DESP-C++:
A Discrete-Event Simulation Package for C++

Jérdbme Dar mont
Laboratoire d'Informatique (LIMOS)
Université Blaise Pascd — Clermont-Ferrand 1|
Complexe Scientifique des Cézeaux
63177Aubiére Cedex
FRANCE

E-mail: jerome.darmont@libd2.unv-bpclermont.fr

Phore: (33) 473-407-768
Fax: (33) 473407-444

Summary. DESP-C++ isa C++ discrete-event randam simulation engine that has been de-
signed to befast, very easy to use andexpand, and valid. DESP-C++ is based onthe resource
view. Its complete architedure is presented in detail, as well as a short “ user manud” . The
validity of DESP-C++ is demonstrated by the smulation d threesignificant models. In each
case, the simulation results obtained with DESP-C++ match those obtained with a vali dated
simulation software: QNAP2. The vesatility of DESP-C++ is also ill ustrated this way, since
the modell ed systems are vey different from each ather (namely, a simple production system,

the dining phlosopher clasdcal deadlock problem, and acomplex objed-oriented daabase

management system).

Kewvords: C++ simulation package, Discrete-event simulation, Resource vew, Validation

DESP-C++, A Discrete-Event Smulation Package for C++ 1/28

1. Introduction

Many tods are nowadays avail able when one needs to perform randam simulation. Many
genera simulationlanguages, like SIMULA [6], GPSSI1I [12], SLAM 11 [22], SIMAN [21] or
QNAP2 [23] have been developed since the mid-sixties. They propase numerous functionali-
ties and are cnsidered valid. However, they all require afair investment in time just to lean
how to use them. When this is dore, though, designing a simulation model is much easier
than writing one from scratch. Nevertheless dedicated simulators gill remain useful when
good performances are required. Furthermore, most of the general simulation languages do
not alow a full objed-oriented approach. Several object-oriented simulation languages and
environments have been designed in the last decade (MODSIM 11 [4], SIMPLE++ [1], based
on C++; Silk [11] and SimJava [20], based onJava), bu they still require asubstantial learn-
ing time. That is why simpler simulation todls appeaed in parale as C++ or Java packages.
DESR-C++ isone of them.

DESPR-C++ stands for Discrete-Event Smulation Package. Its design originates in the
modelling of objed-oriented database management systems. Initially, a simulation model
baptized VOODB (Virtual Objed Oriented Database) [8] had been implemented with the
QNAP2 (Queuing Network Analysis Package 2" generation) simulation software, which is a
validated and reliable tod feauring a simple language dose to Pascd. However, this smula-
tion language is interpreted, and ou model’s exeautions were far too slow for the intensive
simulation experiments we planned, espedally with the object-oriented fedures we used to
extend QNAP2 [13]. Hence aroused the need for a faster smulation environment.

In short, we needed a fast, cheg, and reasonably simple objed-oriented simulation lan-
guage. C++ [26] obviously qualified, provided we aded a simulation engine. For smplicity’s

sake, we dedded to implement a discrete-event randam simulation kernel. This adually fa-

DESP-C++, A Discrete-Event Smulation Package for C++ 2/28

cilitated the adaptation d the QNAP2 VOODB model, since QNAP2 is also a discrete-event
simulation software. DESP-C++ was born.

The remainder of this paper is organized as foll ows. First, we expose our package's char-
aderistics and functionalities in Sedion 2. Then, the achitedure of DESRP-C++ is presented
in detail in Sedion 3. Sedion 4 further explains how to use our simulation engine. In Sec-
tion 5 are presented three experiments we performed to validate DESP-C++. Eventually, we

conclude this paper and dscussfutureissuesin Sedion 6.

2. Characteristics and functionalities of DESP-C++

DESP-C++ characteristics
The motivation to buld ou own simulation engine comes from the fact that the existing

tools we have accessto do na suit our needs, primarily in terms of validity and simplicity.

The qualiti es we intended to give to DESP-C++ are the foll owing.

» Validity: To provide reliable simulation results, DESP-C++ had to be validated, i.e., we
had to chedk out if it was bug-free ad behaved as expeded. We achieved this by imple-
menting the same models in QNAP2 and C++, and werifying the results were consistent
(seeSedion 5). Validity was a strong concern to us, andthisis adually the reason why we
did na seled an existing C++ simulation padkage insteal of building our own. For in-
stance in [18], absolutely no validation experiment is provided for C++SIM. [9] only pro-
poses sample passble SimPadk models, withou any hint that these models are function-
ally correct nor that the simulator itself isbugfree

» Smplicity: Provided certain basis in oljed-oriented programming, modelli ng, and simu-

lation, we heatily wanted DESP-C++ to be very easy to use, compared to complex simu-

DESP-C++, A Discrete-Event Smulation Package for C++ 3/28

lation software like SLAM 11, QNAP2, a even ather C++ simulation padkages like Sim-
Padk or C++SIM, which all feature much more than what we actually neeled.

» Efficiency. Our simulation experiments with QNAP2 being too slow, we needed DESP
C++ to bereasonably fast.

» Portability: Since our smulation models were likely to be used onseveral platforms (Sun,
Silicon Graphics or IBM workstations; PCs under Linux or Windows), its code had to be
portable. This is another reason why we selected C++ as our programming language for
DESP-C++.

* Compactness To remain simple and extensible, our simulation kernel had to be quite
small and undbrstandable. Its code is indeed lessthan 1,500lines long, including a mwude
of utili ty functions.

» Extenshility: We wished to alow the possbhility to develop anything, even complicaed
models, based on ou simulation kernel. Hence we chose an “open” and simple structure
that is easy to modify and expand.

* Universality: Many people ae now comfortable with the C++ language. By adoging it,
we avoided the nedal to learn a speda syntax and allowed the instant credion d simula-
tion models.

* Low-price DESP-C++ is a free software. Its urce code is available & the following

URL.: http://libd2.unv-bpclermont.fr/~darmont/downloaddesp-c++ .tar.gz .

DESP-C++ functionalities

DESRC++ basicdly provides classes to manage and ader simulation events, much like
any clasdcd discrete-event simulator. Discrete-event simulation can be defined this way [16,
27]: in a discrete-event simulation, the variables we need to knaw at all times are discrete.

They are cdled state \ariables. The set of values these variables can bear congtitutes the sys-

DESP-C++, A Discrete-Event Smulation Package for C++ 4/28

tem’s state space The state space is courtable or finite. According to the definition d the
state space each change in state or event occurs in a discrete manner in time & instants
(t) ion- These (t) instants are cdled event occurrence times or event dates. Discrete-event
simulation applies to any discrete system (i.e., which evolution in time is acomplished in a
discrete manner). This covers a very broad range of systems (a cugde of examples are pro-
vided in Section 5). Hence, a discrete-event simulator was a natural choiceto us.

Furthermore, two approacdes exist to describe asystem within a discrete-event simulator:
the transaction view and the resource \iew. In the transadion view, an olserver (or designer)
describes, in a chosen formalism, the behavior of the system by spedfying, for each type of
entity flow traversing the system, the path these antities follow and the successve operations
they undergo. In the resource view, the observer describes the behavior of each adive re-
source in the modeled system. The relationships linking adive resources to various passve
entiti es visiting them have to be defined. Among these passve antities are cmporents that
undergo some operations, and passve resources that are used by adive resources to perform
their tasks.

At first, we nsidered using a transadion view, because it seemed natura with the
VOODB simulation model, which besicdly deds with transadions in an oljed-oriented da-
tabase system. However, coding the transaction view implied handing C++ threads, which
use is not always easy. This would have played against the smplicity we desired for DESR
C++. Furthermore, QNAP2 uses the resource view, and we wanted an easy adaptation d
VOODB from QNAP2 to DESRC++. Eventualy, since any system may be modelled as eas-
ily with the resource view as with the transadion view (it isjust a question d system repre-
sentation), we favored the resource view for the sake of simplicity.

Thus, in DESP-C++, the system to be simulated is described by a queuing network con-

stituted of a set of communicaing resources. Resources are divided into two categories: active

DESP-C++, A Discrete-Event Smulation Package for C++ 5/28

resources that actually perform some task, and passve resources that do nd diredly partici-
pate in any treatment, bu are used by the active resources to perform their operations. The
user’s task is to instantiate the resource dasss by specifying their parameters, and their aso-
ciated events, for active resources. Clients travel through the adive resource network, and are
“served” by these resources.

For instance, consider a cmputer system where different processes run programs in par-
alel (Figure 1). Programs can be viewed as the system’s clients and processs as the system’s
adive resources. The processor, main memory, hard drive(s), etc. constitute this system’s pas-

SiVe resources.

Uses
Programs Process #1 Processor

Uses

Uses

Uses

Programs Process #2 Memory
Uses

Uses

Uses

Programs Process #N
Uses

Uses

Disks

Figure 1. Sample parallel computer system

The behavior of a simulation modd is evaluated by the mean of a set of statistics (basi-
cdly, mean values and confidence intervals). Confidence intervals are acertained through
replications of the simulation experiments using the method pesented in [3]. By default,
DESRC++ provides the foll owing statistics for each resource (whether passve or active):

* meanresporsetime,
* mean waliting time for clients (before being served),

* mean number of clients srved,

DESP-C++, A Discrete-Event Smulation Package for C++ 6/28

* mean number of clients gill being served,

* mean number of clients dill waiting to be served.

3. DESP-C++ architedure

The mmplete architedure of DESRC++ is displayed asa UML Static Structure Diagram
in Figure 2. DESRP-C++ is organized aroundthe Smulation class which attributes are the ba-
sic simulation control data (beginning and end of simulation times, current time, randam gen-
erator seed). It also uphdds a list of references toward all the dientsin the system (so that all
the dients remaining in the system at the end of simulations can be destroyed, and memory
freed). The Smulation classconstitutes the interface of DESP-C++. It must be instantiated in
the main program. Simulation runs are adivated by the Run() method, the number of replica-
tions being indicated in parameter.

Each simulation instance is related to a Scheduler oljed, which is basicdly an ordered
list of eventsto be exeauted (sorted by event date). Each event also has a unique @de, andis
related to the Client objed undergoing the event. The Scheduler methods ded with the event
list management (event insertion, celetion and retrieval).

A Smulation instance is aso linked to an EventManager oljed that mainly deds with
the exeaution d events by the active resources (ActiveResource objeds), using the passve
resources (Resource objeds), via the ExeauteEvent() method. The EventManager is adso in
charge of statistic initialization and computation for ead resource in the system: the Init()
method initializes the statistics for a whoe simulation experiment, the InitRep() method daes
the same for one replication, the Stats() method computes intermediate statistics for one repli-
cdion and, eventually, the DisplayStats() method computes and dsplays the fina statisticd

results.

DESP-C++, A Discrete-Event Smulation Package for C++ 7/28

Scheduler top SchedulerCell
eventcode : Integer .
%|sEmpty () : Integer /\ %eventdaie: Reaeg client
%Schedule (eventcode : Integer, eventdate : Real, client : Referenceto Client) 1|&next : Referenceto SchedulerCell
SGetEventCode () : Integer &sprevious : Referenceto SchedulerCell
$GetBventDate () : Real
%GetClient () : Referenceto Client %Code () : Integer
%DestroyEvent () bottom 1| ¥Date(): Red
hedu 1 % () : Referenceto Client
scheduler %Next () : Referenceto SchedulerCell
Simulation %Previous () : Referenceto SchedulerCell
&tstart - Red %SetNet (newnext : Reference to SchedulerCell)
o 3 %SetPrevious (newprev : Reference to SchedulerCell)
Eytmex: Re SPurge ()
&ytnow : Red
&rseed : Integer
&xclientlist : Reference to Client eventmanager
%Run (nreplic : Integer) 1
%Sched () : Reference to Scheduler EventM anager
$Tnow () : Red
®Reset (start : Real, max: Real, seed : Real) “BxecuteEvent (code : Integer, client : Referenceto Client)
%NewClient () : Reference to Client 1 it ()
%KillClient (client : Referenceto Client) simul ®InitRep ()
®PurgeCiientList () dStats ()
i %Display Stats ()
simul 1
Resource)
&pname : String passve_rs
& capacity : Integer active rs
&yccapacity : Integer)
&yresponse : Red 0.
&wait : Red
&ynbserv : Integer
&stats : Array [1.5] of Red
&pstats2: Array [1.5] of Red 1x
&n : Integer ActiveResource i
& 0.
FllrgeQufaue 0 — . L <}——— %EBvent_i0(client : Referenceto Client)
%P (event : Integer, client : Referenceto Client, prior : Integer) ®Event_i1 (dlient - Referenceto Client)
SV () — T)
’ .
#Sim() : Referenceto Simulation Event_iN (client : Referenceto Client)
#ResetCounters ()
$ResetStats () -
Sstats () . next_active_rs
@DisplayStats () used_passve_rs
ZPEnQueue (eventcode : Integer, client : Reference to Client, priority : Integer)
&GetBEventCode () : Integer 0.*
grGetClient () : Reference to Client
DestroyTop ()
&¥QueueEmpty () : Integer
top bottom Client 1
next : Reference to Client
sprevious : Reference to Client
1
1 1
QueueCell)
&eventcode : Integer client
&ppriority : Integer
&snext : Reference to QueueCdll
&pprevious : Reference to QueueCell
%Code () : Integer
%dli () : Referenceto Client
“Priority () : Integer DESP: Discrete-Event Simulation Pack age
“%Next () : Reference to QueueCell Version 1.1, February 1998
%Previous () : Reference to QueueCell Jérdme Dar mont
®SetNext (newnext : Referenceto QueueCell) LIMOS, Université Blaise Pascal - Clermont-Ferrand I
%SetPrevious (newprev : Referenceto QueueCell)
Figure 2: DESP-C++ architedure
DESP-C++, A Discrete-Event Smulation Package for C++ 8/28

A Resource objed is esentialy a queue of events that are sorted by priority, each event
being again aswociated to a Client ojed. Each Resource is defined by a name (that is not nec-
essrily unique, bu would better be) and a maximum capecity (i.e., the maximum number of
clientsit can serve @wncurrently). The aurrent capadty ccapeacity indicates how many suppe-
mental clients may use the Resource Thetypical P() and V() methods, that are used to reserve
and release the Resource, respectively, constitute aResource's interface, along with private
methods deding with queue management (insertion, celetion, retrieval).

A Resource also bears attributes (the wait, resporse, statg[]... courters) and methods
deding with statistics management at the individual, resource level (global initialization, ini-
tiali zation by replicaion, computation by replication, and global computation). These meth-
ods are invoked by the EventManager during the @rrespondng phases of statistics mainte-
nance All the adive resources inherit from the Resource class They just include the exew-
tions of their related events, as methods, in addition. Users may add extra puldic dtributes, if
necessary for a particular model.

Clients, as mere passve antities runnng through the system, are just designed to be part
of linked lists. However, they can be austomized by usersto cary any kind d information, by
simply adding pulic atributes to the Client class For instance, these data an be used by
adive resources to perform a personali zed treament for ead client.

All these dasss are further organized into files and modues, as s1own by Figure 3. On
the left hand d the figure ae the Smulation and Utiliti es modues, which are not normally
modified by users. They contain various utiliti es, including an implementation d the Lewis-
Payne randaom generator [17] (that is the best pseudorandom number generator currently
avail able, thanks to its huge period), the implementation d several types of randam distribu-
tion laws, and the simulation engine proper. On the right hand side stands the Events modue,

which can be modified. It deals with the definition d the system’s resources, clients, and

DESP-C++, A Discrete-Event Smulation Package for C++ 9/28

simulation events. The arows figure how the three modues make use of each ather’s meth-

ods. *c.h files contain classdefinitions and *m.h contain methods code. Other fil es contain

utili ty functions.

SIMULATION 4} EVENTS

simulm.h

simulc.h ¢ : eventc.h
: eventm.h

Fixed modules
Editable module

UTILITIES

lewis.h
simutil.h

Figure 3: DESP-C++ modules

The simulation kernel itself is very simple. Its full C++ code is presented in Figure 4 as
an ill ustration. Basicdly, it functions as foll ows:
1. globa statistics are initiali zed;
2. for each replication:

2.1. datistics concerning the arrent replication are initi ali zed,

2.2. aslong asthe replicationis not over, events are supfdied by the Scheduler and exe-
cuted by the EventManager (of course, events themselves do schedule other events
so that the whole processiterates),

2.3. datistics concerning the arrent replication are mmputed,

2.4. dl the Client ojeds remaining in the system are destroyed so that the next replica-
tionisnot biased;

3. global statistics are omputed and dsplayed.

DESP-C++, A Discrete-Event Smulation Package for C++ 10/28

/I CLASS Simulation: Simulation Execution
void Simulation::Run(int nreplic) {

int i, nextevent;
Client *client;

/I Global initialization
eventmanager->Init();

/I Replications loop
for (i=1; i<=nreplic; i++) {

/I Replication initialization

tnow=tstart;

eventmanager->InitRep();

client=NewClient();

eventmanager->ExecuteEvent(0,client); // First event scheduled

/I Simulation engine

while ((tnow<tmax) && (!scheduler->IsEmpty())) {
nextevent=scheduler->GetEventCode();
tnow=scheduler->GetEventDate();
client=scheduler->GetClient();
scheduler->DestroyEvent();
eventmanager->ExecuteEvent(nextevent,client);

}

/I Replication statistics computation
eventmanager->Stats();

/I Destruction of clients still remaining in the system
PurgeClientList();

}

/I Global results
eventmanager->DisplayStats();

}

Figure 4. Simulation kernel code

4. DESP-C++ usage

We strongly recommend the use of a modelling methoddogy like thase presented in [2,
10, 13 in order to produce orrect simulation models, before any attempt to write asimula-
tion program. Spedadlists in modelli ng and simulation at Blaise Pascd University customarily
employ such a methoddogy, especialy to model complex systems. Following a modelli ng
methoddogy allows an easy and nan-ambiguous edficaion d a given system's gructure
and kehavior. It constitutes a guide dl along the modelling process in order to generate the
most reliable models. A good wse of such a modelling methoddogy, rather than an empirical

analysis approach, induces important gains in terms of analysistime.

DESP-C++, A Discrete-Event Smulation Package for C++ 11/28

Y et, orcethis modelli ng step is performed, translating a model in C++ is easy. Coding a
discrete-event simulation model with DESP-C++ is mostly achieved by filling the Events
modue from Figure 3, i.e., spedfying the system’s resources, and smulation events. Thisis

dore through threesteps.

1. Editingtheeventc.h file (seefull codein Appendix):
» All adive resources must be defined as classes inheriting from the Resource class
(Figure 5). An active resource must “know” all the passve resources it uses (like the
resource named Passve in Figure 5) and al the other adive resources it can drect

clientsto.

/I Sample active resource

class Sample_AR: public Resource {
public:
/I Constructor
Sample_AR(char name[STRS], int capacity, Simulation *sim, Resource *passive);
/I Events for resource Sample_AR
void AR_EventO(Client *client);
void AR_Event1(Client *client);
void AR_Event2(Client *client);
void AR_Event3(Client *client);
private:
Resource *Passive;

Figure 5. Sample active resource definition

» Pointerstoward al adive and passve resources must be dedared as attributes of the

EventManager class(Figure 6).

class EventManager {

/I Public methods (skipped)

private:
I Attributes
Simulation *simul; // Pointer to Simulation object
/| Passive resources
Resource *sanpl e_pr;
/1 Active resources
Sampl e_AR *sanpl e_ar;

Figure 6: Resources dedaration in classEventM anager

DESP-C++, A Discrete-Event Smulation Package for C++ 12/28

» If needed, new attributes may be added to the Client class(Figure 7).

class Client {
public :
/I Usual attributes
Client *next;
Client *previous;
/1 Supplenentary attribute
float operating_tineg;

Figure 7: Supplementary attributes definition in classClient

2. Editing the eventm.h file (seefull codein Appendix):
* In class EventManager’s constructor and destructor, respectively instantiate or de-

stroy all active and passve resources (Figure 8).

/I CLASS EventManager : Constructor

EventManager::EventManager(Simulation *sim) {

simul=sim;

/] Passive resources instantiation

sanpl e_pr=new Resource("PR", 2, simul);

/1 Active resources instantiation

sanpl e_ar=new Sanpl e_AR("AR', 1, si mul , sanpl e_pr);
}

/I CLASS EventManager : Destructor

EventManager::~EventManager() {
/] Passive resources destruction
del ete sanple_pr;
/1 Active resources destruction
del ete sanple_ar;

}

Figure 8: Instantiation and destruction of the resources

* In class EventManager, and method ExecuteEvent(), for each active resource and

ead event, add aline amed at firing the event (Figure 9).

/I CLASS EventManager : Events execution

void EventManager::ExecuteEvent(int code, Client *client) {
switch(code) {
case 0: sanple_ar->AR EventO(client);break; // Initial event MANDATORY!!
case 1: sanple_ar->AR Eventl1(client); break;
case 2: sanple_ar->AR Event2(client); break;
case 3: sanple_ar->AR Event3(client); break;
default: printf("Error: unknown event #%d at time %f\n",code,simul->Tnow());

Figure 9: Eventstriggering in method ExeauteEvent

DESP-C++, A Discrete-Event Smulation Package for C++ 13/28

 Take dl active and pasgve resources into accourt in the other methods of class

EventManager. An exampleis given for method Init() in Figure 10.

void EventManager::Init() {
/| Passive resources
sanpl e_pr->Reset Stats();
/'l Active resources
sanpl e_ar->Reset Stats();

Figure 10: Resources' statisticsinitialization

» Ead active resource’s constructor must be spedfied if it differs from the standard
Resource constructor. Each event fired by the adive resource must also be coded as a

method (Figure 11).

/I CLASS Sample_AR : Constructor

Sample_AR::Sample_AR(char name[STRS], int capacity, Simulation *sim, Resource
*passive):Resource(name, capacity, sim) {Passive=passive;}

/I CLASS Sample_AR : Event #0, active resource reservation

void Sample_AR::EventO(Client *client) {
this->P(1,client,1); // next event: #1, priority in queue: 1}

/I CLASS Sample_AR : Event #1, passive resource reservation

void Sample_AR::Event1(Client *client) {
Resource->P(2,client,1); // next event: #2, priority in queue: 1}

/I CLASS Sample_AR : Event #2, perform operation

void Sample_AR::Event2(Client *client) {
Sim()->Sched()->Schedule(3,Sim()->Tnow()+client->operating_time,client);
/I next event: #3, scheduled after time operating_time

}

/I CLASS Sample_AR : Event #3, resources release

void Sample_AR::Event3(Client *client) {
Resource->V();
this->V();
Sim()->Sched()->Schedule(0,Sim()->Tnow(),client);
/I reiterates the process now (event #0)

}

Figure 11: Sample active resource methods

3. Writing a main program: this is the eay part. You just neal to include the DESR-C++
modues, creade aSmulation objed and exeaute its Run() method. An example is provided in

Figure 12.

DESP-C++, A Discrete-Event Smulation Package for C++ 14/28

/I Sample usage program for DESP-C++

#include "simutil.h"
#include "simulc.h"
#include "eventc.h"
#include "simulm.h"
#include "eventm.h"

void main() {
Simulation *sim = new Simulation(START_TIME, END_TIME, RANDOM_SEED);
sim->Run(NUMBER_OF_REPLICATIONS);

}

Figure 12 Sample simulation main program

5. Validation experiments

Being able to perform smulationis one thing, but obtaining reliable resultsis ancther. To
adiieve this, two condtions are mandatory:

* simulation models must be valid, i.e., they must conform to the real system they mode!;
» the simulator must be valid too, i.e., there must be no kug altering the results.

In order to prove that our simulation engine is adequately bug-free we decided to imple-
ment the same models with QNAP2 and DESP-C++. Since QNAP2 isavalid toadl, concordant
results sroud valid DESR-C++ (it would adually be “QNAP2-valid”).

Though DESRP-C++ is a simple todl, it is nat aways easy to deted and locate errors in
simulation. Hence, we tried to use testing cases that are different in terms of behavior and
complexity. We started with a simple, classcd flow shop model, then a little more complex
model in terms of resource usage: the dining philosophers, and we eventually compared
simulation results for a much more wmplex model: VOODB. All simulation experiments
were performed onan IBM RISC 6000 workstation with 256MB of RAM, under AIX ver-
sion 4.Note that our aim here is not to validate these three simulation models, bu to show

that our simulation engine provides unhiased results.

DESP-C++, A Discrete-Event Smulation Package for C++ 15/28

Simple model: Flow shop

Our first model concerns the flow shop production system that is presented in Figure 13.
Products undergo some operations in Macdiine#1 for a time depending on a randam expo-
nential law (average: 10 minutes). Then, the products are transported by a mobile roba into a
buffer stock ahead of Machine#2. Transport time depends on a randam uniform law (values
ranging from 4 to 6 minutes). The products then undergo ather operations in Machine #2, for
a time depending on a randam exporential law (average: 12 minutes). Eventually, the prod-
ucts are transported ouside the system by the mobile roba. Transport time still depends on a

random uniform law (values ranging from 4 to 6 minutes).

EXP(10) EXP(12)
Machine #1 |::>]]II]II]]]II]]]— Machine #2 |::> ouT
(source)
! M1-M2 and
Robot M2-OUT transport
UNI(4,6)

Figure 13: The flow shop ssimple example

This production system is very simple. Figure 14 though ill ustrates the gplication d a
modelli ng methoddogy in order to buld amodd of this system. This UML Activity Diagram
shows the transformation process undergone by the dients (products) using the adive re-
sources (Machine #1 and Madine #2, which constitute the swimlanes in the Activity Dia
gram). The pasdve resources do nd appear on Figure 14, bu they must also be indicated,
sincethey will be part of the simulation program code. Here, the system has only one passve

resource: the roba transporting the products.

DESP-C++, A Discrete-Event Smulation Package for C++ 16/28

Machine #1 e--> Raw material Operation #1

[Transportation}

Machine #2 Semi-finite %Gperatio
product

n @>

Finite product (—[Transportation}>(@®@)

Figure 14: Flow shop model

To evauate the results’ conformity, we mmpared resporse time and the number of cli-
ents srved by ead resource as computed by QNAP2 and DESP-C++. We dso varied the

number of replications from 1,000to 15,000.The mean results obtained show that DESP-C++

provides the same results than QNAP2 (Table 1).

QNAP2 | DESP-C++ Ratio
Machine #1: Mean resporse time (min) 12.64 12.65 0.99
Machine #1: Average number of clients srved 7902 7914 0.99
Machine #2: Mean resporse time (min) 14.73 14.79 0.99
Machine #2: Average number of clients srved 6736 6725 1.00
Roba: Mean resporse time (min) 4.99 5.00 0.99
Roba: Average number of clients ®rved 14630 14638 0.99

Table 1: DESP-C++/ QNAP2 simulation output comparison (flow shop)

In addition, we measured exeaution time for both models, in order to ched whether the

increase in performance with DESP-C++ was sufficient. On an average, DESP-C++ runs

abou 9 times faster than QNAP2 (Figure 15).

—e— DESP-C++
—m— QNAP2

300
= 250 -
E 200 -

g 150

= 100

S 5o T

2 ol g e
i 1000 5000 10000 15000

Number of replications

Figure 15: DESP-C++/ QNAP2 exeaution time comparison (flow shop)

DESP-C++, A Discrete-Event Smulation Package for C++

This constituted a first, very encouraging validation for DESRC++. However, we de-

cided to check if the results were still as goodwith more daborate models.

Medium model: Dining philosophers

To pusue our vaidation pocess we then considered the dasscd dining phil osophers
problem (Figure 16). Four philosophers who do nohing but ea (for a time depending on a
randam exporential law, average: 5 minutes) and think (for a time depending ona randam
exporential law, average: 2 minutes) are seded at a table. Between each pair of phil osophers
isasingle fork. A philosopher needs to have two forks to ea. A model for the philosopher’s
problem is presented in Figure 17 as a UML Activity Diagram. It describes each philoso-
pher’s behavior. Phil osophers constitute the system’s adive resources, and forks are the pas-

SiVe resources.

Figure 16: The Dining Philosophers

We ayain compared response time and the number of clients rved by each resource, as
computed by QNAP2 and DESP-C++, whil e still also varying the number of replications from
1,000to 15,000.The mean results obtained show that DESP-C++ provides once more the

same results than QNAP2 (Table 2).

DESP-C++, A Discrete-Event Smulation Package for C++ 18/28

Philosopher #i

<

Both forks are free

Eat

Figure 17: Philosophersindividual behavior

QNAP2 | DESP-C++ Ratio
Phil osophers: Mean response time (min) 3.61 3.64 0.99
Phil osophers: Average number of clients srved 30.93 3116 0.99
Forks: Mean response time (min) 5.30 5.32 0.99
Forks: Average number of clients erved 14.58 14.70 0.99

Table 2: DESP-C++/ QNAP2 simulation output comparison (dining phil osophers)

We dso measured exeaution time for both models. On an average, DESR-C++ ran abou

11 times faster than QNAP2 (Figure 18).

Execution time [min]
o = M W A G o

—&— DESP-C++
—=— QNAP2

P |
/-/

/l’ /
—

1000 5000

10000 15000

Number of replications

Figure 18 DESP-C++/ QNAP2 exeaution time comparison (dining phil osophers)

DESP-C++, A Discrete-Event Smulation Package for C++

19/28

Complex model: VOODB

VOODB is a generic simulation model that is amed at evaluating the performances of
objed-oriented database systems (OODBMSs), and more precisely, at evaluating the per-
formances of clustering algorithms within OODBM Ss. VOODB s able to model the behavior
of various types of systems, espedally different configurations of client-server systems.

Basicaly, VOODB simulates the exeaution d transadions within an OODB. Its work-
load model is constituted by the Object Clustering Benchmark (OCB) [7], which is a generic
benchmark able to model various kinds of object-oriented databases and appli cations using
these data. In these experiments, ojed bases of 50 classes and 20,000instances was used,
with four different kinds of transactions accessng the database.

Transadions are generated by Users, who submit them to a Transaction Manager. The
Transaction Managr determines which oljects need to be accessed for the aurrent transac-
tion,and perform the necessary operations on these objects. A given oljed is requested by the
Transaction Manager to an Objed Manager that finds out which dsk page contains the ob-
jed. Then, it requests the page from a Buffering Manager that chedks if the page is present in
the memory buffer. If nat, it requests the page from an 1/0 Sulsytem that deds with physicd
disk accesses. After an operation ona given olject is over, a Clustering Manager may update
some usage statistics for the database. An analysis of these statistics can trigger a reclustering,
which is then performed by the Clustering Manager. Such a database reorganization can also
be demanded externaly by Users.

It would be too long to further describe VOODB here, but a good summary is what we
cdl the knowledge model [8] for VOODB. It is presented as a UML Activity Diagram in

Figure 19. Thismode is hierarchical and would namally be further detail ed.

DESP-C++, A Discrete-Event Smulation Package for C++ 20/28

User(s) Transaction Clustering Object Buffering 110
Manager Manager Manager Manager Subsystem
Generate .
. Transaction
Transactio
Extract Object
Object [to access]
Extract Page(s)
Page(s) / g
Access
Page(s)
[Rdnnnig [Page
Trarfsaction] to load 110
[Page inimemory] Access
Disk
Perform Object
Transw [in memory]
Usage of a pag
—L replacement policy
(FIFO, LRU,
LFU, etc.)
Perform
[Completp treatment
©< Transactig)n] relative to
clustering
(statistics
collection,
etc.)
No
®< [No
Clustering] Automatic
[Necgssary triggering
Clustering]
. Clustering
Demand
External
triggering
Perform Varies with the
Clustering tested algorithm
®<

Figure 19: VOODB knowledge model

DESP-C++, A Discrete-Event Smulation Package for C++

21/28

The knowledge model swimlanes figure the system’'s active resources. The objeds
(square boxes) represent the dients running through the system. Eventualy, the activities
(round boxes) correspondto dedsion rules that are invoked in the simulation events. The pas-
sive resources in VOODB do nd appea here. They are the processor and main memory, the
disk controller and the secondary storage, and the database itself. The dients bear several at-
tributes, e.g., the arrent depth for a transadion, the OID of the next objed to be accessed,
etc.

Our comparison between DESRC++ and QNAP2 concerned the performances of the
Texas persistent objed store [24] and the DSTC clustering technique [5]. Actually, we did na
include objed clustering in ou tests at first, to chedk out how everything worked ou. We
compared the results of 100 replications. We did na vary the number of replications here
sincesimulations with QNAP2 were drealy quite lengthy.

Table 3 presents the performance results we obtained for a number of significant criteria.
Globally, we foundthe simulation results to be 97% homogeneous on an average. Computa-

tiontime was abou 85 times faster with DESP-C++ with thismodel (Table 5).

QNAP2 | DESP-C++ Ratio
Mean number of transactions 2494 2501 0.99
Mean response time (S) 2.85 2.66 1.07
Mean nunber of objeds accessed (per transaction) 64.4 61.5 1.04
Mean system throughpu (transactions/s) 0.25 0.25 1.00
Mean number of 1/0s 15335 15085 1.01
Mean number of disk pages used 2823 2731 1.03

Table 3: DESP-C++/ QNAP2 output comparison (VOODB, no clustering)

The next step was to take the DSTC clustering strategy into account within our simula-
tion model, and then to simulate the behavior of the Texas persistent objed store. We alded
performance aiteriarelevant to clustering (Table 4), and till performed 100replicaions. The
results are now 96% homogeneous on an average. This is aufficient four our needs, since

simulation results are to be @mnsidered as tendencies, rather than accurate values. With the

DESP-C++, A Discrete-Event Smulation Package for C++ 22/28

added complexity of clustering, the C++ model even runs aimost 900 times faster than the

QNAP2 modd (Table 5).

QONAP2 | DESP-C++ Ratio
Mean number of transactions 2460 2507 0.98
Mean resporse time (s) 67.3 611 1.10
Mean nunber of objeds accessed (per transaction) 212 1.86 1.14
Mean clustering time (s) 0.1 0.1 1.00
Mean system throughpu (transactions/s) 0.24 0.25 0.98
Mean number of 1/Os (transactions) 13073 12261 1.06
Mean number of 1/Os (clustering) 243 259 0.94
Mean number of disk pages used 3066 3045 1.00

Table 4: DESP-C++/ QNAP2 output comparison (VOODB, clustering)

QNAP2 DESP-C++ Ratio
No clustering 6,000 min. 70 min. 85
Clustering 81,000 min. 92 min. 880

Table5: DESP-C++/ QNAP2 exeaution time comparison (VOODB)

6. Conclusion

We have presented in this paper an overview of the DESP-C++ discrete event randam
simulation engine. We discussed its main functionaliti es and characteristics, explained how its
architedure was designed, and provided detail ed usage instructions 9 that simulation models
can be mded relatively painlesdy.

We dso demonstrated ou tod was a valid simulation engine by comparing it to QNAP2
in terms of output. Ancther strong motivation was to provide afast and easy to use simulation
kernel, provided previous knowledge of the C++ language. The flexibility of DESP-C++ has
been ill ustrated by our validation process which lead us to design three simulation models
that are quite different from one ancther: a production system, a dassca deadlock problem,
and an ojed-oriented database management system.

Yet, there is gill much room for improvement in DESRC++. The statisticd tods we

provide by default (basicdly, replicaions and computation o mean values and confidence

DESP-C++, A Discrete-Event Smulation Package for C++ 23/28

intervals) are very simple. More daborate methods, li ke the regeneration a spedral methods,
could achieve more reliable mnfidence intervals.

The mere C++ conception shoud also be enhanced, so that it beaomes more transparent
to users. A modue reorganization, @ an implementation as a library, can be envisaged. A
proper graphicd interface could also grealy ease the use of our package.

Eventually, some portions of code can be optimized so that simulations run even faster
and dhta structures are more robust. This was not an urge for us, but it could prove very use-
ful. For instance, the Scheduler and Resource classes currently use basic data structures for
their queues (bi-dirediona linked lists). More eff ective data structures could be used instead,
like those from the LEDA [19] or STL [25] C++ libraries. STL (Standard Template Library)
isindeed astandard C++ library since 1998[14].

To conclude this paper, we would recmmend ou simulation package to people having
nations of modelli ng and simulation, knaving the C++ language, and urwilli ng to learn anew
language dedicated to smulation. DESP-C++ is afair solution when one neels to rapidly and

simply code asimulation model, for free.

References

1. AESOP GmbH, SMPLE++ Reference Manud (1995

2. O. Balci andR.E. Nance, ‘ The simulation model development environment: an overview’,
1992Winter Smulation Conference, 726736 (1992)

3. J. Banks, ‘Output Analysis Capabiliti es of Simulation Software’, Smulation 66(1), 23-30
(1996

4. O.F.BryanJr., ‘MODSIM Il — An Object-Oriented Simulation Language for Sequential
and Paralel Processors, 1989 Winter Smulation Conference, Piscataway, NJ, 172177
(1989

5. F. Bullat and M. Schneider, ‘Dynamic Clustering in Objed Database Exploiting Effedive
Use of Relationships Between Objeds’, LNCS1098 344365(1996

6. 0O.J. Dahl and K. Nygaard, ‘SIMULA, an algol based smulation language’, Comnunica-
tions of ACM 9(9) (1966

DESP-C++, A Discrete-Event Smulation Package for C++ 24/28

7. J.Darmort et a., ‘OCB: A Generic Benchmark to Evaluate the Performances of Object-
Oriented Database Systems’, LNCS 1377, 326340(1998

8. J. Darmont and M. Schneider, ‘VOODB: A Generic Discrete-Event Randam Simulation
Model to Evaluate the Performances of OODBs, 25" Internationd Conference on Very
Large Databases (VLDB '99), Edinburgh, Scotland, UK (1999

9. P.A.Fishwick, Smpack: Getting started with simulation programming in C and C++,
Tednicd Report #TR92-022, Computer and Information Sciences, University of Florida
(1992

10.M. Gourgand and P. Kédllert, *An olject-oriented methoddogy for manufaduring systems
moddling’, 1992 Smmer Computer Smulation Conference (SCSC), Reno, Nevada, 1123
1128(1992

11.K.J. Hedy and R.A. Kilgore, ‘Silk: A Java-based Process Simulation Language’, 1997
Winter Smulation Conference, Atlanta, GA, 475482(1997)

12.H. Herscovitch and T.H. Schneider, ‘GPSSII — An extended general purpose simulator’,
IBM System Journal 4(3) (1965)

13.D.R.C. Hill, *Enhancing the QNAP2 objed-oriented simulation language’, Modeling and
Smulation (ESM 93), Lyon, France, 171:175(1993

14.Information Techndogy Courcil, X3 Secretariat, Sandad — The C++ Languag,
ISO/IEC:98-14882 Washington, DC, USA (1998

15.P. Kellert, N. Tchernev and C. Force, ‘Objed-oriented methoddogy for FMS modelli ng
and simulation’, Int. J. Computer Integrated Manuacturing 10(6), 405434(1997)

16.A.M. Law and W.D. Kelton, Smulation Modeling and Analysis, 2" Edition, McGraw-
Hill (1997)

17.T.G. Lewis and W.H. Payne, ‘Generalized feedbadk shift register pseudorandam number
algorithm’, Journal ACM 20(3), 456468(1973

18.M.C. Little and D.L. Mc Cue, Construction andUse of a Smulation Package in C++,
Tednicd Report, Department of Computer Science, University of Newcastle uponTyne, UK

19.K. Mehlhorn et ., The LEDA User Manud Version 3.7.1(1995

20.E.H. Page, R.L. Moase Jr. and S.P. Griffin, ‘Web-Based Simulation in SimJava using
Remote Method Invocaion’, 1997 Winter Smulation Conference, Atlanta, GA, 68473
(1999

21.C.D. Pegden, R.E. Shanon and P.P. Sdowski, Introduction to simulation uising SMAN,
McGraw-Hill (1990

22.A.A.B. Pritsker, Introduction to Smulation and £AM I, Hasted Press (John Wiley and
Sons), System Publi shing Corporation (1986

23.SIMULOG, QNAP2 Reference Manud (1995

24.V. Singhal, S.V.Kakkad and P.R. Wilson, ‘Texas. An Efficient, Portable Persistent
Store’, 5" Internationd Workshop onPersistent Objed Systems, San Miniato, Italy (1992

25.A. Stepanov and M. Lee, The Sandad Template Library, Technica Report, Hewlett-
Padard Company (1995

26.B. Stroustrup, The C++ Programming Languagg, Third Edition, Addison Wesley (1997
27.B.P. Zeigler, Theory of Modelling and $mulation, JohnWiley and Sons (1976)

DESP-C++, A Discrete-Event Smulation Package for C++ 25/28

Appendix: DESP-C++ event c. h and event m h editablefiles

I

/| DESP-C++ (C++ discrete-event simulation package)

/I Version 1.1, February 1998

/I Jerome Darmont

/I LIMOS, Blaise Pascal University (Clermont-Ferrand Il), France
I

/I eventc.h : Definition of the Event Manager’s classes

/I Varies with the simulated system

I

/I Active resources declaration
/] Ex. class AR;

I

/I CLASS EventManager

I

/I Simulation events management
I

/I The event manager must know all the (passive and active) resources

class EventManager {

public:
/I Methods
EventManager(Simulation *sim); // Constructor
~EventManager(); /I Destructor
void ExecuteEvent(int code, Client *client); // Event execution
void Init(); /I Initialization
void InitRep(); /I Replication initialization
void Stats(); /I Stats computation (end of replication)
void DisplayStats(); /I Statistics final computation & display
private:
/I Attributes
Simulation *simul; /I Pointer to Simulation object

/] Passive resources
/I Ex. Resource *pr;

/I Active resources
/I Ex. AR *ar;

h

I

/I CLASS Client

I

/I Custom simulation entity
I

class Client {

public :
/I Add here eventual supplementary attributes
Client *next;
Client *previous;

¥

1

/I CLASS AR

1

/I Sample active resource

1

/I Active resources must know all the passive resources they use and
I the “next” active resources (pointers)

DESP-C++, A Discrete-Event Smulation Package for C++

26/28

/lclass AR: public Resource {

/I public:

/I Constructor

/I AR(char name[STRS], int capacity, Simulation *sim);
/I Events

/I void EventO(Client *client);
/I void Event1(Client *client);

1,

1

/| DESP-C++ (C++ discrete-event simulation package)
/I Version 1.1 g++, February 1998

/I Jerome Darmont

/I LIMOS, Blaise Pascal University (Clermont-Ferrand Il), France
1

/I eventc.h : Definition of the Event Manager methods
/I Varies with the simulated system

1

1

/I CLASS EventManager

1

/I CLASS EventManager : Constructor
EventManager::EventManager(Simulation *sim) {

simul=sim;

/] Passive resources instantiation
/I Ex. pr=new Resource("PR",2,simul);

/I Active resources instantiation
/I Ex. ar=new AR("AR",1,simul);
}

/I CLASS EventManager : Destructor
EventManager::~EventManager() {

/I Passive resources destruction
/I Ex. delete pr;

/I Active resources destruction
/] Ex. delete ar;

}

/I CLASS EventManager : Events execution

void EventManager::ExecuteEvent(int code, Client *client) {
switch(code) {
/lcase 0: ar->Event10(client);break; // Initial event MANDATORY!!
/I Sample events

/Icase 10: ar->Event10(client);break;
/lcase 11: ar->Eventl1(client);break;

default: printf("Error: unknown event #%d at time %f\n",code,simul->Tnow());
}
/I CLASS EventManager : Statistics initialization for each resource
void EventManager::Init() {

/] Passive resources
/Ipr->ResetStats();

DESP-C++, A Discrete-Event Smulation Package for C++

27/28

/I Active resources
/lar->ResetStats();
}

/I CLASS EventManager : Replication initialization
void EventManager::InitRep() {

/I Scheduler
simul->Sched()->Purge();
/I Passive resources
/Ipr->ResetCounters();
[/Ipr->PurgeQueue();

/I Active resources
/lar->ResetCounters();
/lar->PurgeQueue();

}

/I CLASS EventManager : Statistics computation for each resource
void EventManager::Stats() {

/] Passive resources
/Ipr->Stats();

/I Active resources
[lar->Stats();

/I CLASS EventManager : Statistics display for each resource
void EventManager::DisplayStats() {

printf("\n*** SIMULATION STATISTICS ***\n\n");
printf("\n*** PASSIVE RESOURCES\n");

/I pr->DisplayStats();
printf("\n*** ACTIVE RESOURCES\n");

/I ar->DisplayStats();

1
/I CLASS AR
I

/I CLASS AR : Constructor

/I AR::AR(char name[STRS], int capacity, Simulation *sim):
/I Resource(name, capacity, sim) {

1}

/I CLASS AR : Event #0

/I void AR::EventO(Client *client) {

/I code for event #0

I}
...

DESP-C++, A Discrete-Event Smulation Package for C++

28/28

