
Bloofi: A Hierarchical Bloom
Filter Index with

Applications to Distributed
Data Provenance

Adina Crăiniceanu

U.S. Naval Academy

Cloud Intelligence - A VLDB Workshop, August 26, 2013

Outline

 Problem

 Bloofi

 Description

 Search

 Maintenance

 Distributed Data Provenance

 Experimental results

 Conclusions and future work

Problem

 Federated cloud environment

 Semi-independent clouds

 Each cloud keeps control of its data

 Data needs to be shared on demand

 Given a set of sets (the clouds)

 Find all the sets (clouds) that contain a
given element X

Challenges

 Number of participants is high

 Broadcasting a query is expensive

 Processing each query at all locations is
expensive

 Creating a global distributed index is
not possible

 Individual clouds maintain control of the
data

 Volume and rate of data insertion is high

Our Solution

 Each cloud maintains a Bloom filter of
its data

 Bloom filters shared with a central
location

 Construct a Bloom Filter Index (Bloofi)
at central location

 Queries are processed first at central
location, and sent only to the clouds
that (might) have the answer

Outline

 Problem

 Bloofi

 Description

 Search

 Maintenance

 Distributed Data Provenance

 Experimental results

 Conclusions and future work

 Bit array of size m

 k hash functions with range [0,m-1]

Bloom Filters

0 1 2 …………….……………….... m-1

Insert x: h1(x) = 2
h2(x) = 9
h3(x) = 5

0 | 0 | 1 | 0| 0| 1 | 0 | 0| 0 | 1 | 0 | 0

 Bit array of size m

 k hash functions with range [0,m-1]

Bloom Filters

0 1 2 …………….……………….... m-1

Query y: h1(y) = 2
h2(y) = 9
h3(y) = 4

0 | 0 | 1 | 0| 0| 1 | 0 | 0| 0 | 1 | 0 | 0

Bloom Filters Advantages

 Compact representation of sets

 Efficient insertion and testing

 Probability of false negatives = 0

 Trade-off between size of filter and
false positive probability

Bloofi: A Bloom Filter Index

0 1 0 0 000 0

Id: 2

1 0 0 0 000 0

Id: 1

0 0 0 0 001 0

Id: 3

0 0 1 0 000 0

Id: 4

0 0 0 1 000 0

Id: 5

0 0 0 0 100 0

Id: 6

1 1 1 0 001 0

Id: 7

1 1 1 1 101 0

Id: 9

0 0 0 1 100 0

Id: 8

Bloofi Invariants

 Each Bloom filter value represents the
union of all subsets in the subtree =>
useful for pruning during search

 Balanced tree

 Each non-root node has between d and
2d descendants

 Each node has 1 value

0 1 0 0 000 0

Id: 2

1 0 0 0 000 0

Id: 1

0 0 0 0 001 0

Id: 3

0 0 1 0 000 0

Id: 4

0 0 0 1 000 0

Id: 5

0 0 0 0 100 0

Id: 6

1 1 1 0 001 0

Id: 7

1 1 1 1 101 0

Id: 9

0 0 0 1 100 0

Id: 8

Bloofi Search

1 0 0 0 000 0

Id: 1

0 1 0 0 000 0

Id: 2

0 0 0 0 001 0

Id: 3

0 0 1 0 000 0

Id: 4

0 0 0 1 000 0

Id: 5

0 0 0 0 100 0

Id: 6

1 1 1 0 001 0

Id: 7

1 1 1 1 101 0

Id: 9

0 0 0 1 100 0

Id: 8

Q Key: 4: h1(4)=4

A: Id = 5

Bloofi Insert

0 1 0 0 000 0

Id: 2

1 0 0 0 000 0

Id: 1

0 0 0 0 001 0

Id: 3

0 0 1 0 000 0

Id: 4

0 0 0 1 000 0

Id: 5

0 0 0 0 100 0

Id: 6

1 1 1 0 001 0

Id: 7

1 1 1 1 101 0

Id: 9

0 0 0 1 100 0

Id: 8

0 0 0 0 011 0

Id: 10

Hd = 4
Hd = 4

Hd = 3

Hd = 3

Hd = 2

Hd = 3

Bloofi Insert

0 1 0 0 000 0

Id: 2

1 0 0 0 000 0

Id: 1

0 0 0 0 001 0

Id: 3

0 0 1 0 000 0

Id: 4

0 0 0 1 000 0

Id: 5

0 0 0 0 100 0

Id: 6

0 0 0 1 100 0

Id: 8

0 0 0 0 011 0

Id: 10

Hd = 4
Hd = 4

1 1 1 1 111 0

Id: 9

1 1 0 0 011 0

Id: 7

Hd = 3

Hd = 3

Hd = 2

Hd = 3

0 0 0 0 011 0

Id: 10

Bloofi Split

0 1 0 0 000 0

Id: 2

1 0 0 0 000 0

Id: 1

0 0 0 0 001 0

Id: 3

0 0 1 0 000 0

Id: 4

0 0 0 1 000 0

Id: 5

0 0 0 0 100 0

Id: 6

0 0 0 1 100 0

Id: 8
0 0 1 0 011 0

Id: Id: 11

1 1 1 1 111 0

Id: 9

1 1 0 0 001 0

Id: 7

0 0 0 0 011 0

Id: 10

Bloofi Properties

 Search cost is O(d*logdN) in general
and O(N) in worst case

 Storage cost is O(N/d)

 Insert cost and delete cost are
O(dlogdN)

 Update cost is O(logdN)

Outline

 Problem

 Bloofi

 Description

 Search

 Maintenance

 Distributed Data Provenance

 Experimental results

 Conclusions and future work

Distributed Data Provenance

S P Q

R

S T

U

V

W

Trans

Send

Trans

Spawn

Spawn Trans

Bundle

Bundle

Q

Send

Why not distributed index of all data?
• Some sites want data locality
• Different storage solutions at each site
• All data not created equal, not all data should go

to the “headquarters”

Outline

 Problem

 Bloofi

 Description

 Search

 Maintenance

 Distributed Data Provenance

 Experimental results

 Conclusions and future work

Experiments Set-up

 Simulator written in Java

 Uses open-source Bloom filter impl [Skjegstad]

 Experiments run on a Dell Latitude E6510
2.76GHz Intel Core I7 CPU, 4 GB RAM

 Performance metrics:

 Search cost – nb Bloom filters searched to find all
matches

 Search time – time to find all matches

 Maintenance cost – nb of nodes accessed during
insert/delete/update

 Compare with “baseline” case – no index

Parameters

Parameter Range of values Default Value

N –Nb of Bloom filters 100-100,000 1000

d – Bloofi order 2-22 2

Bloom filter size (bits) 1000-1,000,000 100,992

Bloofi construction
method

Iterative / bulk Iterative

Similarity metric Hamming/ Jaccard
/Cosine

Hamming

Data distribution Random/nonrandom Nonrandom

Search Cost vs. N

Search Time vs. N

Maintenance Cost vs. N

Search Cost vs. d

Search Cost vs. Filter Size

Search Time vs. Filter Size

Outline

 Problem

 Bloofi

 Description

 Search

 Maintenance

 Distributed Data Provenance

 Experimental results

 Conclusions and future work

Related Work

 Bloom filters [Bloom70]

 Bloom filter variants [CM03, DR06,
DBN12, Mitzenmacher01, SLP10]

 Bloom filter applications [FCB98, M90,
BM02]

 B+trees

 Bitmap indexes [CI98]

 S-trees [Deppisch86]

Conclusions

 Bloofi – a hierarchical index structure for
Bloom filters

 Low search cost (O(N) worst case, O(logN)
most cases)

 Efficient construction and maintenance

 Low storage cost

 Applications to cloud intelligence

Future work

 Clustering Bloom filters as a routing
problem

 Compression

 Consider different Bloom filter sizes at
different levels

Thank You!

Questions?

