The model

Response, y_i, predictors x_{ji}, model

$$y_i \underset{\text{ind.}}{\sim} \pi(\mu_i, \boldsymbol{\theta}) \text{ where } g(\mu_i) = \mathbf{A}_i \boldsymbol{\gamma} + \sum_j f_j(x_{ji}).$$

- π is a distribution: location parameter μ and other parameters θ .
- The f_i are *smooth functions* to be estimated.
- A is a known model matrix with associated parameters γ to be estimated.
- ▶ *g* is a known *link function* (e.g. identity or log).
- If π is an exponential family distribution then this is a GLM with linear predictor dependent on smooth functions of predictors.

Example: Poisson regression

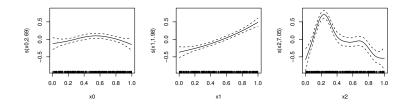


Generalized Additive Models

Simon Wood

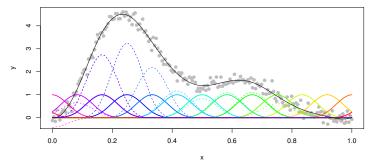
School of Mathematics, University of Bristol, U.K.

- $y_i \sim \operatorname{Poi}(\mu_i)$ where $\log(\mu_i) = f_0(x_{0i}) + f_1(x_{1i}) + f_2(x_{2i})$.
- gam(y~s(x0)+s(x1)+s(x2),family=poisson())



Model representation and estimation

- Without $\sum f_j(x_{ji})$ the model is a standard regression model: use maximum likelihood estimation via Newton's method.
- With $\sum f_j(x_{ji})$ there are two problems:
 - 1. How to represent the f_j for estimation.
 - 2. How to control and estimate the degree of smoothness for the f_j .
- For 1 use a basis expansion $f_j(x) = \sum_k \beta_{jk} b_{jk}(x)$. $b_{jk}(x)$ is a known *basis function*, β_{jk} a coefficient to estimate.



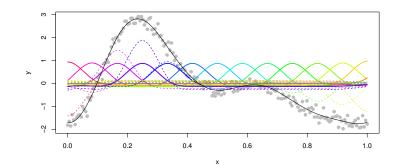
Model representation with basis

• The basis expansions for the f_i turn the model into

 If π is an exponential family distribution this is just a richly parameterized GLM.

Identifiability

- One nuisance: the f_j in $\sum_j f_j(x_{ji})$ are only identifiable to within an additive constant.
- Impose identifiability constraints $\sum_i f_j(x_{ji}) = 0$, for all *j*.
- Conveniently handled by absorbing into the basis (modifies basis functions and loses one, but easily automated)...



Controlling smoothness

- We could control smoothness via the number of basis functions, but this is computationally awkward to optimize.
- Instead define a smoothing penalty to impose in fitting, e.g.

$$\int f_j''(x)^2 dx$$

• Given $f_j(x) = \boldsymbol{\beta}_j^{\mathsf{T}} \mathbf{b}(x)$ where $\mathbf{b}(x)^{\mathsf{T}} = (b_{j1}(x), b_{j2}(x), \ldots)$ then $f_j(x)'' = \boldsymbol{\beta}_j^{\mathsf{T}} \mathbf{b}''(x)$ so that, by definition of $\boldsymbol{\mathcal{S}}_j$,

$$\int f_j''(x)^2 dx = \int \boldsymbol{\beta}_j^{\mathsf{T}} \mathbf{b}''(x) \mathbf{b}''(x)^{\mathsf{T}} \boldsymbol{\beta}_j dx = \boldsymbol{\beta}_j^{\mathsf{T}} \boldsymbol{\mathcal{S}}_j \boldsymbol{\beta}_j$$

- Penalty is 0 for linear functions of $x (S_j \text{ rank 2 deficient})$.
- So f_j is represented by a basis and a quadratic penalty.

Penalized model fitting

- ▶ $l(\beta)$ is the log likelihood, l_{sat} the saturated log likelihood.
- Let the model *deviance* be $D(\beta) = 2(l_{sat} l(\beta))$.
- ► For notational convenience let \mathbf{S}_j is a zero padded version of $\boldsymbol{\mathcal{S}}_j$, such that $\beta_j^{\mathsf{T}} \boldsymbol{\mathcal{S}}_j \beta_j \equiv \beta^{\mathsf{T}} \mathbf{S}_j \beta$.
- Model fitting amounts to finding

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}} D(\boldsymbol{\beta}) + \sum_{j} \lambda_{j} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S}_{j} \boldsymbol{\beta}.$$

- The λ_j are *smoothing parameters* controlling the trade-off between fitting the data closely and having a smooth model.
- We'll need to select the λ_j somehow, but they allow continuous fine control of the smoothness of the f_j .

Fitting algorithm given the λ_j

- ► Use Penalized Iteratively Re-weighted Least Squares (PIRLS).
- Iteratively solve penalized linear model fitting problem

$$\tilde{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i} W_{i}(z_{i} - \mathbf{X}_{i}\boldsymbol{\beta})^{2} + \sum_{j} \lambda_{j}\boldsymbol{\beta}^{\mathsf{T}}\mathbf{S}_{j}\boldsymbol{\beta}$$

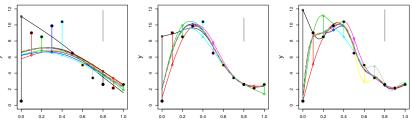
- z_i is pseudodata depending on y_i and the previous $\hat{\mu}_i$.
- W_i depends on $\hat{\mu}_i$ and is related to the variance of y_i .
- Exact forms depend on π and the link function g.
- $\tilde{\beta}$ eventually converges on required $\hat{\beta}$.
- ▶ Notice how each step is fitting a *working linear model*.

Degrees of freedom

- dim(\beta) is now only a good measure of model degree of freedom if all the smoothing parameters are zero!
- e.g. if all λ_j → ∞ then each smooth is a linear function of x with just 2 degrees of freedom, irrespective of dim(β).
- To characterize *effective degrees of freedom* consider the shrinkage of parameters by the smoothing penalties.
- At PIRLS convergence $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X} + \sum_{j}\lambda_{j}\mathbf{S}_{j})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{z}.$
- But removing all the penalization gives $\tilde{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{z}$.
- So $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X} + \sum_{j}\lambda_{j}\mathbf{S}_{j})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X}\tilde{\boldsymbol{\beta}}$. i.e. $\hat{\boldsymbol{\beta}}$ is a shrunken version of the unpenalized $\tilde{\boldsymbol{\beta}}$, with shrinkage matrix $\mathbf{F} = (\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X} + \sum_{j}\lambda_{j}\mathbf{S}_{j})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X}$.
- *F_{ii}* = ∂β̂_i/∂β̃_i are shrinkage factors and their sum, trace(**F**), is a measure of *effective degrees of freedom*.

Smoothing parameter selection

- One option is leave-one-out cross-validation.
 - Leave out each data point in turn, and then predict it using a model fitted only to the data not left out.
 - The best model is the one with lowest average error in predicting the left out data



- Each panel shows predictions of data left out of spline fits the prediction error and the corresponding spline have the same colour. The grey bar is the mean error.
- Left is too smooth, right is too wiggly, middle is better.

Generalized cross validation

- The average leave-one-out cross validation error can actually be computed from a single fit to all the data!
- But it lacks some invariance properties that might be desirable. It is also awkward to optimize for multiple smoothing parameters.
- Generalized cross validation removes theses problems. For the Gaussian-identity link case, the averaged error becomes

$$n \sum_{i} (y_i - \mathbf{X}_i \hat{\boldsymbol{\beta}})^2 / (n - \text{trace}(\mathbf{F}))^2$$

- residual variance per residual degree of freedom.
- ► In the general non Gaussian case this becomes

 $nD(\hat{\boldsymbol{\beta}})/(n-\operatorname{trace}(\mathbf{F}))^2$

▶ Prediction error criteria like GCV are not the only possibility ...

Bayesian smoothing

- Why smooth? Because we think the truth is more likely to be smooth than wiggly.
- ► We could formalize this belief with a prior on wiggliness

 $\pi(\boldsymbol{\beta}) \propto \exp\left(-\sum_{j} \lambda_{j} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{S}_{j} \boldsymbol{\beta}/2\right).$

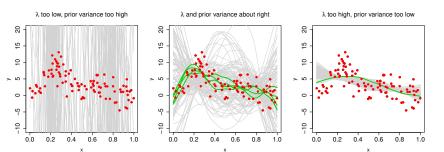
- ... recognisable as $\beta \sim N(\mathbf{0}, \{\sum_{j} \lambda_j \mathbf{S}_j\}^-)$ (improper Gaussian).
- Our model specifies the likelihood. Applying Bayes' rule

 $\boldsymbol{\beta} | \mathbf{y} \underset{n \to \infty}{\sim} N\left(\hat{\boldsymbol{\beta}}, \{ \mathbf{X}^{\mathsf{T}} \mathbf{W} \mathbf{X} + \sum_{j} \lambda_{j} \mathbf{S}_{j} \}^{-1} \right)$

where $\hat{\beta}$ is penalized MLE from earlier¹.

¹any scale parameters absorbed in \mathbf{W}

How marginal likelihood smoothness selection works



- 1. Choose λ to maximize the average likelihood of random draws from the prior implied by λ .
- 2. If λ too low, then almost all draws are too variable to have high likelihood. If λ too high, then draws all underfit and have low likelihood. The right λ maximizes the proportion of draws close enough to data to give high likelihood.

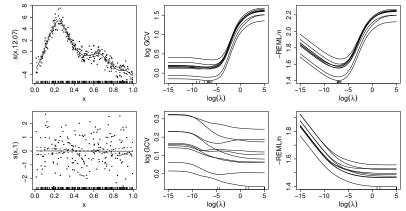
Consequences of Bayesian Model

- Smooths are Gaussian random fields!
- Can produce credible intervals for f_j well calibrated.
- Can do inference via MCMC (e.g. mgcv:jagam).
- Structure is like a mixed model with Gaussian random effects
 Can estimate as mixed model (e.g. gamm or gamm4).
- We can estimate smoothing parameters to maximize the marginal likelihood

$$\pi(\mathbf{y}|\boldsymbol{\lambda}, \boldsymbol{\theta}) = \int \pi(\mathbf{y}|\boldsymbol{\beta}, \boldsymbol{\theta}) \pi(\boldsymbol{\beta}|\boldsymbol{\lambda}) d\boldsymbol{\beta}$$

Integral is intractable, but we can use Laplace approximation. i.e. replace integrand with exponential of second order Taylor expansion of its log about Â. The approximation is proportional to a Gaussian density and is tractable.

Prediction error vs. likelihood λ estimation



- 1. Pictures show GCV and REML scores for different replicates from same truth.
- 2. Compared to REML, GCV penalizes overfit only weakly, and so is more likely to occasionally undersmooth.

Applying the λ estimation methods

- There are 2 possibilities, for both we work with $\rho = \log(\lambda)$:
 - 1. Apply smoothness selection to the working penalized model at each PIRLS step.
 - 2. Optimize GCV/REML for the model itself using a Newton method.
 - Each trial ρ requires an inner iteration to find the corresponding $\hat{\beta}$.
 - Use implicit differentiation to find $\partial \hat{\beta} / \partial \rho$, so that derivatives required by outer Newton method can be computed.
- Option 1 is easier to code and adapt to big data situations.
- Option 2 gives better convergence guarantees.

Model selection

- We need means for comparing models/deciding what terms to include. In many cases the gold standard might be prediction of hold-out data, but other approaches are also helpful.
- 1. Null space penalization: add a penalty (and smoothing parameter) for each f_j which allows it to be penalized to zero during smoothing parameter estimation.
- 2. P-values: by 'inverting' the Bayesian CI for f_j , compute a p-value for $H_0: f_j = 0$.
- 3. Akaike's Information Criterion: this becomes

 $-2l(\hat{\beta}) + 2 \times (\text{Effective Degrees of Freedom})$

- Actually the derivation arrives at the EDF as trace(V_βX^TWX) where V_β is the Bayesian covariance matrix for β.
- Decent performance of the AIC requires that we correct V_β for smoothing parameter uncertainty, but a simple correction seems to suffice.

Model checking

- As for any regression model, examine standardised residuals to check for violations of mean-variance and independence assumptions.
- As for any regression model, details of the distribution beyond these properties are less important (consider quasi-likelihood theory), but violation may have some influence on smoothness selection.
- The basis dimension used for each smooth should be checked. Is it overly restrictive?
 - EDF close to its upper limit is suspicious.
 - Simple informal randomization tests can be used to try and detect residual pattern with respect to x_j which might indicate that the basis for f_j is too small.
- ▶ See gam.check in mgcv to get started.

Extensions

- Simple independent Gaussian random effects can be included as 0-dimensional smooths, using same methods.
- $y_i \sim_{\text{ind.}} \pi(\mu_i, \theta)$ does not cover all interesting regression models!
- y ~ π(f₁, f₂, f₃, ...) is much more general, and for regular enough π general methods are possible. This covers e.g. multivariate responses and Cox Proportional Hazards models.
- y_i ~ π(θ_{1i}, θ_{2i},...) where g_j(θ_{ji}) = ∑f_j. Referred to as distributional regression or GAMs for location scale and shape (GAMLSS).
- Models can depend on linear functional of smooth functions: e.g. scalar on function regression.

Summary

- GAMs allow a response to depend on smooth functions of predictor variables.
- The smooth functions are represented using a basis expansion and quadratic smoothing penalty.
- ► Basis coefficients are estimated by penalized MLE.
- > Penalization implies a notion of effective degrees of freedom.
- Cross validation can be used to select the degree of penalization.
- The quadratic penalties are equivalent to Gaussian priors on the coefficients, providing a Bayesian interpretation.
- The Bayesian approach provides useful confidence intervals, and an alternative approach to smoothness estimation via marginal likelihood maximization.
- Model selection and checking are similar to any regression model (but check the basis dimension).