Toward Intersection Filter-Based

Optimization for Big Joins

Thuong-Cang Phan (thuongcang.phan@isima.fr)
Laurent d'Orazio (laurent.dorazio@isima.fr)
Philippe Rigaux (philippe.rigaux@cnam.fr)
ISIMA

Context

-Mapreduce

\checkmark a popular big data processing framework
\checkmark its basic complex operations used extensively and expensively
$>$ join operations : $\mathrm{R}_{1}\left(X_{1}\right) \bowtie \mathrm{R}_{2}\left(X_{2}\right) \bowtie \ldots \bowtie \mathrm{Rn}_{\mathrm{n}}(\mathrm{Xn})$

-Big join

\checkmark an important operation for efficient data analysis\&query evaluation
\checkmark NOT a straightforward implementation in Mapreduce
\checkmark compiled to MapReduce job(s)
\checkmark Join algorithms:Map-side join,Reduce-side join,Broadcast join,etc.
$>$ Too much unnecessary intermediate data generated in the map phase

Problem: Intermediate data in Join

Proposed Solution

- Contributions:

(a) three approaches of the intersection filter that approximates the intersection of datasets;
(b) the feasibility of our approaches used in two-way joins
(c) the advantage of the intersection filter for important join cases
(d) The considerable efficiency of the intersection filter as compared with basic filters in join operations.

Content

- Join algorithms in MapReduce
- Modeling Intersection Filter (I.F)
- Optimization of two-way join using I.F
- Advantage of I.F for important join cases
- Cost analysis and experimental evaluation

Join Algorithms in MapReduce

- Reduce-side Join

The actual join happens on the Reduce side of the framework. The 'map' phase only pre-processes the tuples of the two datasets to organize them in terms of the join key.

- Map-side Join

It is carried out on Mapper nodes. Both the input datasets for each map task must be already partitioned and sorted by the same join key.

- Broadcast Join

Mappers load the small dataset into memory and calls the map function for joining each tuple from the bigger dataset

Bloom Filter (BF)

\checkmark Bloom filter [Burton Howard Bloom in 1970] is a space-efficient probabilistic data structure used to test membership in a set with a small rate of false positives (a false positive probability).
\checkmark BF representing a static set $S=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of n elements consists of an array of m bits and a group of k independent hash functions h_{1}, \ldots, h_{k} with the range of $\{1, \ldots, m\}$.

A Bloom Filter.

- False positive
y is probably a member; (may be wrong)
- Find optimal at $k=(\ln 2) \mathrm{m} / \mathrm{h}, \mathrm{p}=1 / 2$ by
derivative of f

Partitioned Bloom Filter (PBF)

Content

- Join algorithms in MapReduce
- Modeling Intersection Filter (I.F)
- Optimization of two-way join using I.F
- Advantage of I.F for important join cases
- Cost analysis and experimental evaluation

Modeling Intersection Filter

- Three approaches to building the intersection filter

| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $B F(S)$

1	0	1	0	1	0	1	0	1	1	0

$B F(R)$

$$
\begin{aligned}
& R \cap S=(R \cup S) \backslash(R \Delta S) \\
&=(R \cup S) \backslash((R \backslash S) \cup(S \backslash R)) \\
& B F(S) \quad B F(R)
\end{aligned}
$$

(1) A pair of Bloom filters

$$
B F(R \cap S)=B F(R) \cap B F(S) \text { with probability }(1-1 / m)^{k|R-R \cap S| . k|S-R \cap S|}
$$

(2) Unpartitioned BF Intersection

$m_{p}=4$ bits
(3) Partitioned BF Intersection

The false intersection probability

THEOREM 1. A false intersection by a pair of Bloom filters is identified with one of probabilities

$$
f_{\cap \operatorname{pair}(R)}=\left(1-\left(1-\frac{1}{m_{1}}\right)^{k_{1}|R|}\right)^{k_{1}} \quad f_{\cap \text { pair }(S)}=\left(1-\left(1-\frac{1}{m_{2}}\right)^{k_{2}|S|}\right)^{k_{2}}
$$

THEOREM 2. A false intersection by intersecting unpartitioned filters is identified with probability $f_{\cap B F}=\left(1-\left(1-\frac{1}{m}\right)^{k|R|}\right)^{k}\left(1-\left(1-\frac{1}{m}\right)^{k|S|}\right)^{k}$

THEOREM 3. A false intersection by intersecting partitioned filters is identified with probability

$$
f_{\cap P B F}=\left(1-\left(1-\frac{k}{m}\right)^{|R|}\right)^{k}\left(1-\left(1-\frac{k}{m}\right)^{|S|}\right)^{k}
$$

\qquad

THEOREM 4. The false intersection probability of the unpartitioned filter intersection is less than the false intersection probability of the partitioned filter intersection $\quad f_{\cap B F}<f_{\cap \text { PBF }}$

Content

- Join algorithms in MapReduce
- Modeling Intersection Filter (I.F)
- Optimization of two-way join using I.F
- Advantage of I.F for important join cases
- Cost analysis and experimental evaluation

Two-way join using Inter. Filter

$\cdots \quad$ HDFS read/write

$\longrightarrow \quad$ Local write
\cdots Remote communicaton

Content

- Join algorithms in MapReduce
- Modeling Intersection Filter (I.F)
- Optimization of two-way join using I.F
- Advantage of I.F for important join cases
- Cost analysis and experimental evaluation

Advantage of I.F for important join cases

- Chain Join $R_{1}\left(x_{1}, x_{2}\right) \bowtie R_{2}\left(x_{2}, x_{3}\right) \bowtie R_{3}\left(x_{3}, x_{4}\right) \bowtie \ldots \bowtie R_{n}\left(x_{n}, x_{n+1}\right)$

Execution of a chain join using a cascade of intersection filter join $R_{2}, R_{3}, \ldots, R_{n}$ have been filtered

Advantage of I.F for important join cases

- I.F based optimization of a chain join

> Extended intersection filter (E.I.F)
includes an array of Bloom filters hashed on different join keys. Each tuple of a dataset may contain a few join keys linking to others. The tuple is eliminated if at least one of its join keys, x_{i}, is not a member of a component filter $B F_{i}$ of the extended filter.

Advantage of I.F for important join cases

- Chain Join

Optimization of a chain join with extended intersection filters

NO redundant data
In intermediate join results

Advantage of I.F for important join cases

- Chain Join

Optimization of a chain join with extended intersection filters

Three-way join reduces the number of intermediate join jobs

Advantage of I.F for important join cases

- Star Join

Optimization of a star join with extended intersection filters

E.I.F reduces the number of intermediate join jobs to zero, NO redundant data.

Content

- Join algorithms in MapReduce
- Modeling Intersection Filter (I.F)
- Optimization of two-way join using I.F
- Advantage of I.F for important join cases
- Cost analysis and experimental evaluation

Cost Analysis for Two-way Join

- Cost model

The total cost of the join operation:

$$
C=C_{p r e}+C_{r e a d}+C_{s o r t}+C_{t r}+C_{w r i t e}
$$

where

$$
C_{\text {read }}=c_{r} \cdot|R|+c_{r} \cdot|S| ; C_{\text {write }}=c_{r} \cdot|O| ; C_{t r}=c_{t} \cdot|D|
$$

$$
C_{\text {sort }}=c_{\mid}|D| \cdot 2\left(\left[\log _{B}|D|-\log _{B}\left(m p_{1}+m p_{2}\right)\right]+\left[\log _{B}\left(m p_{1}+m p_{2}\right)\right]\right)[8]
$$

$$
C_{\text {pre }}=C_{\text {read }}+2 \cdot c_{t} \cdot m \cdot t+c_{t} \cdot m \cdot r \cdot t+a
$$

$a=c_{t} . m . r . t$ for the first approach, otherwise $a=0$

Cost Analysis for Two-way Join

- Cost comparison of approaches

The size of intermediate data with the false intersection probability is

$$
|D|=\left\{\begin{array}{l}
\begin{array}{l}
\partial_{S}|R|+f_{\cap \text { pair }(S)} \cdot\left(1-\partial_{S}\right)|R|+\partial_{R}|S|+f_{\cap \text { pair }(R)} .\left(1-\partial_{R}\right)|S| \\
\partial_{S}|R|+f_{\cap B F} \quad .\left(1-\partial_{S}\right)|R|+\partial_{R}|S|+f_{\cap B F} \quad .\left(1-\partial_{R}\right)|S| \\
\partial_{S}|R|+f_{\cap P B F} \quad .\left(1-\partial_{S}\right)|R|+\partial_{R}|S|+f_{\cap P B F} \\
|R|+ \\
\\
|R|+|S|
\end{array} \\
\quad \partial_{R}|S|+f_{\cap \text { pair }(R)} .\left(1-\partial_{R}\right)|S| \\
\text { where } \tag{5}\\
\text { equation (1) for the pair of the filters (approach 1), } \\
\text { equation (2) for the unpartitioned intersection filter (approach 2), } \\
\text { equation (3) for the partitioned intersection filter (approach 3), } \\
\text { equation (4) for a filter BF(R), and } \\
\text { equation (5) in case without Bloom filter }
\end{array}\right.
$$

Cost Analysis for Two-way Join

THEOREM 5. The join operation using the intersection filter is more efficient than using a basic Bloom filter because it produces less redundant and intermediate data than the latter. Additionally, we can drive comparing equation for |D|

$$
|D|_{1} \approx|D|_{2}<|D|_{3}<|D|_{4}<|D|_{5}
$$

where $|D|_{i}$ is the intermediate data size for equation $i^{\text {th }}(i=1 . .5)$.

THEOREM 6. The total cost of the join operation for our approaches is defined by

$$
C_{1} \approx C_{2}<C_{3}<C_{4}<C_{5}
$$

where C_{i} is the total cost in case of equation $i^{\text {th }}(i=1 . .5)$.

THEOREM 7. The total cost to perform pre-processing step

$$
C_{p r e}=\left\{\begin{array}{l}
C_{r e a d}+2 \cdot c_{t} \cdot m \cdot t+2 \cdot c_{t} \cdot m \cdot r \cdot t, \text { in case of }(1) \\
C_{r e a d}+2 \cdot c_{t} \cdot m \cdot t+c_{t} \cdot m \cdot r \cdot t, \text { in case of (2),(3), (4) } \\
0 \text { in case of (5) }
\end{array}\right.
$$

Conclusion

- Three approaches for building the intersection filter
- Their efficiency used in joins better than other solutions
- Their advantage for important join cases
- Although the intersection filter has false positives and an extra cost for the pre-processing step, its efficiency in space-saving and filtering often outweighs these drawbacks
- System will become inefficient if t and r is large or there is very little redundant data in the join operation.

Future work

- Implementation of general multiway joins, especially a cascade of map-side joins.
- Recursive joins.
- A complete optimizer for choosing the best join implementation in MapReduce.

References

[1] Bloom, B.H. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM.
[2] Broder, A. and Mitzenmacher, M. 2004. Network Applications of Bloom Filters: A Survey. Internet Mathematics.
[3] Lee, T., Kim, K. and Kim, H.-J. 2012. Join processing using Bloom filter in MapReduce. Proceedings of the 2012 ACM Research in Applied Computation Symposium (New York).
[4] Tom White's book 2010. Hadoop: The Definitive Guide, 2nd Edition. O'Reilly.
[5] PUMA: Purdue MapReduce Benchmarks Suite:
http://web.ics.purdue.edu/~fahmad/benchmarks.htm.
[6] Foto N. Afrati and Jeffrey D. Ullman. 2010.Optimizing joins in a map-reduce environment. In Proceedings of the 13th International Conference on Extending Database Technology (EDBT '10).
[7] Michael, L., Nejd, W., Papapetrou, O. and Siberski, W. 2007. Improving distributed join efficiency with extended bloom filter operations. 21st International Conference on Advanced Information Networking and Applications, 2007. AINA '07.
[8] Nykiel, T., Potamias, M., Mishra, C., Kollios, G. and Koudas, N. 2010. MRShare: sharing across multiple queries in MapReduce. Proc. VLDB Endow. 3, 1-2 (Sep. 2010), 494-505.

Thank you for your attention!

