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The model

I Response, yi, predictors xji, model

yi ∼
ind.

π(µi,θ) where g(µi) = Aiγ +
∑

j

fj(xji).

I π is a distribution: location parameter µ and other parameters θ.
I The fj are smooth functions to be estimated.
I A is a known model matrix with associated parameters γ to be

estimated.
I g is a known link function (e.g. identity or log).

I If π is an exponential family distribution then this is a GLM with
linear predictor dependent on smooth functions of predictors.

Example: Poisson regression
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I yi ∼ Poi(µi) where log(µi) = f0(x0i) + f1(x1i) + f2(x2i).
I gam(y~s(x0)+s(x1)+s(x2),family=poisson())
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Model representation and estimation
I Without

∑
fj(xji) the model is a standard regression model: use

maximum likelihood estimation via Newton’s method.
I With

∑
fj(xji) there are two problems:

1. How to represent the fj for estimation.
2. How to control and estimate the degree of smoothness for the fj.

I For 1 use a basis expansion fj(x) =
∑

k βjkbjk(x). bjk(x) is a
known basis function, βjk a coefficient to estimate.
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Model representation with basis

I The basis expansions for the fj turn the model into

yi ∼
ind.

π(µi,θ) where g(µi) = Xiβ,

βT = (γT,βT
1 ,β

T
2 . . .) and

X =


A11 A12 · · · b11(x11) b12(x11) · · · b21(x21) · · ·
A21 A22 · · · b11(x12) b12(x12) · · · b21(x22) · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·


I If π is an exponential family distribution this is just a richly

parameterized GLM.

Identifiability

I One nuisance: the fj in
∑

j fj(xji) are only identifiable to within
an additive constant.

I Impose identifiability constraints
∑

i fj(xji) = 0, for all j.
I Conveniently handled by absorbing into the basis (modifies basis

functions and loses one, but easily automated). . .
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Controlling smoothness

I We could control smoothness via the number of basis functions,
but this is computationally awkward to optimize.

I Instead define a smoothing penalty to impose in fitting, e.g.∫
f ′′j (x)

2dx

I Given fj(x) = βT
j b(x) where b(x)T = (bj1(x), bj2(x), . . .) then

fj(x)′′ = βT
j b′′(x) so that, by definition of S j,∫
f ′′j (x)

2dx =

∫
βT

j b′′(x)b′′(x)Tβjdx = βT
j S jβj.

I Penalty is 0 for linear functions of x (S j rank 2 deficient).
I So fj is represented by a basis and a quadratic penalty.

Penalized model fitting

I l(β) is the log likelihood, lsat the saturated log likelihood.
I Let the model deviance be D(β) = 2(lsat − l(β)).
I For notational convenience let Sj is a zero padded version of S j,

such that βT
j S jβj ≡ βTSjβ.

I Model fitting amounts to finding

β̂ = argmin
β

D(β) +
∑

j

λjβ
TSjβ.

I The λj are smoothing parameters controlling the trade-off
between fitting the data closely and having a smooth model.

I We’ll need to select the λj somehow, but they allow continuous
fine control of the smoothness of the fj.



Fitting algorithm given the λj

I Use Penalized Iteratively Re-weighted Least Squares (PIRLS).
I Iteratively solve penalized linear model fitting problem

β̃ = argmin
β

∑
i

Wi(zi − Xiβ)
2 +

∑
j

λjβ
TSjβ,

I zi is pseudodata depending on yi and the previous µ̂i.
I Wi depends on µ̂i and is related to the variance of yi.
I Exact forms depend on π and the link function g.

I β̃ eventually converges on required β̂.
I Notice how each step is fitting a working linear model.

Degrees of freedom

I dim(β) is now only a good measure of model degree of freedom
if all the smoothing parameters are zero!

I e.g. if all λj →∞ then each smooth is a linear function of x with
just 2 degrees of freedom, irrespective of dim(β).

I To characterize effective degrees of freedom consider the
shrinkage of parameters by the smoothing penalties.

I At PIRLS convergence β̂ = (XTWX +
∑

j λjSj)
−1XTWz.

I But removing all the penalization gives β̃ = (XTWX)−1XTWz.
I So β̂ = (XTWX +

∑
j λjSj)

−1XTWXβ̃. i.e. β̂ is a shrunken
version of the unpenalized β̃, with shrinkage matrix
F = (XTWX +

∑
j λjSj)

−1XTWX.

I Fii = ∂β̂i/∂β̃i are shrinkage factors and their sum, trace(F), is a
measure of effective degrees of freedom.

Smoothing parameter selection

I One option is leave-one-out cross-validation.
I Leave out each data point in turn, and then predict it using a

model fitted only to the data not left out.
I The best model is the one with lowest average error in predicting

the left out data
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I Each panel shows predictions of data left out of spline fits - the
prediction error and the corresponding spline have the same
colour. The grey bar is the mean error.

I Left is too smooth, right is too wiggly, middle is better.

Generalized cross validation

I The average leave-one-out cross validation error can actually be
computed from a single fit to all the data!

I But it lacks some invariance properties that might be desirable. It
is also awkward to optimize for multiple smoothing parameters.

I Generalized cross validation removes theses problems. For the
Gaussian-identity link case, the averaged error becomes

n
∑

i

(yi − Xiβ̂)
2/(n− trace(F))2

— residual variance per residual degree of freedom.
I In the general non Gaussian case this becomes

nD(β̂)/(n− trace(F))2

I Prediction error criteria like GCV are not the only possibility . . .



Bayesian smoothing

I Why smooth? Because we think the truth is more likely to be
smooth than wiggly.

I We could formalize this belief with a prior on wiggliness

π(β) ∝ exp
(
−
∑

j
λjβ

TSjβ/2
)
.

. . . recognisable as β ∼ N(0, {
∑

jλjSj}−) (improper Gaussian).
I Our model specifies the likelihood. Applying Bayes’ rule

β|y ∼
n→∞

N
(
β̂, {XTWX +

∑
j
λjSj}−1

)
where β̂ is penalized MLE from earlier1.

1any scale parameters absorbed in W

Consequences of Bayesian Model

I Smooths are Gaussian random fields!
I Can produce credible intervals for fj — well calibrated.
I Can do inference via MCMC (e.g. mgcv:jagam).
I Structure is like a mixed model with Gaussian random effects

I Can estimate as mixed model (e.g. gamm or gamm4).

I We can estimate smoothing parameters to maximize the
marginal likelihood

π(y|λ,θ) =
∫
π(y|β,θ)π(β|λ)dβ

I Integral is intractable, but we can use Laplace approximation.
i.e. replace integrand with exponential of second order Taylor
expansion of its log about β̂. The approximation is proportional
to a Gaussian density and is tractable.

How marginal likelihood smoothness selection works
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1. Choose λ to maximize the average likelihood of random draws
from the prior implied by λ.

2. If λ too low, then almost all draws are too variable to have high
likelihood. If λ too high, then draws all underfit and have low
likelihood. The right λ maximizes the proportion of draws close
enough to data to give high likelihood.

Prediction error vs. likelihood λ estimation
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1. Pictures show GCV and REML scores for different replicates
from same truth.

2. Compared to REML, GCV penalizes overfit only weakly, and so
is more likely to occasionally undersmooth.



Applying the λ estimation methods

I There are 2 possibilities, for both we work with ρ = log(λ):
1. Apply smoothness selection to the working penalized model at

each PIRLS step.
2. Optimize GCV/REML for the model itself using a Newton

method.
I Each trial ρ requires an inner iteration to find the corresponding β̂.
I Use implicit differentiation to find ∂β̂/∂ρ, so that derivatives

required by outer Newton method can be computed.

I Option 1 is easier to code and adapt to big data situations.
I Option 2 gives better convergence guarantees.

Model selection
I We need means for comparing models/deciding what terms to

include. In many cases the gold standard might be prediction of
hold-out data, but other approaches are also helpful.

1. Null space penalization: add a penalty (and smoothing
parameter) for each fj which allows it to be penalized to zero
during smoothing parameter estimation.

2. P-values: by ‘inverting’ the Bayesian CI for fj, compute a
p-value for H0 : fj = 0.

3. Akaike’s Information Criterion: this becomes

−2l(β̂) + 2× (Effective Degrees of Freedom)

I Actually the derivation arrives at the EDF as trace(VβXTWX)
where Vβ is the Bayesian covariance matrix for β.

I Decent performance of the AIC requires that we correct Vβ for
smoothing parameter uncertainty, but a simple correction seems
to suffice.

Model checking

I As for any regression model, examine standardised residuals to
check for violations of mean-variance and independence
assumptions.

I As for any regression model, details of the distribution beyond
these properties are less important (consider quasi-likelihood
theory), but violation may have some influence on smoothness
selection.

I The basis dimension used for each smooth should be checked. Is
it overly restrictive?

I EDF close to its upper limit is suspicious.
I Simple informal randomization tests can be used to try and detect

residual pattern with respect to xj which might indicate that the
basis for fj is too small.

I See gam.check in mgcv to get started.

Extensions

I Simple independent Gaussian random effects can be included as
0-dimensional smooths, using same methods.

I yi ∼
ind.

π(µi,θ) does not cover all interesting regression models!

I y ∼ π(f1, f2, f3, . . .) is much more general, and for regular
enough π general methods are possible. This covers e.g.
multivariate responses and Cox Proportional Hazards models.

I yi ∼
ind.

π(θ1i, θ2i, . . .) where gj(θji) =
∑

fj. Refereed to as

distributional regression or GAMs for location scale and shape
(GAMLSS).

I Models can depend on linear functional of smooth functions: e.g.
scalar on function regression.



Summary

I GAMs allow a response to depend on smooth functions of
predictor variables.

I The smooth functions are represented using a basis expansion
and quadratic smoothing penalty.

I Basis coefficients are estimated by penalized MLE.
I Penalization implies a notion of effective degrees of freedom.
I Cross validation can be used to select the degree of penalization.
I The quadratic penalties are equivalent to Gaussian priors on the

coefficients, providing a Bayesian interpretation.
I The Bayesian approach provides useful confidence intervals, and

an alternative approach to smoothness estimation via marginal
likelihood maximization.

I Model selection and checking are similar to any regression
model (but check the basis dimension).


