
Thuong-Cang Phan (thuongcang.phan@isima.fr)
Laurent d'Orazio (laurent.dorazio@isima.fr)

1

(@)
Philippe Rigaux (philippe.rigaux@cnam.fr)

CloudCloud--I I '13'13, VLDB Workshop 2013, August 26th, Trento, Italy.

ISIMA UMR 6158 CNRS

ContextContext

M dM dMapreduceMapreduce
 a popular big data processing framework
 its basic complex operations used extensively and expensively

 join operations : R1(X1) ⋈ R2(X2) ⋈ ⋈ Rn (Xn)

Big joinBig join
 i t t ti f ffi i t d t l i & l ti an important operation for efficient data analysis&query evaluation
 NOT a straightforward implementation in Mapreduce
 compiled to MapReduce job(s)compiled to MapReduce job(s)
 Join algorithms:Map-side join,Reduce-side join,Broadcast join,etc.

 Too much unnecessary intermediate data generated in the
map phase

2

map phase

Problem: Problem: Intermediate data in Join
shuffleshuffleinputinput mapmap reducereduce outputoutput

Pairs: (key, targeted record)

Philippe ::001::5::9783
Dominique::661::3::9702
Baraa::661::3::9796
Cang::661::5::9789
Laurent::333::4::9785

001, P :Philippe::001::5::9783
661, P :Dominique::661::3::9702
661, P :Baraa::661::3::9796
661, P :Cang::661::5::9789 (661, …)

(001, …)
(333, …)

(Philippe,CN…)

Group by join key
{(001::CNAM)}

X
(Philippe::001::…)(001,

[P :Philippe::001::…],
[S :001::CNAM])

P: Person.dat

Laurent::333::4::9785

001 CNAM

661, P :Cang::661::5::9789
333, P :Laurent::333::4::9785

001, S :001::CNAM

(661, …)
(661, …)

(001, …)
(003)

(661,
[P :Dominique::661::]

Buffers records into two sets
according to the table tag

+
Cross-product

(003, [S :003::Blaise Pascal])
(333, [P :Laurent::33…])

S: School dat

001::CNAM
002::Cergy-Pontoise
003::Blaise Pascal
004::CanTho
006::Paris Sud 11

002, S :002:: Cergy-Pontoise
003, S :003:: Blaise Pascal
004, S :004::CanTho
006, S :006::Paris Sud 11

(002, …)
(004, …)
(006 …)

(003, …) [P :Dominique::661::],
[P :Baraa::661::3::…],
[P :Cang::661::5::…])

Cross product

(002, [S :002::Cergy.])
(004, [S :....])

Drawback: many tuples don’t actually participate in Join operation

S: School.dat (004, [S :....])
(006, [S :....])

They significantly increase the costs :
 I/O operations for intermediate results
 Communication cost

Reduce-Side Join

300,000,000,...
Don't be wasting ...P(.., sch-id) ⋈ S(sch-id, ...)

3

Reduce-Side Join

Proposed SolutionProposed Solution

P S

P ∩ S = {001}

P S

P ∩ S
P {(001, Philippe) , (661, Barra), (333, Laurent)}

S {(001, CNAM) , (002, Lyon I), (003, BP)}
{(001, Philippe,CNAM)}

P ∩ S = (P  S) \ (P ∆ S) The intersection filter

 Contributions:Contributions:
(a) three approaches of the intersection filter that approximates the(a) three approaches of the intersection filter that approximates the
intersection of datasets;

(b) the feasibility of our approaches used in two-way joins() y pp y j

(c) the advantage of the intersection filter for important join cases

(d) The considerable efficiency of the intersection filter as

4

() y
compared with basic filters in join operations.

ContentContent

J i l ith i M R dJ i l ith i M R d Join algorithms in MapReduceJoin algorithms in MapReduce

M d li I t ti Filt (I F)M d li I t ti Filt (I F) Modeling Intersection Filter (I.F)Modeling Intersection Filter (I.F)

Optimization of twoOptimization of two way join using I Fway join using I F Optimization of twoOptimization of two--way join using I.Fway join using I.F

 Advantage of I F for important join casesAdvantage of I F for important join cases Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Cost analysis and experimental evaluationCost analysis and experimental evaluation Cost analysis and experimental evaluationCost analysis and experimental evaluation

5

Join Algorithms in MapReduceJoin Algorithms in MapReduce

R dR d id J iid J i ReduceReduce--side Join side Join
The actual join happens on the Reduce side of the
framework. The ‘map’ phase only pre-processes theframework. The map phase only pre processes the
tuples of the two datasets to organize them in terms of
the join key.

 MapMap--side Join side Join
It is carried out on Mapper nodes Both the inputIt is carried out on Mapper nodes. Both the input
datasets for each map task must be already partitioned
and sorted by the same join key.

 Broadcast Join Broadcast Join
Mappers load the small dataset into memory and calls

6

Mappers load the small dataset into memory and calls
the map function for joining each tuple from the bigger
dataset

Bloom Filter (BF)Bloom Filter (BF)
 Bloom filter [Burton Howard Bloom in 1970] is a space-efficient probabilistic
d t t t d t t t b hi i t ith ll t f f ldata structure used to test membership in a set with a small rate of false
positives (a false positive probability).

 BF representing a static set S = {e e e } of n elements consists of an BF representing a static set S = {e1, e2, …, en} of n elements consists of an
array of m bits and a group of k independent hash functions h1, …, hk with the
range of {1, …, m}.

A Bloom Filter.

 No false negative
z is definitely not a member.

 False positive
y is probably a member; (may be wrong)kkn

kkn   1

Pr[bit is still 0] m
knkn

e
m

p








  111

7

y is probably a member; (may be wrong)
 Find optimal at k = (ln 2)m/n, p = 1/2 by
derivative of f

  m
knkn

k e
m

pf 
























 


11111Pr[false pos]

Partitioned Bloom Filter (PBF)Partitioned Bloom Filter (PBF)

I t BF(S) x Insert x:
- k hash functions encode k bit indices to set

xBF(S) ← x

1()h1() 2()h2() k()hk()…

k partitions of length m/k bits

Pr[bit is still 0]

knk 



 

nn

p
p m

k
m

p 





 










 111

n

p

kn

m
kp

m
p 






 






  111

8

Pr[false pos]  kpp m
kpf 
















  111

pff 

ContentContent

J i l ith i M R dJ i l ith i M R d Join algorithms in MapReduceJoin algorithms in MapReduce

M d li I t ti Filt (I F)M d li I t ti Filt (I F) Modeling Intersection Filter (I.F)Modeling Intersection Filter (I.F)

Optimization of twoOptimization of two way join using I Fway join using I F Optimization of twoOptimization of two--way join using I.Fway join using I.F

 Advantage of I F for important join casesAdvantage of I F for important join cases Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Cost analysis and experimental evaluationCost analysis and experimental evaluation Cost analysis and experimental evaluationCost analysis and experimental evaluation

9

Modeling Intersection FilterModeling Intersection Filter
 Three approaches to building the intersection filterThree approaches to building the intersection filter

R ∩ S = (R  S) \ (R ∆ S)
= (R  S) \ ((R \ S)  (S \ R))

(1) A pair of Bloom filters

BF(R)BF(S)

(1) A pair of Bloom filters

BF(R ∩ S) = BF(R) ∩ BF(S) with probability (1-1/m)k|R-RS|.k|S-RS|

10

(2) Unpartitioned BF Intersection (3) Partitioned BF Intersection

The false intersection probabilityThe false intersection probability

TTHEOREM 1. A false intersection by a pair of Bloom filters is identified with one of probabilities
1

1 ||

1
)(

111

kRk

Rpair m
f
























2
2 ||

2
)(

111

kSk

Spair m
f
























TTHEOREM 2. A false intersection by intersecting unpartitioned filters is identified with probability
kSkkRk   

|||| SkRk

BF mm
f 
















 
















 

|||| 111111

TTHEOREM 3. A false intersection by intersecting partitioned filters is identified with probability
kSkR

PBF
kkf 












 












 

||||

1111PBF mm
f 





















 1111

TTHEOREM 4 Th f l i t ti b bilit f th titi d filt i t ti i l

11

TTHEOREM 4. The false intersection probability of the unpartitioned filter intersection is less
than the false intersection probability of the partitioned filter intersection PBFBF ff  

ContentContent

J i l ith i M R dJ i l ith i M R d Join algorithms in MapReduceJoin algorithms in MapReduce

M d li I t ti Filt (I F)M d li I t ti Filt (I F) Modeling Intersection Filter (I.F)Modeling Intersection Filter (I.F)

Optimization of twoOptimization of two way join using I Fway join using I F Optimization of twoOptimization of two--way join using I.Fway join using I.F

 Advantage of I F for important join casesAdvantage of I F for important join cases Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Cost analysis and experimental evaluationCost analysis and experimental evaluation Cost analysis and experimental evaluationCost analysis and experimental evaluation

12

TwoTwo--way join using Inter. Filterway join using Inter. Filter

BF(R  S) = BF(R)  BF(S)

13

ContentContent

J i l ith i M R dJ i l ith i M R d Join algorithms in MapReduceJoin algorithms in MapReduce

M d li I t ti Filt (I F)M d li I t ti Filt (I F) Modeling Intersection Filter (I.F)Modeling Intersection Filter (I.F)

Optimization of twoOptimization of two way join using I Fway join using I F Optimization of twoOptimization of two--way join using I.Fway join using I.F

 Advantage of I F for important join casesAdvantage of I F for important join cases Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Cost analysis and experimental evaluationCost analysis and experimental evaluation Cost analysis and experimental evaluationCost analysis and experimental evaluation

14

Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Chain JoinChain Join R1(x1, x2) ⨝ R2(x2, x3) ⨝ R3(x3, x4) ⨝ ... ⨝ Rn(xn, xn+1)

Execution of a chain join using a
Bloomjoin cascade
R2, R3,..., Rn have not been filtered

Execution of a chain join using a
cascade of intersection filter join
R2, R3,..., Rn have been filtered

15

Advantage of I.F for important join casesAdvantage of I.F for important join cases

I F b d ti i ti f h i j iI F b d ti i ti f h i j i I.F based optimization of a chain join I.F based optimization of a chain join
 Extended intersection filter (E.I.F)
i l d f Bl filt h h d diff t j i k E h t lincludes an array of Bloom filters hashed on different join keys. Each tuple
of a dataset may contain a few join keys linking to others. The tuple is
eliminated if at least one of its join keys, xi, is not a member of a
component filter BFi of the extended filtercomponent filter BFi of the extended filter.

BF(R)k BF(Rk.xk)

BF(R1 x1)
BF(R2.x2 R3.x3)

k

2
1

t(x1, x2 , x3 .., xk ,.., xn)

 ? t E.I.F

all t (xi)  BFi (i=1,..,k)

BF(R1.x1)

Extended intersection filter (E.I.F)

16

Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Chain JoinChain Join
R1,2,3, ..., n‐1, n⨝xn

R R

BF(R1,2,..,n‐1.xn)Optimization of
a chain join with R1,2,..,n‐1 Rn

R ⨝BF(R4.x4)
j

extended
intersection
filters

R1,2,3⨝

R1,2 R3

BF(R1,2.x3)⨝x2

BF(R3.x3)NO redundant data
In intermediate join results

2

BF(R1.x2)BF(R2.x2)

17

R1 R2

BF(R1.x2)BF(R2.x2)

Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Chain JoinChain Join

Optimization of a chain join with
extended intersection filters

Three-way join
reduces the number of
intermediate join jobs

18

Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Star JoinStar Join
R

x'n
Rn

R0

x'1
x1

xn

'
x2

Optimization of a star join with
extended intersection filters R 1 x'2
extended intersection filters

R2
R1

19

E.I.F reduces the number of intermediate join jobs to zero, NO redundant data.

ContentContent

J i l ith i M R dJ i l ith i M R d Join algorithms in MapReduceJoin algorithms in MapReduce

M d li I t ti Filt (I F)M d li I t ti Filt (I F) Modeling Intersection Filter (I.F)Modeling Intersection Filter (I.F)

Optimization of twoOptimization of two way join using I Fway join using I F Optimization of twoOptimization of two--way join using I.Fway join using I.F

 Advantage of I F for important join casesAdvantage of I F for important join cases Advantage of I.F for important join casesAdvantage of I.F for important join cases

 Cost analysis and experimental evaluationCost analysis and experimental evaluation Cost analysis and experimental evaluationCost analysis and experimental evaluation

20

Cost Analysis for TwoCost Analysis for Two--way Joinway Join

C t d lC t d l Cost modelCost model
The total cost of the join operation:

C = Cpre + Cread + Csort + Ctr + Cwrite

where
Cread = cr . |R| + cr . |S|; Cwrite = cr . |O|; Ctr = ct . |D|read r r write r tr t

Csort = cl|D|.2([logB|D|-logB(mp1+mp2)] + [logB(mp1+mp2)]) [8]

Cpre = Cread + 2 . ct . m . t + ct . m . r . t + a

21

a = ct . m . r . t for the first approach, otherwise a = 0

Cost Analysis for TwoCost Analysis for Two--way Joinway Join

C t i f hC t i f h Cost comparison of approachesCost comparison of approaches
The size of intermediate data with the false intersection probability is

(1)

(2)(2)

(3)|D| =
(4)

(5)
where
equation (1) for the pair of the filters (approach 1),
equation (2) for the unpartitioned intersection filter (approach 2),
equation (3) for the partitioned intersection filter (approach 3)

22

equation (3) for the partitioned intersection filter (approach 3),
equation (4) for a filter BF(R), and
equation (5) in case without Bloom filter

Cost Analysis for TwoCost Analysis for Two--way Joinway Join

TTHEOREM 5. The join operation using the intersection filter is more efficient than using a basic
Bloom filter because it produces less redundant and intermediate data than the latter. Additionally,
we can drive comparing equation for |D|

|D|1  |D|2 < |D|3 < |D|4 < |D|5

where |D|i is the intermediate data size for equation ith (i = 1..5).

TTHEOREM 6. The total cost of the join operation for our approaches is defined by

C1  C2 < C3 < C4 < C5

where Ci is the total cost in case of equation ith (i = 1..5).

TTHEOREM 7. The total cost to perform pre-processing step

C =
Cread + 2 . ct . m . t + 2 . ct . m . r . t , in case of (1)

C + 2 c m t + c m r t in case of (2) (3) (4)

23

Cpre = Cread + 2 . ct . m . t + ct . m . r. t, in case of (2), (3), (4)

0 in case of (5)

ConclusionConclusion

Th h f b ildi th i t ti filt Three approaches for building the intersection filter
 Their efficiency used in joins better than other solutions
 Their advantage for important join cases Their advantage for important join cases

 Although the intersection filter has false positives and an g p
extra cost for the pre-processing step, its efficiency in
space-saving and filtering often outweighs these
drawbacksdrawbacks
 System will become inefficient if t and r is large or there
is very little redundant data in the join operation.y j p

24

Future workFuture work

I l t ti f l lti j i i ll Implementation of general multiway joins, especially a
cascade of map-side joins.

 Recursive joins.

 A complete optimizer for choosing the best joinA complete optimizer for choosing the best join
implementation in MapReduce.

25

ReferencesReferences
[1] Bloom, B.H. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM.Commun. ACM.
[2] Broder, A. and Mitzenmacher, M. 2004. Network Applications of Bloom Filters: A
Survey. Internet Mathematics.
[3] Lee T Kim K and Kim H -J 2012 Join processing using Bloom filter in[3] Lee, T., Kim, K. and Kim, H. J. 2012. Join processing using Bloom filter in
MapReduce. Proceedings of the 2012 ACM Research in Applied Computation
Symposium (New York).
[4] Tom White’s book 2010. Hadoop: The Definitive Guide, 2nd Edition. O’Reilly.[] p , y
[5] PUMA: Purdue MapReduce Benchmarks Suite:
http://web.ics.purdue.edu/~fahmad/benchmarks.htm.
[6] Foto N. Afrati and Jeffrey D. Ullman. 2010.Optimizing joins in a map-reduce[6] Foto N. Afrati and Jeffrey D. Ullman. 2010.Optimizing joins in a map reduce
environment. In Proceedings of the 13th International Conference on Extending
Database Technology (EDBT '10).
[7] Michael, L., Nejd, W., Papapetrou, O. and Siberski, W. 2007. Improving distributed
join efficiency with extended bloom filter operations. 21st International Conference on
Advanced Information Networking and Applications, 2007. AINA ’07.
[8] Nykiel, T., Potamias, M., Mishra, C., Kollios, G. and Koudas, N. 2010. MRShare:

26

sharing across multiple queries in MapReduce. Proc. VLDB Endow. 3, 1-2 (Sep.
2010), 494–505.

Thank you for your attention !

27

