## i<sup>2</sup>MapReduce: Incremental Iterative MapReduce

Yanfeng Zhang Computing Center Northeastern University, China Shimin Chen

Institute of Computing Technology Chinese Academy of Sciences

**Cloud Intelligence** 



#### **Iterative Computation**

- Use the same computation logic (update function) to process the data many times
- The previous iteration's output
  is the next iteration's input
- Stop when the iterated result converges to a fixed point



Cloud Intelligence



#### **Iterative Cloud Intelligence Apps**





VLDB



Earthquake/hurricane prediction

Non negative matrix factorization

Data clustering

#### **Iterative Computation**

$$v^k = F(v^{k-1}, D)$$

- v: state data (updated every iteration)
- D: structure data (static during iterative computation)
- F(): iterative update function



v: PageRank scores R

D: web graph matrix W

Cloud Intelligence



#### **Structure Data is Changing**





#### **Structure Data is Changing**





### **Structure Data is Changing**



Changing social graph



Cloud Intelligence

- Need to update the result to timely reflect the changing dataset
- Start from scratch? heavy weighted
- Incremental processing



### **Incremental Processing**

# Utilize the previous iterative computation's result:

- 1. Reduce the number of iterations
- Structure data is slightly changed <-> the result is slightly changed
- Start from the previously converged state rather than from a random start point



2. Reduce the workload of each iteration

$$O(|D + \Delta D|) \quad \blacksquare \quad O(|\Delta D|)$$

Restart computation

Incremental processing

Cloud Intelligence

A VLDB Workshop



 $v^k = F(v^{k-1}, D)$ 

 $v^{k} = F(v^{k-1}, D + \Delta D)$ 

#### **Related Works & Our Focus**

- Incoop [SOCC 2011] (MPI-SWS)
- Naiad [CIDR 2013] (Microsoft)

- Our Focus: Incremental Iterative MapReduce
  - MapReduce is the most widely used big data processing tool

d Intelligence

VI DB Worksho

Compatible with existing MapReduce apps





Iterative processing

**Cloud Intelligence** 



#### **Throw a Pebble into Still Water**









Iterative processing

Incremental processing







Iterative processing

Incremental processing







Iterative processing

Incremental processing



#### i<sup>2</sup>MapReduce: Incremental Processing

- 1. Start from the previously converged state data
  - Reduce the number of iterations
- Only execute the changed mappers/reducers and utilize the converged MR-Edge/RM-Edge state
  - Reduce the workload of each iteration
- 3. Filter the converged reducers
  - Avoid changes propagation



Cloud Intelligence



#### i<sup>2</sup>MapReduce: Prototype Implementation

v<sup>k</sup>(0), **D'(0**)

v<sup>k</sup>(1), D'(1)

mapper1

v<sup>k</sup>(2), **D'(2)** 

v<sup>k+1</sup>(0), v<sup>k+1</sup>(1) reducer0

 $v^{k+1}(2), v^{k+1}(3)$ 

Cloud Intelligence

A VLDB Workshop

• Hadoop extension





#### i<sup>2</sup>MapReduce vs. MapReduce compute

- 20-node cluster
- App: PageRank
- Synthetic power-law graph
  - Degree: log-normal dist.
  - Avg. degree 5.18
- Fixed change size
  - Randomly change 10K edges
- Varying input size
  - From 10M nodes to 50 nodes



The time of incremental processing does not change much as input size grows

### **Conclusions & Future Work**

- Conclusions
  - Incremental processing with MRBGraph
  - i<sup>2</sup>MapReduce: a MapReduce based framework for incremental iterative computations in the cloud
- Future work
  - Indexing mechanism for querying MRBGraph file

Intelligence

VLDB Worksho

Cost-aware execution plan







### **Backup Slides: Related Work**

- Incoop [SOCC 2011] (MPI-SWS)
- Spinning Fast Iterative Data Flows [VLDB 2012] (TU Berlin)
- REX [VLDB 2012] (U. Penn)
- Naiad [CIDR 2013] (Microsoft)
- Incremental Recomputions in MR [CloudDB 2011] (U. Kaiserslautern)

id Intelligence

VI DB Workshor

• IncMR [Cloud 2012] (Donghua U. China)



## Backup Slides: Building MRBGraph

#### MapReduce extension

|               | MapReduce           | i <sup>2</sup> MapReduce   |
|---------------|---------------------|----------------------------|
| Map input     | <mk, mv=""></mk,>   | <mk, dv="" sv,=""></mk,>   |
| Map output    | <rk, rv=""></rk,>   | <rk, mk,="" rv=""></rk,>   |
| Reduce input  | <rk, [rv]=""></rk,> | <rk, [mk,="" rv]=""></rk,> |
| Reduce output | <dk, dv=""></dk,>   | <dk, dv=""></dk,>          |

Mapper key & value: MK, MV Reducer key & value: RK, RV D: Structure data key & value: SK, SV v: State data key & value: DK, DV



**Cloud Intelligence** 

