
Rya: A Scalable RDF
Triple Store for the Clouds

R. Punnose1, Adina Cr ăiniceanu 2, D. Rapp3

1-Proteus Technologies, 2-U.S. Naval Academy, 3-LTS

Presentation at Cloud Intelligence Workshop 2012, a VLDB 2012 workshop

RDF Data

� Increasingly popular
� Based on making statements about

resources
� Statements are formed as triples � Statements are formed as triples

(subject-predicate-object)

� Example, “The sky has the color blue”
� Subject = The sky
� Predicate = has color
� Object = blue

Problem * * * *

� W3C standard
� Large community/tool support
� Easy to understand

Intrinsically represents a labeled, directed

Why RDF?

� Intrinsically represents a labeled, directed
graph

� Unstructured
� Though with RDFS/OWL, can add structure

Problem * * * *

The sky Blue
hasColor

Why Not RDF?

� Storage
� Stores can be large for small amounts of data

� Speed
� Slow to answer simple questions� Slow to answer simple questions

� Scale
� Not easy to scale with size of data

Problem * * * *

Rya –Distributed RDF Triple Store

� Smartly store RDF data in Accumulo
� Scalability
� Load balance

� Build on the OpenRDF interface � Build on the OpenRDF interface
implementation for SPARQL
� Fast queries

Problem * * * *

Outline

� Problem
� Background
� Rya

� Triple index� Triple index
� Performance enhancements

� Experimental results
� Conclusions and future work

OpenRDF Sesame

� Utilities to parse, store, and query RDF data
� Supports SPARQL
� Ex: SELECT ?x WHERE {

?x rdf:type Faculty .?x rdf:type Faculty .
?x degreeFrom Cornell . }

� SPARQL queries evaluated based on triple
patterns
� Ex: (*, rdf:type, Faculty)

Background * *

� Google BigTable implementation

Accumulo

� Compressed, Distributed, Scalable

� Adds security, row level authentication/
visibility, etc

� The Accumulo store acts as persistence
and query backend to OpenRDF

Background * *

Outline

� Problem
� Background
� Rya

� Triple index� Triple index
� Performance enhancements

� Experimental results
� Conclusions and future work

Architectural Overview - Rya

StorageInference

Data Storage
Query Processing

Storage

And

Inference

Layer
Implemen

tation

Rya * * * * * * * *

Accumulo

Query Optimization
Engine

Query Execution

Triple Table Index

� 3 Tables
� SPO : subject, predicate, object
� POS : predicate, object, subject
� OSP : object, subject, predicate� OSP : object, subject, predicate

� Store triples in the RowID of the table
� Take advantage of lexicographical sorting

of row keys � fast range queries
� All patterns can be translated into a scan

of one of these tables

Rya * * * * * * * *

Sample Triple Storage
Example RDF triple:

Stored RDF triple in Accumulo tables:

Subject Predicate Object

Alice degreeFrom Cornell

Stored RDF triple in Accumulo tables:

Rya * * * * * * * *

Table Stored Triple

SPO Alice, degreeFrom, Cornell

POS degreeFrom, Cornell, Alice

OSP Cornell, Alice, degreeFrom

Triple Patterns to Table Scans

Triple Pattern Table to Scan

(Alice, degreeFrom, Cornell) Any table (SPO default)

(Alice, degreeFrom, *) SPO

(Alice, *, Cornell) OSP(Alice, *, Cornell) OSP

(*, degreeFrom, Cornell) POS

(Alice, *, *) SPO

(*, degreeFrom, *) POS

(*, *, Cornell) OSP

(*, *, *) any full table scan
(SPO default)

Rya * * * * * * * *

Query Processing
SELECT ?x WHERE {

?x takesCourse DBCourse .
?x rdf:type GraduateStudent . }

…

Step 1: POS – scan range Step 2: for each ?x, SPO – index lookup

Rya * * * * * * * *

…

rdf:type, Professor, Alice

takesCourse, AICourse, John

takesCourse, AICourse, Zack

takesCourse, DBCourse, Bob

takesCourse, DBCourse, Greta

takesCourse, DBCourse, John

takesCourse, HCICourse, Alice

…

…

Bob, rdf:type, UndergradStudent

…

Greta, rdf:type, GraduateStudent

…

John, rdfType, GraduateStudent

…

Query Processing using Inference

SELECT ?x WHERE { ?x rdf:type Faculty }

Alice Professor
rdf:type

rdfs:subClassOfrdf:type

New query: SELECT ?x WHERE {
?type rdfs:subClassOf Faculty .
?x rdf:type ?type }

Rya * * * * * * * *

Faculty

rdfs:subClassOfrdf:type

Query Plan for Expanded Query
SELECT ?x WHERE {

?type rdfs:subClassOf Faculty.
?x rdf:type ?type . }

…

Step 1: POS – scan range

…

Step 2: For each ?type, POS – scan range

Rya * * * * * * * *

…

…

…

…

rdfs:subClassOf, Faculty, AssistProf

rdfs:subClassOf, Faculty, AssocProf

rdfs:subClassOf, Faculty, Professor

…

…

…

rdf:type, AssistProf, Bob

rdf:type, AssistProf, Jane

…

rdf:type, AssocProf, Amelia

rdf:type, AssocProf, George

rdf:type, Professor, Alice

…

Performance Enhancements

� Statistics Collection
� Parallel Joins
� Accumulo Batch Scanner use

� Decreases network connections by up to 1K � Decreases network connections by up to 1K
fold

� Time Ranges
� Allow RDF querying on a small subset of data

(based on a time loaded)

Rya * * * * * * * *

Optimized Joins with Statistics

� Collect statistics about data distribution
� Most selective triple evaluated first
� Ex: Value Role Cardinality

rdf:type Predicate 1mil

Enhancements * * * *

rdf:type Predicate 1mil

Student Object 400K

takesCourse Predicate 800K

DBCourse Object 200

SELECT ?x WHERE {
?x takesCourse DBCourse .
?x rdf:type Student . }

SELECT ?x WHERE {
?x rdf:type Student .
?x takesCourse DBCourse }

Vs.

Parallel Joins
SELECT ?x WHERE {

?type rdfs:subClassOf Faculty.
?x rdf:type ?type . }

…

Step 1: POS – scan range

…

Step 2: For each ?type in parallel ,
POS – scan range

Enhancements * * * *

…

…

…

…

rdfs:subClassOf, Faculty, AssistProf

rdfs:subClassOf, Faculty, AssocProf

rdfs:subClassOf, Faculty, Professor

…

…

…

rdf:type, AssistProf, Bob

rdf:type, AssistProf, Jane

…

rdf:type, AssocProf, Amelia

rdf:type, AssocProf, George

rdf:type, Professor, Alice

…

Batch Scanner
SELECT ?x WHERE {

?x takesCourse DBCourse .
?x rdf:type GraduateStudent . }

…

Step 1: POS – scan range Step 2: batched for each ?x,
SPO – index lookup…

rdf:type, Professor, Alice

takesCourse, AICourse, John

takesCourse, AICourse, Zack

takesCourse, DBCourse, Bob

takesCourse, DBCourse, Greta

takesCourse, DBCourse, John

takesCourse, HCICourse, Alice

…

…

Bob, rdf:type, UndergradStudent

…

Greta, rdf:type, GraduateStudent

…

John, rdfType, GraduateStudent

…

Enhancements * * * *

Time Ranges

� SELECT ?load WHERE{
?measurement cpuLoad ?load .
?measurement timestamp ?ts .
FILTER (?ts > “30 min ago”) }FILTER (?ts > “30 min ago”) }

� SELECT ?load WHERE{
?measurement cpuLoad ?load .
?measurement timestamp ?ts .
timeRange (?ts,1300, 1330) }

Enhancements * * * *

Outline

� Problem
� Background
� Rya

� Triple index� Triple index
� Performance enhancements

� Experimental results
� Conclusions and future work

Experiments Set-up

� Accumulo 1.3.0
� 1 Accumulo master
� 10 Accumulo tablet servers

� Each node: 8 core Intel Xeon CPU, 16 GB � Each node: 8 core Intel Xeon CPU, 16 GB
RAM, 3 TB Hard Drive

� Tomcat server for Rya
� Java implementation
� Dataset: LUBM

Experiments * * * * * * * *

Performance Metrics

� LUBM data set – 10 to 15000 universities
� Load time
� Queries per second

� Using batch scanner� Using batch scanner
� Without batch scanner

Experiments * * * * * * * *

Data Set - LUBM

Nb Universities Nb Triples

10 1.3M

100 13.8M

1000 138.2M

2000 258.8M

5000 603.7M

10000 1.38B

15000 2.1B

Experiments * * * * * * * *

Load time

Experiments * * * * * * * *

Rya Query Performance - QpS

Experiments * * * * * * * *

Query 5

Experiments * * * * * * * *

Comparison with Other Systems

� Systems:
� Graph Partitioning [HAR11]
� SHARD [RS10]

� Benchmark: LUBM 2000

System Load Time

SHARD 10h

Graph Partitioning 4h 10min

Rya 3h 1min

� Benchmark: LUBM 2000

Experiments * * * * * * * *

Comparison with Other Systems

Experiments * * * * * * * *

Related Work

� RDF-3X [NW08] - centralized
� Graph Partitioning [HAR11] – graph

partitioning + local RDF engines
+MapReduce+MapReduce

� SHARD [RS10] – RDF triple store + HDFS
� Hexastore [WKB08] – six indexes
� SPARQL/MapReduce [MYL10] –

MapReduce jobs to process SPARQL

Outline

� Problem
� Background
� Rya

� Triple index� Triple index
� Performance enhancements

� Experimental results
� Conclusions and future work

Conclusions and Future Work

� Rya – scalable RDF Triple Store
� Built on top of Accumulo and OpenRDF
� Handles billions of triples
� Millisecond query time for most queries� Millisecond query time for most queries

� Future:
� Broader inferencing rules
� New join algorithms

Thank You!

Questions?

