

Warehousing The World: Challenges From New Types of Data

Professor Torben Bach Pedersen Department of Computer Science Aalborg University, Denmark

Center for Data-intensive Systems

Speaker Intro

• Well, I try to squeeze the world into cubes...

Talk Overview

- Data warehousing and business intelligence
 - Current status
- What is missing?
 - Support for new types of data
 - Associated challenges
 - Partial solutions
- The World Warehouse
 - An integrated solution
 - Challenges for the World Warehouse
- Conclusion and future work

Data Warehouse Refresher

- Why was it that data warehouses were smart?
- In the old days, systems looked like this:
- And that was not so smart...
- n*m connections must be coded/maintained
- Even worse, **different** views on the world

EDA keynote, June 4, 2009

Data Warehouse Refresher 2

- A data warehouse looks like this:
- And that is much smarter:
- Only n+m connections must be coded/maintained
- Even better, **common** view of the world

Multidimensional Data

- DWs are based on a multidimensional data model
- Important business events, e.g., sales, modeled as facts
- Facts characterized by hierarchical *dimensions*, e.g., time and product
- Associated numerical *measures*, e.g., sales price
- The multidimensional model is unique in providing a framework that is
 - Intuitive
 - Effective
 - Allowing data to be viewed/analyzed at desired level of detail
 - Supports excellent performance
- Note: MD data is about "as structured as you can get!"

Example BI tool: TARGIT BI Suite

daisv

Status 2009

- Almost all (large) organizations have some kind of data warehouse
- With a business intelligence (BI) solution on top
- (Pretty good) control of finance data, sales data, etc.
- Are we then "done" with DW+BI?
- Absolutely not! ③

What is missing?

- Traditional DWs work well for traditional, *structured* data
- But DW data only cover very little of an organization's data
- So, DWs only solve a small part of the real integration and analysis needs of most organization
- So, what is missing is:
 - ...the rest of the world!

New Types of Data

- Structured data is quite well supported
 - Relational data + multidimensional data in DWs
 - But other types of data are not:
- Text data is found everywhere
 - Documents, emails, web pages
- Semi-structured/XML data
 - Electronic catalogs, semantic web data
- Mobile, pervasive and ubiquitous computing:
 - Large quantities of geo-related data
 - Data from a large amount of sensors
- Analytical models of data developed through data mining
 - Used, e.g., to predict the future
- All this must be integrated and used for BI

Problems with New Types of Data

- Problem with current technologies:
 - All these different types of data/models cannot be integrated and analyzed in a *coherent* fashion
- Instead, applications must develop separate ad-hoc solutions for integration and analysis
 - Typically for each pair of data types
 - For example, combining relational and text data

Integration of New Types of Data

- Trend 1: Integration of semi-structured/XML data
- Trend 2: Integration of text data
- Trend 3: Integration of geo-data
- Trend 4: Integration of sensor data
- Trend 5: Data streams
- Trend 6: Integration of analytical models
- Trend 7: Privacy
- Some solutions/systems offer partial support, but there is still a long way to go...
- I will discuss the issues, and show a few partial solutions

Integration of XML/Semi-structured

- XML data is everywhere
- XML data is "semi-structured"
 - Simple example: emails in XML format
 - Some data is quite structured, e.g., email To/From/CC fields
 - Some data is un-structured, e.g., the email text
- A lot of valuable information only found in XML data
- Problems related to BI
 - BI systems (generally) only handle nice, structured data ⊗
- Benefits of XML integration
 - New types of analyses
 - "compare number of emails to/from our customers to their share of sales, are we using to much time on some of them?"
 - "who is (not) communicating with who in our company?"

Example: Integration of XML Data

- XML data as logical dimensions/measures
- Prototype with TARGIT

Semantic Web Data

- A very interesting new development
- Semantic web data
 - RDF
 - OWL
 - Used to specify ontologies
- Often used for capturing semantics of existing (web) data
 - Open world assumption, new knowledge can be added later
- Wide range of "structuredness"
 - From very structured data (ontologies)
 - To quite unstructured data ("scattered" (s,p,o) triples)
- Reasoning capabilities: a new thing for most data models

Integration of Text Data

- Text data is everywhere
 - Web, news, market analyses..
 - A lot of valuable information only found in text data
- Problem: BI systems cannot handle text "in a smart way"
 - Cannot "link text and numbers"
- Benefit: new types of analyses
- Early 2003: stock analyst thinks "the US will soon invade Iraq, how does that affect my portfolio?"
- "Hmm, what happened during the Gulf War? Search on 'Iraq' "

Example: Relevance Cubes

 Linking to cube shows that Japanese stocks were hit particularly hard during the Gulf War

X Cube	.1						_ C	×
Elle Edit View Help						(Iraq Search Contex	đ
Markets	19	Markets (Market)	Date (Month)	Avg Index	R		Ctxt R	TE
▽ None		Japan	1990/04	1231.619048	0.055681		WSJ900813-0071 (paragraph 10) 0.120064	10
		Japan	1990/05	1332.243478	0.060984		WSJ900820-0041 (paragraph 18) 0.075064	
Market		Japan	1990/06	1332.352381	0.055681		WSJ900827-0014 (paragraph 4) 0.062133	1
Global	1111	Japan	1990/07	1296.886364	0.081071		WSJ900806-0085 (paragraph 21) 0.060064	Ē
		Japan	1990/08	1122.178261	0.226571			F
		Japan	1990/09	1022.750000	0.081722		helped by buying from investment trust funds,	
Date		Japan	1990/12	1007.988889	0.023863		which placed buy orders at limit prices, traders	
✓ None		Switzerland	1990/03	205.800000	0.000000		said. Nippon Steel gained 10 yen to 529 yen (\$3.59), while NKK added 7 yen to 514 yen. The rest of the market fell broadly, regardless of sector. Plant engineering companies were sold as their projects in Iraq and Kuwait have been frozen because of economic sanction by Japan against the two nations.	
▽ Year		Switzerland	1990/04	203.642857	0.000000			5
▽ Quarter		Switzerland	1990/05	212.400000	0.000000			1.1
Month		Switzerland	1990/06	224.400000	0.000000			
Day	1.1	Switzerland	1990/07	227.318182	0.000000			
		Switzerland	1990/08	195.334783	0.000000			1
	J	Switzerland	1990/09	181.322222	0.000000		Chiyoda Corp. was down 90 yen to 1640 yen.	Ŀ
• • • • • • • • • • • • • • • • • • • •	-	•	1111		4 1]	[4]	F

Example: Relevance Cubes

Integration of Geo Data

- Geo data everywhere
 - GPS, Google Maps, buildings, roads, infrastructure....
- Problem: BI systems cannot handle geo data
 - How to turn a road network into a dimension???
 - How to analyze driver routes in MS Analysis???
- Benefit: new types of analyses
 - Ride-share: which drivers often drive on (part of) the same route at the same time?
 - When are the most potential customers coming by my shop?

Non-Standard Dimensions

Imprecision and Varying Precision

Integration of Sensor Data

- Sensors appearing everywhere in our surroundings
 - Temperature, moist, soil, RFID, GPS....
 - Passive or active
 - Mote: sensor/CPU/RAM/transm
- Organized in wireless sensor networks, see right
- Problem: BI systems do not handle sensor data well
 - Data streaming in every second, no connection, sensors don't work, imprecise data, wrong values, central computation not possible....
- Benefit: new types of analyses
 - Connection between temp., soil and yield?

[Levis et al. CACM 51(7)]

[Crossbow, 2007]

Data Streams

- Often too much data for traditional "save in DW and analyse"
 - AT&T: Internet backbone
 - Sensor network data
 - Detail data "not interesting"
- New "paradigm": data streams
- "Analyse and throw away"
 - Continuous queries
 - Data in/out in streams
 - Some data put in Store
 - Temp data put in Scratch (RAM)
 - Unneccasry data discarded
- New type of sw: DSMS

daisy

Not handled by current BI

Integration of Analytical Models

- We have data about past, present, and future
- Past: databases
- Present: data streams
- Future: forecasting/prediction models
- But this is not integrated!
- Problem: 3 different systems for handling this data
 - Not integrated
- Data should be managed in the same system
 - Only difference: "future" data is more "imprecise"
- Benefit: new types of analyses
 - "Where were/are the traffic jams yesterday, right now, and in 20 minutes?"
 - "Show traffic on our web site for 2007-10"

Privacy

- Privacy becoming an increasing concern
- Data about individuals accumulated like never before
 - Web surfing, web sites like Facebook, GPS...
 - Plus data in ERP, public systems, etc.
- "Joining" theses sources expose "sensitive" knowledge
 - Holiday pic on Facebook->White Pages->burglary
 - The driver is only with customers in half of the working hours
- Often, detailed data is not revealing
 - A single GPS position doesn't say so much
- But trends can be revealing
 - "Every Thursday he is at a certain hotel from 13-14"
- Problem: BI systems don't know what is "sensitive"
 - And if they do, they only know at the detailed data level
- Benefit: find valuable trends, **without** upsetting people

Taking a Step Back...

Existing Solutions

• "Pair-wise" integration

daisy

• Many! different systems...my own work included...

Doesn't this look familiar ? (hint: pre-DW times...)

models

 Generalize the DW success!

- Overall idea: repeat the "data warehouse success" for integrating different types of data
- Data of a particular type should only need to be "integrated" once
- Integrated results put into common, "harmonized" data store (WW)
- WW handles all these types of data (or *derivations*) for data analysis
- The WW is a cube, meaning, i.e., based on MD principles
- WW content has different "shades," data is "not just black and white."
- All WW data has a built-in notion of "perfection" (precision/certainty)
- Data may be very precise and totally certain (like ord. DW data)
- Or imprecise and uncertain (sampling errors, data from analytical models)

- Sources (different types) connected through only one "connection"
- Difficult task of integrating particular type of data handled once-and-forall, by mapping into WW data model (+algs/tools)
- Analysis systems have only one "connection" each to the WW
- Take advantage of all functionality and data available in WW
- No need to perform integration themselves (as the systems mentioned earlier)
- WW has "integrated privacy shield."
- When data comes from sources, shield analyzes data + performs modifications (aggregation, swapping,...) before storing
- When data is requested from an analysis system, WW may perform further modifications of results

- The WW approach means that the "complexity" of the integration of all the different types of data for:
 - *n* types of data
 - *m* analysis systems
- Drops to *n+m* (from *n*m*)!
- The "hard" tasks
 - Integrating a new type of data
 - Protecting privacy
- Are generally handled only once
 - By the WW rather than in the analysis systems
 - Great relief for the development of the analysis systems.

A New Data Model

- Basis for the WW will be a novel kind of data model
 - Should encompass the best of several worlds
 - Multidimensional modeling concepts (superior for analysis)
 - Flexibility and generality from semi-structured data models
 - Borrow useful Semantic Web concepts
- Support a much wider range of data
 - Geo-related data (geo models, etc)
 - Sensor data
 - High speed data streams, missing or incorrect values, etc.
 - Semi-structured and unstructured data
 - Enabling analysis across structured, semi-structured, and unstructured data
 - Imperfect (imprecise, uncertain, etc.) data
- Support for privacy management

Research Topics

- Develop complete "infrastructure"
- Query languages
- Query processing/optimization techniques
- Data integration techniques
- Techniques for integrating databases, sensors, and analytical/predictive models of data
- Integrate contributions into a common prototype system
 - Open source project
- Integrated system enables solutions to be evaluated experimentally using large volumes of real-world data

Benefits and Challenges

- The same benefits to all the described data types as is currently available in traditional DWs for structured data
- WW enables the integration and analysis of all types of data using the developed data model and query language
- Distinguishing feature: all-encompassing "privacy shield"
 - All queries to the DW pass through/approved by shield
- Five challenges
 - Warehousing data about the physical world
 - Integrating structured, semi-structured, and unstructured data in DWs
 - Integrating the past, the present, and the future
 - Warehousing imperfect data
 - Ensuring privacy in DWs
- Novel to consider the challenges in combination

Data About The Physical World

- Data stemming from the physical world have unique characteristics
- Geo-related data
 - GPS readings, maps, transportation networks
- Data from sensors in the environment
 - Temperature, humidity,...
- Issues include
 - Handling various geo models
 - Managing high speed data streams
 - Missing or incorrect values, etc.

Structured, semi-struct., un-struct.

- The WW needs to be able to effectively integrate semistructured and unstructured data for analysis purposes
- For enabling analysis across structured, semi-structured, and unstructured data.
- How to overcome the issue that:
 - Multidimensional data are usually very homogeneous and structured
 - While semi-structured and unstructured data is, by nature, very heterogeneous (and obviously not very structured)?
- Idea: store *derivations* of data, rather than data itself
 - Store the fact that a particular sentence in a particular document is related to the sale of vegetable oil in the Japanese market
 - Rather than storing the sentence itself

Past, Present, and Future

- The WW has to support the seamless and integrated querying of
 - Past data (as current DW data)
 - Current data (continuously streaming in from sensors),
 - Future data (predicted using analytical models).
- It should be possible to say:
 - "SELECT sales FROM cube WHERE month=<next month>"
 - just as easily as selecting data from the last month.
- Idea: break down traditional distinction between
 - "real" data values and functions/models that describe data
- These two aspects should be seen as a **duality** of the same thing
 - Like the duality of particles and waves in nuclear physics.
- The conversion between the two aspects can be achieved by
 - "folding" data into models
 - "unfolding" models into data
- Unfolding mechanism means that models/functions can be used in queries just as "real" data values.
- This unified view enables easy integration of past data (DWs), present data (sensors), and predicted future data (models)

Warehousing Imperfect Data

- In the WW all data values have an attached
 - Uncertainty
 - Imprecision
- Both "real" (historical) and "fake" (future, predicted) data
- Always having notion of "imperfection" makes it natural to compress/aggregate data into patterns/models
 - Wavelets, probabilistic models, …
- Models can be "unfolded" to (re-)provide original data.
- One particular challenge is how to balance:
 - Complexity of managing data imperfection
 - Requirements for high performance analysis

Ensuring Privacy in DWs

- Privacy is hard to realize effectively...
- The idea of folding/unfolding can actually aid in privacy protection
 - Privacy can be protected by folding (aggregating/ compressing/...) actual data values into patterns (which is just one kind of function/model describing the data)
 - This creates some imprecision, but this is also captured natively in the WW
 - Current privacy protection approaches (generalization, condensation, randomization, cloaking,...) are actually all special cases of this general mechanism, so the benefits of a more general approach can be significant
- Idea for integrated privacy management "shield":
 - Enforcement mechanism based on certification
 - Privacy requirements for a particular data item are built into the data item itself using a special "privacy dimension".
 - Any query accessing data item (typically an aggregation function) must provide a certificate stating how the query preserves privacy
 - Certificate issued by a trusted external party
 - Certificate matched against the privacy requirements
 - If requirements are met, the data item releases the desired value, otherwise it will refuse to release the value or provide a properly anonymized value instead.

Conclusion

- DWs work very well for structured data
 - Multidimensional data model, ...
- But fail to support many new types of data
 - Text, semistructured, geo data, sensor data, data streams, analytical models, ...
 - Privacy an increasing issue
- Current solutions provide "point-to-point" integration
 - Does not scale as new types of data arrive
- Solution: The World Warehouse
 - "Repeat DW success"
 - Develop new, powerful data model and computing infrastructure
 - A number of challenges must be addressed

Future Work

• Well, most of it... ©

- Thanks a lot Maguelonne Teisseire for inviting me
 - And to the whole TATOO team for hosting me
- Entrepôts de Données est la future !
- Questions?

