
Database programming – Labwork #6 1/2

Département Informatique et Statistique, ICOM, Université Lumière Lyon 2
M1 Informatique – Year 2015-2016
Database programming – Labwork #6: Dynamic SQL
J. Darmont (http://eric.univ-lyon2.fr/~jdarmont/), 16/09/16

Exercise #1: Dynamic query parameterized with another query result

• Write a stored procedure that counts the number of rows in all tables in your system catalog
(system view TAB (TNAME, TABTYPE…)).

• Exclude views (type VIEW) from the result.

• Display the result ordered by alphabetical order under the form TABLE_NAME: NB_TUPLES

tuple(s) .

• Handle the plural of the word “tuple”, which takes an “s” only when table size is strictly
greater than 1.

• Test!

Exercise #2: Parameterized schema alteration

1. In an anonymous PL/SQL block, define a string variable named source and initialize it with the
name of a table present on your account. Define a second string variable named destination
initialize it with any value (e.g., COPY). In the code section, program the copy of table source into
table destination (creation of table destination by selecting all attributes and tuples from table
source). Test!

2. Transform your anonymous PL/SQL block into a stored procedure named copytable, with source
and destination becoming parameters. Does it work?

3. Add the AUTHID CURRENT_USER clause in the procedure definition, after defining the parameters
(e.g., CREATE OR REPLACE PROCEDURE copytable(source VARCHA R, destination VARCHAR)

AUTHID CURRENT_USER IS). Test! What has changed? Why was this manipulation superfluous
when you created stored procedures before?

Exercise #3: Dynamic query parameterized with another query result (again!)

Write a stored procedure that retrieves tables containing an attribute whose name contains a string
passed as parameter; as well as the name, type and number of distinct values of this attribute in the
table.

Database programming – Labwork #6 2/2

Exercise #4: Parameterized view creation

• Write a stored procedure that inputs a table name and creates a view containing the name
and type of all attributes in the input table.

• The name of the view must be formatted as ATT_table_name .

• Use system view USER_TAB_COLUMNS (TABLE_NAME, COLUMN_NAME, DATA_TYPE…) to
retrieve attributes’ name and type.

• Check-up the result!

Note: In system views, all strings (such as table or attribute names) are stored in large caps.

