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Data Warehousing 

Data warehousing: Star Schema 

 One fact table (volume) 

 Many dimension tables 

Star Join Queries 

Selections on dimension tables 

 Multiple joins (between fact and dimension tables) 

 No direct joins between dimensions 

Requirements 

 Lowering response time 
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Horizontal Partitioning is well adapted for Star Join Queries 
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Outlines 

• Motivating example 

• Algebra 

• EQHDP 

• Experiments 

• Conclusion & perspectives 
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Motivation 
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Experimental Study 
Conclusion & Future work 

First join very expensive and needs optimization  
 Selection stage (HDP) 
 Spread benefit through the workload… 

1) Group queries 
2) Elect one query in each group  
3) Steer HDP process 

How to elect query (criterion)? 

 Algebra to handle generate HDP schema? 

 Prune predicates and steer HDP by query interaction? 
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Experimental Study 

Motivation 
Algebra 
Electing Queries for HDP 
Experimental Study 
Conclusion & Future work 

Configuration of experiments 

SSB of 100 GB 

Workload1: 12 queries (no interaction) 

Workload2: 22 queries (with interaction) 

Oracle11g DBMS 

Server of 32 GB of RAM 

Intel Xeon CPU : 2x2.45 GHz 



Experimental Study 

Motivation 
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Impact of query interaction on performance 

Impact of incremental encoding on performance EQHDP Vs. SA 

Number of Split/Merge to reach the solution 
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Best Selectivity Factor intervals 
Improving EQHDP by SF interval 

Validating algorithms’ performance on Oracle11g Scaling-Up and impact of data volume 



Conclusion & Future Work 

Motivation 
Algebra 
Electing Queries for HDP 
Experimental Study 
Conclusion & Future work 

 Optimization in RDW by HDP 

 Considering query interaction 

 Incremental encoding for representing schemas 

 Pruning predicates and steering HDP by elected queries 

 Considering query interaction in other optimization techniques 

 Include MVPP optimization in Physical Design 

 InterPhase project 
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