

National Engineering School of Mechanic & Aerotechnics

1, avenue Clément Ader - BP 40109 - 86961 Futuroscope cedex – France

La Fragmentation Horizontale Revisitée: Prise en Compte de l'Interaction de Requêtes

Amira KERKAD amira.kerkad@ensma.fr

Ladjel BELLATRECHE bellatreche@ensma.fr Dominique GENIET dominique.geniet@ensma.fr

EDA Blois – June 13rd 2013

⇒ Lowering response time

Star Schema

⇒ Lowering response time

- \Rightarrow Lowering response time
 - Optimization is crucial

Star Schema

Horizontal Partitioning is well adapted for Star Join Queries

Decompose table instances into disjoint groups of instances

Two types :

Primary [Ceri'82]

Derived [Ceri'82]

⇒Optimizing selections and joins

Query Interaction [Sellis'88]

Classification of HDP approaches

Query Interaction

Outlines

- Motivating example
- Algebra
- EQHDP
- Experiments
- Conclusion & perspectives

Motivation

Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

- → Selection stage (HDP)
- → Spread benefit through the workload...

Motivation

Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

- → Selection stage (HDP)
- → Spread benefit through the workload...

Motivation

Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

- → Selection stage (HDP)
- → Spread benefit through the workload...

- 1) Group queries
- 2) Elect one query in each group
- 3) Steer HDP process

Motivation

Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

- → Selection stage (HDP)
- → Spread benefit through the workload...

- 1) Group queries
- 2) Elect one query in each group
- 3) Steer HDP process

Motivation

Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

- → Selection stage (HDP)
- → Spread benefit through the workload...
- → How to elect query (criterion)?
- → Algebra to handle generate HDP schema?
- ➔ Prune predicates and steer HDP by query interaction?

- 1) Group queries
- 2) Elect one query in each group
- 3) Steer HDP process

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Algebra allows to generate an encoding and a HDP schema

Generating incremental encoding

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Algebra allows to generate an encoding and a HDP schema

Generating incremental encoding

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Algebra allows to generate an encoding and a HDP schema

Generating incremental encoding

Multiple View Processing Plan

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Algebra allows to generate an encoding and a HDP schema

Generating incremental encoding

Multiple View Processing Plan

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Algebra allows to generate an encoding and a HDP schema

Generating incremental encoding

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Algebra allows to generate an encoding and a HDP schema

Generating incremental encoding

Algorithm	EQHDP	
1: generat	te_encoding();	MV/PD
2: EQA();		
3: $e := 1$		
4: split_al	llO;	
5: $E := e$	lected(e)	K A
6: while E not empty do		Generate Group
7: prun	e_encoding(E);	
8: sort(E);	encoding
9: S :=	$= required_attributes(E);$	
10: usag	e(S);	Cuantity <100 >=100 & else <1000 a lese Automn Winter Sorina Summer
11: sort	$_attributes(S)$	Color Type T1 12 else Q6 Q8
12: for a	$\operatorname{dl} a \in S \operatorname{do}$	Gender Female Male Electing
13: fo	r all $sd \in SubDomains(a)$ do	
14:	if $(U(sd) = 0)$ and $(N < W)$ then	Queries
15:	$merge(sd, P_0);$	
16:	end if $(U(-1) = U(-1)) = d(N < U(-1)) d(-1)$	
17:	If $(U(sd) = \kappa)$ and $(N < W)$ then	
18:	$merge(sa, P_k);$	Merge
19:	end in	
20. end	for	
22. while	$k \ge 0$ do	Cost
22. 60	$r = all a \in S do$	Model
24.	for all $sd \in SubDomains(a)$ do	
25:	if $(N \leq W)$ then	Split A
26:	$merge(sd, P_{0})$:	(by usage)
27:	else	(by dodgo)
28:	$merge(sd, P_k);$	
29:	end if	lt (N <w)< td=""></w)<>
30:	end for	
31: en	nd for	
32: k	:= k - 1;	
33: end	while	
34: split	t_disjoint():	
35: e :=	e + 1;	V/ Quantity 1 1 1
36: E :=	= elected(e);	
37: end while		Color 1 2 Condex 1 2

Configuration of experiments

 ${\bf SSB}$ of 100 GB

Workload1: 12 queries (no interaction) Workload2: 22 queries (with interaction) Oracle11g DBMS Server of 32 GB of RAM Intel Xeon CPU : 2x2.45 GHz

Experimental Study

Impact of query interaction on performance

Impact of incremental encoding on performance

Experimental Study

Motivation Algebra Electing Queries for HDP Experimental Study Conclusion & Future work

Best Selectivity Factor intervals

Interacting Workload

Improving EQHDP by SF interval

Scaling-Up and impact of data volume

- ✓ Optimization in RDW by HDP
- ✓ Considering query interaction
- ✓ Incremental encoding for representing schemas
- ✓ Pruning predicates and steering HDP by elected queries
- Considering query interaction in other optimization techniques
- Include MVPP optimization in Physical Design
- InterPhase project

Thank you