<thead>
<tr>
<th>Metadata model/system</th>
<th>SE</th>
<th>DI</th>
<th>LG</th>
<th>DP</th>
<th>DV</th>
<th>UT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAR (Fauduet and Peyrard, 2010)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Terrizzano et al. (2015)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Singh et al. (2016)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>GOODS (Halevy et al., 2016)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ground (Hellerstein et al., 2017)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>KAYAK (Maccioni and Torlone, 2018)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoreKG (Beheshti et al., 2018)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamantini et al. (2018)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

- **No comprehensive metadata model**
- **Data versioning and data polymorphism as advanced features**
Typology of data lake metadata

- **Intra-object Metadata**
 - Tags, descriptions, properties
 - Versions, representations

- **Inter-object Metadata**
 - Data groupings (clusters)
 - Similarity and parenthood links

- **Global Metadata**
 - Knowledge bases (ontologies, thesauri)
 - Index, logs

[Sawadogo et al., 2019a] - ICEIS 2019
Generic metadata model for data lakes

Intra-objects metadata

- TF vector
- Original resume
- Updated resume

Technologies: Onontologies = graphs

Mostly depend on adopted technologies.
Generic metadata model for data lakes

Intra-objects metadata

- Original resume
- Updated resume
- TF vector

Inter-objects metadata

- John’s resume
- Scott’s resume
- Mary’s resume
- Bob’s resume
- Andrea’s resume
- Nina’s resume
- French cluster
- English cluster
Generic metadata model for data lakes

Intra-objects metadata

- Original resume
- Updated resume
- TF vector

Inter-objects metadata

- John's resume
- Scott's resume
- Mary's resume
- English cluster
- French cluster
- Andrea's resume
- Bob's resume
- Nina's resume

Cosine similarity:
- 0.75
- 0.35
- 0.55

Ontologies are graphs that mostly depend on adopted technologies.
Generic metadata model for data lakes

Intra-objects metadata

- TF vector
- Original resume
- Updated resume
- Transformation
- Update

Inter-objects metadata

- John’s resume
- Scott’s resume
- Mary’s resume
- Bob’s resume
- Andrea’s resume
- Nina’s resume
- French cluster
- English cluster

Global metadata

- Not included
- Ontologies = graphs
- Mostly depend on adopted technologies
Expected features

► Data search

- keyword/pattern-based querying
- Query extension
- Navigation across data

Dimensions = data groupings
Hierarchies = ontologies
Aggregations = data fusion

Recommendation of data
- Similar data
- Affiliated data
- Data of same cluster

Compliant with FAIR principles
- Findable
- Accessible
- Interoperable
- Re-usable
Expected features

- **Data search**
 - keyword/pattern-based querying
 - Query extension
 - Navigation across data

- **Navigation/OLAP analysis**
 - Dimensions = data groupings
 - Hierarchies = ontologies
 - Aggregations = data fusion
Expected features

- **Data search**
 - keyword/pattern-based querying
 - Query extension
 - Navigation across data

- **Recommendation of data**
 - Similar data
 - Affiliated data
 - Data of same cluster

- **Navigation/OLAP analysis**
 - Dimensions = data groupings
 - Hierarchies = ontologies
 - Aggregations = data fusion
Expected features

- **Data search**
 - keyword/pattern-based querying
 - Query extension
 - Navigation across data

- **Navigation/OLAP analysis**
 - Dimensions = data groupings
 - Hierarchies = ontologies
 - Aggregations = data fusion

- **Recommendation of data**
 - Similar data
 - Affiliated data
 - Data of same cluster

- **Compliant with FAIR principles**
 - Findable
 - Accessible
 - Interoperable
 - Re-usable
Introduction

Thesis Objectives

Metadata Models

First Results

Conclusion
Conclusion

Overview

- Opening data lakes to business users
- 6 key features to evaluate data lakes metadata models/systems
- Consideration of OLAP analysis in data lakes
Conclusion

Overview

- Opening data lakes to business users
- 6 key features to evaluate data lakes metadata models/systems
- Consideration of OLAP analysis in data lakes

Future works

- Implementing our metadata model into a metadata system
- Designing an OLAP analysis platform for textual data ponds
- Identifying techniques and tools to ensure scalability
Doctoral Consortium – ADBIS 2019 – Bled, Slovenia

Textual Data Analysis from Data Lakes

Pegdwendé N. Sawadogo

pegdwende.sawadogo@univ-lyon2.fr

Supervised by Pr. Jérôme Darmont

September 8, 2019