

Sanjay Madria

Professor and Site Director for NSF I/UCRC Center on Net-Centric Software and Systems

Missouri University of Science & Technology, Rolla, MO 65401, USA

madrias@mst.edu

Joint work with Bharath K. Samanthula, Gerry Howser, Yousef Elmehdwi

Missouri University of Science & Technology, Rolla, MO 65401, USA

An Efficient and Secure Data Sharing
Framework using Homomorphic Encryption in

the Cloud

Outline
�  Motivation
�  Problem Statement
�  Related work
�  Main Contribution
�  Preliminaries

�  Proposed Solutions
�  SDS Framework

�  Correctness proof
�  Example

�  Modified-SDS Framework

�  Conclusion / Future Work

SYSTEM MODEL

PROBLEM STATEMENT
�  Data owner Alice outsources data to the cloud after

encryption

�  Goal: To provide a fine-grained access control to
various users authorized by Alice

MOTIVATION
�  Data is outsourced to the cloud

� Cost-efficiency and flexibility

�  For privacy issues – encrypting the data seems to be a
better choice

�  Access Control on Encrypted Data in the Cloud

� Relies heavily upon encrypted data in the cloud
� One of the reasons in using encrypted data in the cloud is

protecting the data from the cloud itself
� However, encrypted data on the cloud places limitations

upon data searches and queries

Cont..
�  Some important issues to be addressed in Access

Control
� Fine-grained access control with efficient user revocation
� Rejoin of revoked users
� Collusion between users
� Collusion between a user and the cloud
� Efficient modification of user access privileges

RELATED WORK
�  Yang et al. [1] proposed a new fine-grained access control

protocol using Symmetric encryption and Proxy Re-
encryption schemes.

�  Disadvantages:

� Symmetric encryption provides weaker security guarantees
� Possibility of Information leakage:

�  Rejoin of revoked user
�  Collusion of revoked user with authorized user Bob
�  Collusion between Bob and the cloud

OUR CONTRIBUTION
�  Developed a new Secure Data Sharing (SDS) framework

to achieve fine-grained data sharing/access control over
data outsourced to the cloud that provides following
features:
� Efficient user revocation
� Efficient and secure re-join of a previously revoked user
� Prevention of collusion between a user and the CSP
� Prevention of collusion between a revoked user and an

authorized user.
� Generic Approach

Preliminaries
�  SDS uses two specific encryption techniques: additive

homomorphic encryption + proxy re-encryption

�  Additive homomorphic (Probabilistic) encryption:
� Epk(x + y) = Epk(x) · Epk(y) mod N2

� Epk(c·x) = Epk (x)c mod N2
� The encryption scheme is semantically secure

 where N is the RSA modulus which is also a part of the public
key pk.

CONTD…
�  Proxy Re-encryption:

� Allows a “semi-trusted” proxy T to convert
ciphertext under Alice’s public key into one
encrypting the same plaintext under Bob’s public
key:

 PRE(Epka
(x), rkpkaàpkb

) à Epkb
(x)

 where pka and pkb
are the public keys of Alice and

Bob respectively.
� Proxy only knows the re-encryption key rkpkaàpkb

� Nothing is revealed about the plaintext x to T.

Proposed SDS Framework
�  Utilizes additive homomorphic encryption and proxy

re-encryption schemes as underlying sub-routines
�  Our Secure Data Sharing (SDS) framework consists of

five stages:
1)  Key Generation and Distribution
2)  Data Outsourcing
3)  Data Access
4)  User Revocation
5)  User Rejoin

Proposed SDS Framework

Key Generation and Distribution
�  Acts as an initialization step
�  The data owner (Alice) generates two kinds of key pairs

� Master key pair – (pka , pra). Where, pka and pra are the
public and private keys of Alice.

� For each authorized user, say Bob, Alice creates a public/
private key pair (pkb, prb) and sends it to Bob.

Data Outsourcing

�  For each data record d, Alice proceeds as follows:
� Let d1,…, dn denote the attribute values of d
� Picks n+m number of random numbers - r1,…., rn+m

�  d’ = < d1 + rn+1 ,…, dn + rn, rn+1,.., rn+m >
 = < d’1,…, d’n+m>
 where ri is a random number chosen from ZN
� Assume Epka

(d’) = < Epka
(d’1),…,Epka

(d’n+m)>
� For a particular user, say Bob, we have the following two

cases:
�  Case 1: Bob has access to a set of attributes (S) in d
�  Case 2: Bob is not authorized to access d

Data Outsourcing (contd…)
�  For each authorized user Bob on d, Alice creates

authorization token Td
b

�  Case 1:
� Td

b = {Bob, rkpka-> pkb
, <Epkb

(α1),…,Epkb
(αn+m)>}

� For, 1 ≤ i ≤ n+m:
�  If 1≤ i ≤ n and di ∈S, αi = - ri
�  Otherwise, αi = - d’i

�  Case 2:
� Alice sets Td

b = null

Data Outsourcing (contd…)
�  Similarly, Alice generates the authorization list for all

authorized users – Td

�  Note that if Td
b is null, it is not included in Td

�  Now Alice exports the new data (Td, Epka

(d’)) to the
cloud

Data Access
�  Upon a request from Bob, for each data record d, the

cloud checks whether there is a token for Bob
�  If there is no entry – the cloud simply aborts the request
�  If there exists an entry (Td

b) for Bob, the cloud proceeds
as follows:
� Epkb

(d’) ← {Epkb
(d’1),…, Epkb

(d’n+m)} using rkpka-> pkb

� For all i, computes Epkb

(d’i + αi) ← Epkb
(d’i) + Epkb

(αi)

� Sends < Epkb
(d’1 + α1),……., Epkb

(d’n+m + αn+m) > to Bob

Data Access
�  Bob decrypts each entry and gets d’i + αi (1 ≤ i ≤ n+m)

�  Note that Bob will successfully decrypt to only those
attribute values he is authorized to access
� That is, d’i + αi = di only if Bob is authorized to access

attribute i.

�  Other attribute values will yield a value of zero upon
decryption.

User Revocation & Rejoin
�  User Revocation: Whenever Alice wish to revoke user

Bob for a data record d, Alice simply asks the cloud to
remove Td

b from Td

�  User Rejoin: Bob can have following two scenarios
for d.
� Scenario 1: Authorized to the same set (S) of attributes
� Scenario 2: Authorized to different set of attributes (U)
�  In any case, Alice uses corresponding set (either S or U)

and creates Td
b and sends it to the cloud. Then the cloud

adds Td
b to Td

Correctness (proof)
�  Theorem: For any data record d, Bob can only retrieve the

set of attributes (S) he is authorized to access. On the other
hand, if Bob is not an authorized user then he does not get
access to d on the cloud (assuming no collusion).

�  Proof: If Bob is an authorized user, then

� The final values retrieved by Bob after decryption are < d’1 +
α1,…., d’n+m+ αn+m >.

� For n+1 ≤ i ≤ n+m, d’i + αi = -ri + ri = 0
� For 1 ≤ i ≤ n:

�  If di ∈ S, then d’i + αi = di + ri - ri = di

�  Otherwise, d’i + αi = 0

Example

•  Alice: Data Owner
•  Consider Cherry data record as d
•  Suppose Bob (Supervisor) is authorized to access <NAME, AGE,
ROOM, DISEASE> attribute values of d
•  Whereas Charles (Friend) is authorized to access only <NAME,
ROOM> attribute values of d

Example (Data Outsource)
�  First, Alice masks the data record d and proceeds as follows:

�  Let d’ = <Cherry + r1, 27+ r2, 163+ r3, 65+ r4, Diabetes+ r5, r6>, here
m=1

�  Epka

(d’) = < Epka
(Cherry + r1), Epka

(27+ r2), Epka
(163+ r3), Epka

(65+ r4),
Epka

(Diabetes+ r5), Epka
(r6)>

�  Td
b = {Bob, rkpka-> pkb

, <Epkb
(-r1), Epkb

(-r2), Epkb
(-r3-163), Epkb

(-r4), Epkb
(-

r5), Epkb
(-r6)>}

�  Td
c = {Charles, rkpka-> pkc

, <Epkc
(-r1), Epkc

(-r2-27), Epkc
(-r3-163), Epkc

(-r4),
Epkc

(-r5-Diabetes), Epkc
(-r6)>}

�  Td = < Td
b , Td

c >
�  Sends (Td, Epka

(d’)) to the cloud

Example (Data Access by Bob)
�  The cloud computes < Epkb

(Cherry + r1), Epkb
(27+ r2), Epkb

(163+ r3), Epkb
(65+ r4), Epkb

(Diabetes+ r5), Epkb
(r6)>

Epkb
(Cherry)

Epkb
(27)

Epkb
(0)

Epkb
(65)

Epkb
(Diabetes)

Epkb
(0)

Cloud

Cherry

27

0

65

Diabetes

0

Bob decrypts using prb

Example (Data Access by Charles)
�  The cloud computes < Epkc

(Cherry + r1), Epkc
(27+ r2), Epkc

(163+ r3), Epkc
(65+ r4), Epkc

(Diabetes+ r5), Epkc
(r6)>

Epkc
(Cherry)

Epkc
(0)

Epkc
(0)

Epkc
(65)

Epkc
(0)

Epkc
(0)

Cloud

 Cherry
0
0
65
0
0

Charles decrypts using prc

Modified SDS Framework
�  Collusion between a user and the cloud might keep the

owner’s data at risk
�  To address this issue, we modify the proposed

protocol:
Data Distribution

�  Instead of storing the data (Td, Epka
(d’)) on one cloud, we

distribute it to two clouds (Federated cloud).
� Alice will outsource (ID_list, Epka

(d’)) to the primary
cloud and (ID_list, Td) to the secondary cloud

� A collusion between a user and one of the clouds will not
provide any meaning full information to either of the
parties.

Preliminary Experimental Results
�  Platform Description: Linux machine with an Intel

3.0GHz CORE 2 DUO with 3GB memory.

�  Randomly generated the number of attributes for a data
record d (i.e., n).

�  Tested the computational time for Alice for generating
a token and encrypting d’ based on varying number of
attributes for key sizes 512 and 1024 bits.

Alice computational time (m=10)

Conclusion/ Future Work
�  Proposed an efficient and secure data sharing (SDS)

framework that prevents information leakage when
user rejoins the system

�  In addition, modified the SDS framework, to prevent
the information leakage in the case of collusion
between a user and the cloud by distributing the data
among two clouds.

�  Alternative approach: To distribute private key of user
Bob among multiple clouds and Bob.

�  Hybrid approach – Key + Data Distribution
�  Currently, implementing the SDS framework in a

cloud environment

Reference
[1]Y. Yang and Y. Zhang. A generic scheme for secure data sharing in

cloud. In Parallel Processing Workshops (ICPPW), 2011 40th
International Conference on, pages 145 –153, sept. 2011.

Questions J

