

Laboratoire ERI C

Varunya ATTASENA Nouria HARBI Jérôme DARMONT

Business intelligence (BI) and **data analytics** have been an ever-growing trend in

DATA WAREHOUSE

Business

Non-business

Introduction

- Data warehouse
- Cloud computing

Problems

- Cloud data warehouse

multi secret sharing

Scheme II - Sharing a data warehouse in the cloud

Security analysis & performance evaluation

Conclusions

- Conclusions - Future researches

CLOUD DATA WAREHOUSE

eric

Scheme-I: A new (*m*, *n*, *t*) multi secret sharing scheme

Scheme-I: A new (*m*, *n*, *t*) multi secret sharing scheme

Sharing Process

- 1 Data are organized into blocks.
- 2 Create a signature in each block.
- 3 Encrypt data and a signature in each block by Polynomial equation.
- Create a signature of each encrypted data.

Scheme-I: A new (*m*, *n*, *t*) multi secret sharing scheme

Reconstructing Process

- 1 Select t CSPs from n CSPs
- 2 Verify a correctness of encrypted data in each CSP.
- **3** Transfer encrypted data to user.
- 4 Compute original data and a signature.
- **5** Verify the correctness of data.

Scheme-I: A new (*m*, *n*, *t*) multi secret sharing scheme

Scheme-II: Sharing a data warehouse in the cloud

Data Analysis over shares

Can analyze data (search and aggregation operations) over shares while not decrypting all data first.

Original data				
id	name	salary	sex	
124	Bob	75€	М	
125	Anna	80€	F	

Encrypted data at CSP ₁					
id	name	salary	sex		
124	(0,0),(10,3),(11,4)	(3,3)	(9,2)		
125	(6,6),(10,3),(10,3),(0,0)	(0,0)	(10,3)		

Select name from customer where sex='M'.

At CSP₁: Select name from customer where sex='9'.

Select avg(salary) from customer.

At CSP₁: Select avg(salary) from customer.

Security analysis and performance evaluation

- > Neither the CSP nor any intruder can decode the original data from only one share.
- > It is very difficult to retrieve shares from all CSPs' by attacking them simultaneously.
- ➢ In the case that an intruder can steal shares from x CSPs such that x ≤ t, the probability of discovering b_i is very low.

Probability of discovering an original data block from some or all shares

- Data availability: Our schemes guarantee the user can reconstruct D if t or more CSPs are honest and their shares are accessible.
- Data integrity: Our schemes can verify both the honesty of CSPs and the correctness of CSPs' shares.
- Data recovery: If some shares are erroneous (lost, damaged, alternative...), they are reconstructed from t other shares.

Probability of incorrect data not being detected (false negative)

The time complexity in both schemes

- > The time complexity of the data sharing process is O(otn)
- > The time complexity of the data reconstruction process is $O(ot^2)$

The execution time of Scheme-II: in the data reconstruction process, the execution time is about 3:04 seconds, and throughput is 336 MB per second when n = 4 and t = 3.

Probability of incorrect data not being detected (false negative)

The Stored data volume

- > The Stored data volume in Scheme I is indeed lower than on ||P||
- > The Stored data volume in Scheme II is indeed lower than on ||p||

For example, with Scheme-II: 32 bits unsigned integers

(It are shared among 6 CSPs and 5 CSPs are sufficient for reconstruct them. Let ||p|| = 9 bits.)

- > The volume of all shares is lower than 1x6x9 = 54 bits.
- > The volume of each share is lower than 1x9 = 9 bits.

By implementation of Scheme-II:

- The volume of all shares is greater than the volume of D but less than Dx2.
- The volume of each share is lower than the volume of D.

Volume of shares with Scheme-II

Our schemes

Future researches

