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Introduction



Context

A business issue

• Public Housing : dwellings, occupants, overdue, patrimony, ...

Three main thematics

• Business Intelligence (BI) : ETLs, data warehouses, OLAP, ...
• Data Science (DS) : knowledge extraction, Machine Learning, ...
• Big Data : Volume, Variety, Velocity, ...

→ How does all this blend ?
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What data ?

Several data sources

1. Internal data

• Landlord’s data
• Dwellings, occupants, overdue, ...
• Mostly relational data
• BI analyses, simple DS analyses

2. External data

• Open data (+ social networks)
• Environment
• (possibly) Big Data
• Advanced DS analyses
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Data storage and management



Business Intelligence and Analytics

Business Intelligence (BI)
Methods and tools for collecting, storing, organizing and analyzing
data to support decision-making

Business Analytics (BA)
The use of Data Science methods on a company’s data

What about BI ?

• BI&A
• BI & BA
• BI→ BA

[Chen et al., 2012, Larson and Chang, 2016, Mortenson et al., 2015, Baars and Ereth, 2016, Gröger, 2018] 4



Business Intelligence and Analytics

Business Intelligence (BI)
Methods and tools for collecting, storing, organizing and analyzing
data to support decision-making

Business Analytics (BA)
The use of Data Science methods on a company’s data

What about BI ?

• BI&A
• BI & BA
• BI→ BA

[Chen et al., 2012, Larson and Chang, 2016, Mortenson et al., 2015, Baars and Ereth, 2016, Gröger, 2018] 4



Business Intelligence and Analytics

Business Intelligence (BI)
Methods and tools for collecting, storing, organizing and analyzing
data to support decision-making

Business Analytics (BA)
The use of Data Science methods on a company’s data

What about BI ?

• BI&A

• BI & BA
• BI→ BA

[Chen et al., 2012, Larson and Chang, 2016, Mortenson et al., 2015, Baars and Ereth, 2016, Gröger, 2018] 4



Business Intelligence and Analytics

Business Intelligence (BI)
Methods and tools for collecting, storing, organizing and analyzing
data to support decision-making

Business Analytics (BA)
The use of Data Science methods on a company’s data

What about BI ?

• BI&A
• BI & BA

• BI→ BA

[Chen et al., 2012, Larson and Chang, 2016, Mortenson et al., 2015, Baars and Ereth, 2016, Gröger, 2018] 4



Business Intelligence and Analytics

Business Intelligence (BI)
Methods and tools for collecting, storing, organizing and analyzing
data to support decision-making

Business Analytics (BA)
The use of Data Science methods on a company’s data

What about BI ?

• BI&A
• BI & BA
• BI→ BA

[Chen et al., 2012, Larson and Chang, 2016, Mortenson et al., 2015, Baars and Ereth, 2016, Gröger, 2018] 4



Data Intelligence

Run BI and BA analyses...

• Separately
• Together
• (possibly) on Big Data

Data Intelligence
Perform analyses, simple or advanced, on all types of data

→ How ?
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Data Intelligence in practice
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Data Lakes

Data Lake [Dixon, 2010]
A data lake is a large repository of heterogeneous raw data,
supplied by external data sources and from which various analyses
can be performed.

Two main characteristics

• Schema-on-read
• Data variety

→ Need for a metadata system

Big research field

[Miloslavskaya and Tolstoy, 2016] 7
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Attractiveness



Data Intelligence in practice
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Defining attractiveness

Attractiveness of what ?

1. Dwelling
2. Residency
3. Neighborhood

→ Strategic Patrimony Plan

Advanced indicators

• Machine Learning algorithms
• Back-feeding the lake
• Enrich BI analyses
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First results and future outcomes



First contribution

Work done with P. N. Sawadogo [Sawadogo et al., 2019, Scholly et al., 2019]

• Our definition of a Data Lake
• Key features for metadata systems
• Metadata typology in three categories
• MEtadata model for DAta Lakes (MEDAL)

Presented at 4 PM in this room !
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What’s next ?

Work in progress

• Implementation(s) of MEDAL
• Retrieve all data
• Development of a complete data lake
• Tests and comparisons
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Thank you for your attention!

Questions?
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