
On Saying “Enough Already!” in
MapReduce

Christos Doulkeridis and Kjetil Nørvåg

Department of Computer and Information Science (IDI)
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 2

Outline
• Motivation
• Preliminaries

– MapReduce
– Top-k queries and top-k joins

• Rank-aware query processing in MapReduce
– Sorted access
– Intelligent data placement
– Data synopses

• Related work
• Conclusions and outlook

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 3

Motivation
• Business intelligence (BI) technology is essential for

effective decision-making for the enterprise
• The challenges and needs of BI applications explode in

the era of “Big Data”
– Data collection from various sources

• Retail, banking, RFID tags, email, query logs, blogs, reviews, etc.

• Cloud Intelligence for data analysis of massive data sets
– The only scalable solution to-date

• Popularity of MapReduce and its open-source
implementation Hadoop
– Important to support advanced BI operators over MapReduce
– Focus of this work: efficient rank-aware query processing

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 4

MapReduce – Overview

Map: (k1, v1) [(k2,v2)]
Reduce: (k2, [v2]) [v3]

• Salient features
– Scalability, fault-tolerance, ease of use, flexibility, …

• Limitations
– Performance !!!
– Lack of early termination

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 5

Rank-aware Processing
• Important tool for BI applications

– Decision-making based on top-k results
• matching the user’s constraints, and
• ranked according to user preferences

– Inspection of a bounded set of k tuples only
• Rather than retrieval and display of a huge result set

– Challenging to report the top-k result, without
exhaustive access to the underlying input data
(early termination)

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 6

Top-k Queries

SELECT *
FROM hotels
WHERE

hotels.city=“Trondheim”
ORDER BY hotels.price
STOP AFTER k;

ID NAME CITY PRICE

h1 BEST Trondheim 1400

h2 ABC London 1200

h3 HOLIDAY Trondheim 1500

h4 CHEAP Trondheim 1200

h5 HILTON London 1800

h1 BEST Trondheim 1400

h3 HOLIDAY Trondheim 1500

h4 CHEAP Trondheim 1200

h4 CHEAP Trondheim 1200

h1 BEST Trondheim 1400

h3 HOLIDAY Trondheim 1500

k = 1

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 7

Top-k Queries
• A top-k query qk(f) is defined by a user-specified

scoring function f, which
– aggregates the objects’ characteristics into a single score

• E.g., f = w1*X + w2*Y where Σwi=1

– defines a total ordering

• Given
– a positive integer k and
– a user-defined weighting vector w
Find
– the k data points p with the minimum f(p) scores

w

X

Y

p1

p2

p3

p4

p5

p7

p6

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 8

Top-k Queries

SCORE
1460

1500

1345

SELECT *
FROM hotels
WHERE

hotels.city = “Trondheim”
ORDER BY

0.5*hotels.price+0.5*hotels.dist
STOP AFTER 1;

ID NAME CITY PRICE DIST
h1 BEST Trondheim 1400 2000

h2 ABC London 1200 3000
h3 HOLIDAY Trondheim 1500 1500

h4 CHEAP Trondheim 1200 2200

h5 HILTON London 1800 800

SCORE
1700

1500

1700

HOLIDAY
SELECT *
FROM hotels
WHERE

hotels.city = “Trondheim”
ORDER BY

0.9*hotels.price+0.1*hotels.dist
STOP AFTER 1;

CHEAP

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 9

Top-k Joins
SELECT *
FROM hotels, flights
WHERE

hotels.city = flights.to_city
ORDER BY
(0.5*hotels.price + 0.5*flights.price)

STOP AFTER k

ID NAME CITY PRICE

h1 BEST Trondheim 1400

h2 ABC London 1200

h3 HOLIDAY Trondheim 1500

h4 CHEAP Trondheim 1200

h5 HILTON London 1800

ID AIRLINE TO_CITY PRICE

f1 KLM Trondheim 5000

f2 KLM London 4200

f3 SAS Trondheim 3000

f4 SAS Trondheim 3500

f5 KLM London 2000

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 10

Top-k Joins
ID NAME CITY PRICE

h1 BEST Trondheim 1400

h2 ABC London 1200
h3 HOLIDAY Trondheim 1500

h4 CHEAP Trondheim 1200

h5 HILTON London 1800

ID AIRLINE TO_CITY PRICE

f1 KLM Trondheim 5000

f2 KLM London 4200
f3 SAS Trondheim 3000

f4 SAS Trondheim 3500

f5 KLM London 2000

ID NAME CITY PRICE ID AIRLINE TO_CITY PRICE

h1 BEST Trondheim 1400 f1 KLM Trondheim 5000
h1 BEST Trondheim 1400 f3 SAS Trondheim 3000
h1 BEST Trondheim 1400 f4 SAS Trondheim 3500

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 11

Rank-aware Processing in
MapReduce

Access the complete input data !
No support for early termination !

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 12

Rank-aware Processing in
MapReduce

Our contributions:
• Sorted access for top-k queries
• Intelligent data placement
• Use of data synopses

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 13

1. Sorted Access for Top-k Queries

• In centralized DBs, efficient processing of top-
k queries relies on sorted access to data

– Directly: data is stored sorted on disk
– Indirectly: provided by a secondary index

• How can we provide sorted access in
MapReduce to support top-k queries qk(f)?

– Two alternative techniques
• Always sort data before top-k processing based on f

(query-dependent sorting)
• Store data sorted based on a scoring function F ≠ f

(query-independent sorting)

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 14

Query-dependent Sorting
• Use a separate MR job to sort the data based

on f before processing the top-k query qk(f)
– Easy to find the top-k results

• Simply report the k first tuples
– High overhead to sort data for each incoming query

• Sorting is query-dependent on scoring function f

DataNodes

MR1 MR1 MR1MR2 MR2 MR2

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 15

Query-independent Sorting
• Store data sorted on DataNodes based on a scoring

function F (different than f)
• To process query qk(f) it suffices to access only the K

first tuples of the stored data (where K > k)
– Sorting based on F is a one-time cost

• Again, can be performed using a separate MR job
– The difference (extra cost) in the number of accessed tuples K-k

increases when F differs much from f

DataNodes

MR1 MR1 MR1MR2 MR2 MR2MR3 MR3 MR3

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 16

2. Data Placement
• Data placement on DataNodes affects performance

– Determined by a Partitioner class in Hadoop
• Existing partitioning schemes (e.g., range or hash-based)

used for data placement are oblivious to the nature of
top-k queries

• Example:
– RanKloud [IEEE Multimedia’11]

• Desiderata
– Balance the useful work to DataNodes
– Avoid redundant processing

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 17

Intelligent Data Placement for
Top-k Queries

• Angle-based partitioning [SIGMOD’08] (proposed by our
group in the context of skyline queries)
– Splits the useful work fairly
– Splits the region near the origin of the axes to all partitions

• Advantages
– More intuitive for top-k queries
– Easy to generalize in higher dimensions
– Can be combined with sorting

• Sort based on distance to origin

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 18

3. Data Synopses
• Main idea

– Create and store
metadata together with
data

– Exploit the metadata
during query processing
to access only those
blocks that may contain
top-k results

• Metadata in the form of
multidimensional
histograms

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 19

Metadata for Top-k Queries

Number of tuples

Block IDs

Can be constructed
seamlessly

during data upload

Score range for d1

Score range for d2

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 20

Top-k Query Processing Exploiting
Data Synopses

• Progressively access
histogram bins
– Until it is guaranteed that

the top-k tuples are
enclosed in the bins

– Use upper bound on score
• Retrieve block IDs
• Use random access to

retrieve only these blocks

• Example (k=5)
– Access bins up to d13 and

d22
– Total of 34 tuples (> 5)
– Block IDs = {1,2,3}

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 21

Optimizations
• Cost model for deciding when the cost of

random access of few blocks is smaller than
sequential access of many blocks

• Use optimized histograms (e.g., equi-depth)
• Use more advanced methods for histogram bin

exploration
– E.g., examine more bins from the dimension that is

more promising to produce the top-k results faster

• The use of data synopses can be combined with
sorting and intentional data placement to boost
the performance of query processing

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 22

Related Work on MapReduce

• RanKloud [IEEE Multimedia’11]
– Proposed for top-k join queries
– Cannot guarantee retrieval of k results

• CoHadoop [PVLDB’11]
– Co-location of files on the same DataNode
– Useful for joins

• EARL [PVLDB’12]
– Mechanism to stop execution of MapReduce

jobs on demand

1st International Workshop on Cloud Intelligence (Cloud-I 2012) 23

Conclusions & Outlook
• An overview of techniques for supporting rank-

aware processing in MapReduce
– Sorting, Data placement, Use of data synopses

• Currently, we evaluate these techniques

• Future work
– Analytical cost models
– Optimal partitioning scheme for top-k queries
– More complex query functions
– Extend the techniques to be applicable for

intermediate results produced by other MapReduce
jobs

More information:
http://www.idi.ntnu.no/~cdoulk/

cdoulk@idi.ntnu.no

