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Summary: DESP-C++ is a C++ discrete-event random simulation engine that has been de-

signed to be fast, very easy to use and expand, and valid. DESP-C++ is based on the resource

view. Its complete architecture is presented in detail , as well as a short “ user manual” . The

validity of DESP-C++ is demonstrated by the simulation of three significant models. In each

case, the simulation results obtained with DESP-C++ match those obtained with a validated

simulation software: QNAP2. The versatilit y of DESP-C++ is also ill ustrated this way, since

the modelled systems are very different from each other (namely, a simple production system,

the dining philosopher classical deadlock problem, and a complex object-oriented database

management system).
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1. Introduction

Many tools are nowadays available when one needs to perform random simulation. Many

general simulation languages, li ke SIMULA [6], GPSS II [12], SLAM II [22], SIMAN [21] or

QNAP2 [23] have been developed since the mid-sixties. They propose numerous functionali-

ties and are considered valid. However, they all require a fair investment in time just to learn

how to use them. When this is done, though, designing a simulation model is much easier

than writing one from scratch. Nevertheless, dedicated simulators still remain useful when

good performances are required. Furthermore, most of the general simulation languages do

not allow a full object-oriented approach. Several object-oriented simulation languages and

environments have been designed in the last decade (MODSIM II [4], SIMPLE++ [1], based

on C++; Silk [11] and SimJava [20], based on Java), but they still require a substantial learn-

ing time. That is why simpler simulation tools appeared in parallel as C++ or Java packages.

DESP-C++ is one of them.

DESP-C++ stands for Discrete-Event Simulation Package. Its design originates in the

modelli ng of object-oriented database management systems. Initially, a simulation model

baptized VOODB (Virtual Object Oriented Database) [8] had been implemented with the

QNAP2 (Queuing Network Analysis Package 2nd generation) simulation software, which is a

validated and reliable tool featuring a simple language close to Pascal. However, this simula-

tion language is interpreted, and our model’s executions were far too slow for the intensive

simulation experiments we planned, especially with the object-oriented features we used to

extend QNAP2 [13]. Hence aroused the need for a faster simulation environment.

In short, we needed a fast, cheap, and reasonably simple object-oriented simulation lan-

guage. C++ [26] obviously quali fied, provided we coded a simulation engine. For simplicity’s

sake, we decided to implement a discrete-event random simulation kernel. This actually fa-



DESP-C++ , A Discrete-Event Simulation Package for C++ 3/28

cilit ated the adaptation of the QNAP2 VOODB model, since QNAP2 is also a discrete-event

simulation software. DESP-C++ was born.

The remainder of this paper is organized as follows. First, we expose our package’s char-

acteristics and functionaliti es in Section 2. Then, the architecture of DESP-C++ is presented

in detail i n Section 3. Section 4 further explains how to use our simulation engine. In Sec-

tion 5 are presented three experiments we performed to validate DESP-C++. Eventually, we

conclude this paper and discuss future issues in Section 6.

2. Character istics and functionali ties of DESP-C++

DESP-C++ characteristics

The motivation to build our own simulation engine comes from the fact that the existing

tools we have access to do not suit our needs, primarily in terms of validity and simplicity.

The qualiti es we intended to give to DESP-C++ are the following.

• Validity: To provide reliable simulation results, DESP-C++ had to be validated, i.e., we

had to check out if it was bug-free and behaved as expected. We achieved this by imple-

menting the same models in QNAP2 and C++, and verifying the results were consistent

(see Section 5). Validity was a strong concern to us, and this is actually the reason why we

did not select an existing C++ simulation package instead of building our own. For in-

stance, in [18], absolutely no validation experiment is provided for C++SIM. [9] only pro-

poses sample possible SimPack models, without any hint that these models are function-

ally correct nor that the simulator itself is bug-free.

• Simplicity: Provided certain basis in object-oriented programming, modelli ng, and simu-

lation, we heartily wanted DESP-C++ to be very easy to use, compared to complex simu-
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lation software like SLAM II, QNAP2, or even other C++ simulation packages like Sim-

Pack or C++SIM, which all feature much more than what we actually needed.

• Efficiency: Our simulation experiments with QNAP2 being too slow, we needed DESP-

C++ to be reasonably fast.

• Portabilit y: Since our simulation models were likely to be used on several platforms (Sun,

Sili con Graphics or IBM workstations; PCs under Linux or Windows), its code had to be

portable. This is another reason why we selected C++ as our programming language for

DESP-C++.

• Compactness: To remain simple and extensible, our simulation kernel had to be quite

small and understandable. Its code is indeed less than 1,500 lines long, including a couple

of utili ty functions.

• Extensibilit y: We wished to allow the possibili ty to develop anything, even complicated

models, based on our simulation kernel. Hence we chose an “open” and simple structure

that is easy to modify and expand.

• Universality: Many people are now comfortable with the C++ language. By adopting it,

we avoided the need to learn a special syntax and allowed the instant creation of simula-

tion models.

• Low-price: DESP-C++ is a free software. Its source code is available at the following

URL: http://libd2.univ-bpclermont.fr/~darmont/download/desp-c++ .tar.gz .

DESP-C++ functionali ties

DESP-C++ basically provides classes to manage and order simulation events, much like

any classical discrete-event simulator. Discrete-event simulation can be defined this way [16,

27]: in a discrete-event simulation, the variables we need to know at all ti mes are discrete.

They are called state variables. The set of values these variables can bear constitutes the sys-
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tem’s state space. The state space is countable or finite. According to the definition of the

state space, each change in state or event occurs in a discrete manner in time at instants

(ti) i ∈ N. These (ti) instants are called event occurrence times or event dates. Discrete-event

simulation applies to any discrete system (i.e., which evolution in time is accomplished in a

discrete manner). This covers a very broad range of systems (a couple of examples are pro-

vided in Section 5). Hence, a discrete-event simulator was a natural choice to us.

Furthermore, two approaches exist to describe a system within a discrete-event simulator:

the transaction view and the resource view. In the transaction view, an observer (or designer)

describes, in a chosen formalism, the behavior of the system by specifying, for each type of

entity flow traversing the system, the path these entities follow and the successive operations

they undergo. In the resource view, the observer describes the behavior of each active re-

source in the modeled system. The relationships linking active resources to various passive

entities visiting them have to be defined. Among these passive entities are components that

undergo some operations, and passive resources that are used by active resources to perform

their tasks.

At first, we considered using a transaction view, because it seemed natural with the

VOODB simulation model, which basically deals with transactions in an object-oriented da-

tabase system. However, coding the transaction view implied handling C++ threads, which

use is not always easy. This would have played against the simplicity we desired for DESP-

C++. Furthermore, QNAP2 uses the resource view, and we wanted an easy adaptation of

VOODB from QNAP2 to DESP-C++. Eventually, since any system may be modelled as eas-

ily with the resource view as with the transaction view (it is just a question of system repre-

sentation), we favored the resource view for the sake of simplicity.

Thus, in DESP-C++, the system to be simulated is described by a queuing network con-

stituted of a set of communicating resources. Resources are divided into two categories: active
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resources that actually perform some task, and passive resources that do not directly partici-

pate in any treatment, but are used by the active resources to perform their operations. The

user’s task is to instantiate the resource classes by specifying their parameters, and their asso-

ciated events, for active resources. Clients travel through the active resource network, and are

“served” by these resources.

For instance, consider a computer system where different processes run programs in par-

allel (Figure 1). Programs can be viewed as the system’s clients and processes as the system’s

active resources. The processor, main memory, hard drive(s), etc. constitute this system’s pas-

sive resources.

Process #1Programs

Process #2Programs

Process #NPrograms

Processor

M e m o r y

Disks

Uses

Uses
Uses

Uses

Uses

Uses

Uses
Uses

Uses

Figure 1: Sample parallel computer system

The behavior of a simulation model is evaluated by the mean of a set of statistics (basi-

cally, mean values and confidence intervals). Confidence intervals are ascertained through

replications of the simulation experiments using the method presented in [3]. By default,

DESP-C++ provides the following statistics for each resource (whether passive or active):

• mean response time,

• mean waiting time for clients (before being served),

• mean number of clients served,



DESP-C++ , A Discrete-Event Simulation Package for C++ 7/28

• mean number of clients still being served,

• mean number of clients still waiting to be served.

3. DESP-C++ architecture

The complete architecture of DESP-C++ is displayed as a UML Static Structure Diagram

in Figure 2. DESP-C++ is organized around the Simulation class, which attributes are the ba-

sic simulation control data (beginning and end of simulation times, current time, random gen-

erator seed). It also upholds a list of references toward all the clients in the system (so that all

the clients remaining in the system at the end of simulations can be destroyed, and memory

freed). The Simulation class constitutes the interface of DESP-C++. It must be instantiated in

the main program. Simulation runs are activated by the Run() method, the number of replica-

tions being indicated in parameter.

Each simulation instance is related to a Scheduler object, which is basically an ordered

list of events to be executed (sorted by event date). Each event also has a unique code, and is

related to the Client object undergoing the event. The Scheduler methods deal with the event

li st management (event insertion, deletion and retrieval).

A Simulation instance is also linked to an EventManager object that mainly deals with

the execution of events by the active resources (ActiveResource objects), using the passive

resources (Resource objects), via the ExecuteEvent() method. The EventManager is also in

charge of statistic initialization and computation for each resource in the system: the Init()

method initializes the statistics for a whole simulation experiment, the InitRep() method does

the same for one replication, the Stats() method computes intermediate statistics for one repli-

cation and, eventually, the DisplayStats() method computes and displays the final statistical

results.
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Figure 2: DESP-C++ architecture
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A Resource object is essentially a queue of events that are sorted by priority, each event

being again associated to a Client object. Each Resource is defined by a name (that is not nec-

essarily unique, but would better be) and a maximum capacity (i.e., the maximum number of

clients it can serve concurrently). The current capacity ccapacity indicates how many supple-

mental clients may use the Resource. The typical P() and V() methods, that are used to reserve

and release the Resource, respectively, constitute a Resource’s interface, along with private

methods dealing with queue management (insertion, deletion, retrieval).

A Resource also bears attributes (the wait, response, stats[] … counters) and methods

dealing with statistics management at the individual, resource level (global initialization, ini-

tialization by replication, computation by replication, and global computation). These meth-

ods are invoked by the EventManager during the corresponding phases of statistics mainte-

nance. All the active resources inherit from the Resource class. They just include the execu-

tions of their related events, as methods, in addition. Users may add extra public attributes, if

necessary for a particular model.

Clients, as mere passive entities running through the system, are just designed to be part

of linked lists. However, they can be customized by users to carry any kind of information, by

simply adding public attributes to the Client class. For instance, these data can be used by

active resources to perform a personalized treatment for each client.

All these classes are further organized into files and modules, as shown by Figure 3. On

the left hand of the figure are the Simulation and Utiliti es modules, which are not normally

modified by users. They contain various utiliti es, including an implementation of the Lewis-

Payne random generator [17] (that is the best pseudo-random number generator currently

available, thanks to its huge period), the implementation of several types of random distribu-

tion laws, and the simulation engine proper. On the right hand side stands the Events module,

which can be modified. It deals with the definition of the system’s resources, clients, and



DESP-C++ , A Discrete-Event Simulation Package for C++ 10/28

simulation events. The arrows figure how the three modules make use of each other’s meth-

ods. *c.h  files contain class definitions and *m.h  contain methods code. Other files contain

utili ty functions.

S I M U L A T I O N

s imulc .h
s imu lm.h

E V E N T S

eventc .h
eventm.h

UTIL IT IES

lewis.h
s imut i l .h

F
ix

ed
 m

od
ul

es

E
di

ta
bl

e 
m

od
ul

e

Figure 3: DESP-C++ modules

The simulation kernel itself is very simple. Its full C++ code is presented in Figure 4 as

an ill ustration. Basically, it functions as follows:

1. global statistics are initialized;

2. for each replication:

2.1. statistics concerning the current replication are initialized,

2.2. as long as the replication is not over, events are supplied by the Scheduler and exe-

cuted by the EventManager (of course, events themselves do schedule other events

so that the whole process iterates),

2.3. statistics concerning the current replication are computed,

2.4. all the Client objects remaining in the system are destroyed so that the next replica-

tion is not biased;

3. global statistics are computed and displayed.
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// CLASS Simulation: Simulation Execution

void Simulation::Run(int nreplic) {

  int i, nextevent;
  Client *client;

  // Global initialization
  eventmanager->Init();

  // Replications loop
  for (i=1; i<=nreplic; i++) {

    // Replication initialization
    tnow=tstart;
    eventmanager->InitRep();
    client=NewClient();
    eventmanager->ExecuteEvent(0,client); // First event scheduled

    // Simulation engine
    while ((tnow<tmax) && (!scheduler->IsEmpty())) {
      nextevent=scheduler->GetEventCode();
      tnow=scheduler->GetEventDate();
      client=scheduler->GetClient();
      scheduler->DestroyEvent();
      eventmanager->ExecuteEvent(nextevent,client);
    }

    // Replication statistics computation
    eventmanager->Stats();

    // Destruction of clients still remaining in the system
    PurgeClientList();
  }

// Global results
  eventmanager->DisplayStats();
}

Figure 4: Simulation kernel code

4. DESP-C++ usage

We strongly recommend the use of a modelli ng methodology like those presented in [2,

10, 15] in order to produce correct simulation models, before any attempt to write a simula-

tion program. Specialists in modelli ng and simulation at Blaise Pascal University customarily

employ such a methodology, especially to model complex systems. Following a modelli ng

methodology allows an easy and non-ambiguous specification of a given system‘s structure

and behavior. It constitutes a guide all along the modelli ng process, in order to generate the

most reliable models. A good use of such a modelli ng methodology, rather than an empirical

analysis approach, induces important gains in terms of analysis time.
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Yet, once this modelli ng step is performed, translating a model in C++ is easy. Coding a

discrete-event simulation model with DESP-C++ is mostly achieved by filli ng the Events

module from Figure 3, i.e., specifying the system’s resources, and simulation events. This is

done through three steps.

1. Editing the eventc.h  file (see full code in Appendix):

• All active resources must be defined as classes inheriting from the Resource class

(Figure 5). An active resource must “know” all the passive resources it uses (li ke the

resource named Passive in Figure 5) and all the other active resources it can direct

clients to.

// Sample active resource

class Sample_AR: public Resource {
  public:
    // Constructor
    Sample_AR(char name[STRS], int capacity, Simulation *sim, Resource *passive);
    // Events for resource Sample_AR
    void AR_Event0(Client *client);
    void AR_Event1(Client *client);
    void AR_Event2(Client *client);
    void AR_Event3(Client *client);
  private:
    Resource *Passive;
};

Figure 5: Sample active resource definition

• Pointers toward all active and passive resources must be declared as attributes of the

EventManager class (Figure 6).

class EventManager {
  // Public methods (skipped)
  private:
    // Attributes
    Simulation *simul; // Pointer to Simulation object
    // Passive resources
    Resource *sample_pr;
    // Active resources
    Sample_AR *sample_ar;
};

Figure 6: Resources declaration in class EventManager
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• If needed, new attributes may be added to the Client class (Figure 7).

class Client {
  public :
    // Usual attributes
    Client *next;
    Client *previous;
    // Supplementary attribute
    float operating_time;
};

Figure 7: Supplementary att r ibutes definition in class Client

2. Editing the eventm.h  file (see full code in Appendix):

• In class EventManager’s constructor and destructor, respectively instantiate or de-

stroy all active and passive resources (Figure 8).

// CLASS EventManager : Constructor

EventManager::EventManager(Simulation *sim) {
  simul=sim;
  // Passive resources instantiation
  sample_pr=new Resource("PR",2,simul);
  // Active resources instantiation
  sample_ar=new Sample_AR("AR",1,simul,sample_pr);
}

// CLASS EventManager : Destructor

EventManager::~EventManager() {
  // Passive resources destruction
  delete sample_pr;
  // Active resources destruction
  delete sample_ar;
}

Figure 8: Instantiation and destruction of the resources

• In class EventManager, and method ExecuteEvent(), for each active resource and

each event, add a line aimed at firing the event (Figure 9).

// CLASS EventManager : Events execution

void EventManager::ExecuteEvent(int code, Client *client) {
  switch(code) {
  case 0: sample_ar->AR_Event0(client);break; // Initial event MANDATORY!!
  case 1: sample_ar->AR_Event1(client);break;
  case 2: sample_ar->AR_Event2(client);break;
  case 3: sample_ar->AR_Event3(client);break;
  default: printf("Error: unknown event #%d at time %f\n",code,simul->Tnow());
  }
}

Figure 9: Events tr iggering in method ExecuteEvent
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• Take all active and passive resources into account in the other methods of class

EventManager. An example is given for method Init() in Figure 10.

void EventManager::Init() {
  // Passive resources
  sample_pr->ResetStats();
  // Active resources
  sample_ar->ResetStats();
}

Figure 10: Resources’ statistics initialization

• Each active resource’s constructor must be specified if it differs from the standard

Resource constructor. Each event fired by the active resource must also be coded as a

method (Figure 11).

// CLASS Sample_AR : Constructor

Sample_AR::Sample_AR(char name[STRS], int capacity, Simulation *sim, Resource
*passive):Resource(name, capacity, sim) {Passive=passive;}

// CLASS Sample_AR : Event #0, active resource reservation

void Sample_AR::Event0(Client *client) {
  this->P(1,client,1); // next event: #1, priority in queue: 1 }

// CLASS Sample_AR : Event #1, passive resource reservation

void Sample_AR::Event1(Client *client) {
  Resource->P(2,client,1); // next event: #2, priority in queue: 1 }

// CLASS Sample_AR : Event #2, perform operation

void Sample_AR::Event2(Client *client) {
  Sim()->Sched()->Schedule(3,Sim()->Tnow()+client->operating_time,client);
  // next event: #3, scheduled after time operating_time
}

// CLASS Sample_AR : Event #3, resources release

void Sample_AR::Event3(Client *client) {
  Resource->V();
  this->V();
  Sim()->Sched()->Schedule(0,Sim()->Tnow(),client);
  // reiterates the process now (event #0)
}

Figure 11: Sample active resource methods

3. Writing a main program: this is the easy part. You just need to include the DESP-C++

modules, create a Simulation object and execute its Run() method. An example is provided in

Figure 12.
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// Sample usage program for DESP-C++

#include "simutil.h"
#include "simulc.h"
#include "eventc.h"
#include "simulm.h"
#include "eventm.h"

void main() {
  Simulation *sim = new Simulation(START_TIME, END_TIME, RANDOM_SEED);
  sim->Run(NUMBER_OF_REPLICATIONS);
}

Figure 12: Sample simulation main program

5. Validation exper iments

Being able to perform simulation is one thing, but obtaining reliable results is another. To

achieve this, two conditions are mandatory:

• simulation models must be valid, i.e., they must conform to the real system they model;

• the simulator must be valid too, i.e., there must be no bug altering the results.

In order to prove that our simulation engine is adequately bug-free, we decided to imple-

ment the same models with QNAP2 and DESP-C++. Since QNAP2 is a valid tool, concordant

results should valid DESP-C++ (it would actually be “QNAP2-valid” ).

Though DESP-C++ is a simple tool, it is not always easy to detect and locate errors in

simulation. Hence, we tried to use testing cases that are different in terms of behavior and

complexity. We started with a simple, classical flow shop model, then a littl e more complex

model in terms of resource usage: the dining philosophers, and we eventually compared

simulation results for a much more complex model: VOODB. All simulation experiments

were performed on an IBM RISC 6000 workstation with 256 MB of RAM, under AIX ver-

sion 4. Note that our aim here is not to validate these three simulation models, but to show

that our simulation engine provides unbiased results.
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Simple model: Flow shop

Our first model concerns the flow shop production system that is presented in Figure 13.

Products undergo some operations in Machine #1 for a time depending on a random expo-

nential law (average: 10 minutes). Then, the products are transported by a mobile robot into a

buffer stock ahead of Machine #2. Transport time depends on a random uniform law (values

ranging from 4 to 6 minutes). The products then undergo other operations in Machine #2, for

a time depending on a random exponential law (average: 12 minutes). Eventually, the prod-

ucts are transported outside the system by the mobile robot. Transport time still depends on a

random uniform law (values ranging from 4 to 6 minutes).

Mach ine  #1
(source)

Mach ine  #2 O U T

Robot
M 1 - M 2  a n d

M2-OUT t ranspor t

EXP(10 ) EXP(12)

UNI (4 ,6 )

Figure 13: The flow shop simple example

This production system is very simple. Figure 14 though ill ustrates the application of a

modelli ng methodology in order to build a model of this system. This UML Activity Diagram

shows the transformation process undergone by the clients (products) using the active re-

sources (Machine #1 and Machine #2, which constitute the swimlanes in the Activity Dia-

gram). The passive resources do not appear on Figure 14, but they must also be indicated,

since they will be part of the simulation program code. Here, the system has only one passive

resource: the robot transporting the products.
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Mach ine  #1 Raw mater ia l Opera t ion  #1

Semi- f in i te
produc t

[Transpor ta t ion]

Opera t ion  #2Mach ine  #2 Fin i te  product [Transpor ta t ion]

O U T

Figure 14: Flow shop model

To evaluate the results’ conformity, we compared response time and the number of cli-

ents served by each resource, as computed by QNAP2 and DESP-C++. We also varied the

number of replications from 1,000 to 15,000. The mean results obtained show that DESP-C++

provides the same results than QNAP2 (Table 1).

QNAP2 DESP-C++ Ratio
Machine #1: Mean response time (min) 12.64 12.65 0.99
Machine #1: Average number of clients served 790.2 791.4 0.99
Machine #2: Mean response time (min) 14.73 14.79 0.99
Machine #2: Average number of clients served 673.6 672.5 1.00
Robot: Mean response time (min) 4.99 5.00 0.99
Robot: Average number of clients served 1463.0 1463.8 0.99

Table 1: DESP-C++ / QNAP2 simulation output compar ison (flow shop)

In addition, we measured execution time for both models, in order to check whether the

increase in performance with DESP-C++ was suff icient. On an average, DESP-C++ runs

about 9 times faster than QNAP2 (Figure 15).
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This constituted a first, very encouraging validation for DESP-C++. However, we de-

cided to check if the results were still as good with more elaborate models.

Medium model: Dining philosophers

To pursue our validation process, we then considered the classical dining philosophers’

problem (Figure 16). Four philosophers who do nothing but eat (for a time depending on a

random exponential law, average: 5 minutes) and think (for a time depending on a random

exponential law, average: 2 minutes) are seated at a table. Between each pair of philosophers

is a single fork. A philosopher needs to have two forks to eat. A model for the philosopher’s

problem is presented in Figure 17 as a UML Activity Diagram. It describes each philoso-

pher’s behavior. Philosophers constitute the system’s active resources, and forks are the pas-

sive resources.

Figure 16: The Dining Philosophers

We again compared response time and the number of clients served by each resource, as

computed by QNAP2 and DESP-C++, while still also varying the number of replications from

1,000 to 15,000. The mean results obtained show that DESP-C++ provides once more the

same results than QNAP2 (Table 2).
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Both forks are f ree

Eat

Th ink

Phi losopher  # i

Figure 17: Philosophers individual behavior

QNAP2 DESP-C++ Ratio
Philosophers: Mean response time (min) 3.61 3.64 0.99
Philosophers: Average number of clients served 30.93 31.16 0.99
Forks: Mean response time (min) 5.30 5.32 0.99
Forks: Average number of clients served 14.58 14.70 0.99

Table 2: DESP-C++ / QNAP2 simulation output compar ison (dining philosophers)

We also measured execution time for both models. On an average, DESP-C++ ran about

11 times faster than QNAP2 (Figure 18).
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Complex model: VOODB

VOODB is a generic simulation model that is aimed at evaluating the performances of

object-oriented database systems (OODBMSs), and more precisely, at evaluating the per-

formances of clustering algorithms within OODBMSs. VOODB is able to model the behavior

of various types of systems, especially different configurations of client-server systems.

Basically, VOODB simulates the execution of transactions within an OODB. Its work-

load model is constituted by the Object Clustering Benchmark (OCB) [7], which is a generic

benchmark able to model various kinds of object-oriented databases and applications using

these data. In these experiments, object bases of 50 classes and 20,000 instances was used,

with four different kinds of transactions accessing the database.

Transactions are generated by Users, who submit them to a Transaction Manager. The

Transaction Manager determines which objects need to be accessed for the current transac-

tion, and perform the necessary operations on these objects. A given object is requested by the

Transaction Manager to an Object Manager that finds out which disk page contains the ob-

ject. Then, it requests the page from a Buffering Manager that checks if the page is present in

the memory buffer. If not, it requests the page from an I/O Subsytem that deals with physical

disk accesses. After an operation on a given object is over, a Clustering Manager may update

some usage statistics for the database. An analysis of these statistics can trigger a reclustering,

which is then performed by the Clustering Manager. Such a database reorganization can also

be demanded externally by Users.

It would be too long to further describe VOODB here, but a good summary is what we

call the knowledge model [8] for VOODB. It is presented as a UML Activity Diagram in

Figure 19. This model is hierarchical and would normally be further detailed.
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The knowledge model swimlanes figure the system’s active resources. The objects

(square boxes) represent the clients running through the system. Eventually, the activities

(round boxes) correspond to decision rules that are invoked in the simulation events. The pas-

sive resources in VOODB do not appear here. They are the processor and main memory, the

disk controller and the secondary storage, and the database itself. The clients bear several at-

tributes, e.g., the current depth for a transaction, the OID of the next object to be accessed,

etc.

Our comparison between DESP-C++ and QNAP2 concerned the performances of the

Texas persistent object store [24] and the DSTC clustering technique [5]. Actually, we did not

include object clustering in our tests at first, to check out how everything worked out. We

compared the results of 100 replications. We did not vary the number of replications here

since simulations with QNAP2 were already quite lengthy.

Table 3 presents the performance results we obtained for a number of significant criteria.

Globally, we found the simulation results to be 97% homogeneous on an average. Computa-

tion time was about 85 times faster with DESP-C++ with this model (Table 5).

QNAP2 DESP-C++ Ratio
Mean number of transactions 249.4 250.1 0.99
Mean response time (s) 2.85 2.66 1.07
Mean number of objects accessed (per transaction) 64.4 61.5 1.04
Mean system throughput (transactions/s) 0.25 0.25 1.00
Mean number of I/Os 15335 15085 1.01
Mean number of disk pages used 2823 2731 1.03

Table 3: DESP-C++ / QNAP2 output compar ison (VOODB, no clustering)

The next step was to take the DSTC clustering strategy into account within our simula-

tion model, and then to simulate the behavior of the Texas persistent object store. We added

performance criteria relevant to clustering (Table 4), and still performed 100 replications. The

results are now 96% homogeneous on an average. This is suff icient four our needs, since

simulation results are to be considered as tendencies, rather than accurate values. With the
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added complexity of clustering, the C++ model even runs almost 900 times faster than the

QNAP2 model (Table 5).

QNAP2 DESP-C++ Ratio
Mean number of transactions 246.0 250.7 0.98
Mean response time (s) 67.3 61.1 1.10
Mean number of objects accessed (per transaction) 2.12 1.86 1.14
Mean clustering time (s) 0.1 0.1 1.00
Mean system throughput (transactions/s) 0.24 0.25 0.98
Mean number of I/Os (transactions) 13073 12261 1.06
Mean number of I/Os (clustering) 243 259 0.94
Mean number of disk pages used 3066 3045 1.00

Table 4: DESP-C++ / QNAP2 output compar ison (VOODB, clustering)

QNAP2 DESP-C++ Ratio
No clustering 6,000 min. 70 min. 85
Clustering 81,000 min. 92 min. 880

Table 5: DESP-C++ / QNAP2 execution time compar ison (VOODB)

6. Conclusion

We have presented in this paper an overview of the DESP-C++ discrete event random

simulation engine. We discussed its main functionaliti es and characteristics, explained how its

architecture was designed, and provided detailed usage instructions so that simulation models

can be coded relatively painlessly.

We also demonstrated our tool was a valid simulation engine by comparing it to QNAP2

in terms of output. Another strong motivation was to provide a fast and easy to use simulation

kernel, provided previous knowledge of the C++ language. The flexibil ity of DESP-C++ has

been ill ustrated by our validation process, which lead us to design three simulation models

that are quite different from one another: a production system, a classical deadlock problem,

and an object-oriented database management system.

Yet, there is still much room for improvement in DESP-C++. The statistical tools we

provide by default (basically, replications and computation of mean values and confidence
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intervals) are very simple. More elaborate methods, li ke the regeneration or spectral methods,

could achieve more reliable confidence intervals.

The mere C++ conception should also be enhanced, so that it becomes more transparent

to users. A module reorganization, or an implementation as a library, can be envisaged. A

proper graphical interface could also greatly ease the use of our package.

Eventually, some portions of code can be optimized so that simulations run even faster

and data structures are more robust. This was not an urge for us, but it could prove very use-

ful. For instance, the Scheduler and Resource classes currently use basic data structures for

their queues (bi-directional li nked lists). More effective data structures could be used instead,

like those from the LEDA [19] or STL [25] C++ libraries. STL (Standard Template Library)

is indeed a standard C++ library since 1998 [14].

To conclude this paper, we would recommend our simulation package to people having

notions of modelli ng and simulation, knowing the C++ language, and unwilli ng to learn a new

language dedicated to simulation. DESP-C++ is a fair solution when one needs to rapidly and

simply code a simulation model, for free.
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Appendix: DESP-C++ eventc.h and eventm.h editable files

//
// DESP-C++ (C++ discrete-event simulation package)
// Version 1.1, February 1998
// Jerome Darmont
// LIMOS, Blaise Pascal University (Clermont-Ferrand II), France
//
// eventc.h : Definition of the Event Manager’s classes
// Varies with the simulated system
//

// Active resources declaration
// Ex. class AR;

//
// CLASS EventManager
//
// Simulation events management
//

// The event manager must know all the (passive and active) resources

class EventManager {

  public:

    // Methods

    EventManager(Simulation *sim);      // Constructor
    ~EventManager();                    // Destructor
    void ExecuteEvent(int code, Client *client); // Event execution
    void Init();                        // Initialization
    void InitRep();                     // Replication initialization
    void Stats();                       // Stats computation (end of replication)
    void DisplayStats();                // Statistics final computation & display

  private:

    // Attributes

    Simulation *simul;                  // Pointer to Simulation object

    // Passive resources
    // Ex. Resource *pr;

    // Active resources
    // Ex. AR *ar;

};

//
// CLASS Client
//
// Custom simulation entity
//

class Client {

  public :
           // Add here eventual supplementary attributes
           Client *next;
           Client *previous;
};

//
// CLASS AR
//
// Sample active resource
//
// Active resources must know all the passive resources they use and
// the “next” active resources (pointers)
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//class AR: public Resource {

//  public:

//    Constructor

//    AR(char name[STRS], int capacity, Simulation *sim);

//    Events

//    void Event0(Client *client);
//    void Event1(Client *client);

//};

//
// DESP-C++ (C++ discrete-event simulation package)
// Version 1.1 g++, February 1998
// Jerome Darmont
// LIMOS, Blaise Pascal University (Clermont-Ferrand II), France
//
// eventc.h : Definition of the Event Manager methods
// Varies with the simulated system
//

//
// CLASS EventManager
//

// CLASS EventManager : Constructor

EventManager::EventManager(Simulation *sim) {

  simul=sim;

  // Passive resources instantiation
  // Ex. pr=new Resource("PR",2,simul);

  // Active resources instantiation
  // Ex. ar=new AR("AR",1,simul);
}

// CLASS EventManager : Destructor

EventManager::~EventManager() {

  // Passive resources destruction
  // Ex. delete pr;

  // Active resources destruction
  // Ex. delete ar;
}

// CLASS EventManager : Events execution

void EventManager::ExecuteEvent(int code, Client *client) {

  switch(code) {

  //case 0:  ar->Event10(client);break; // Initial event MANDATORY!!

  // Sample events

  //case 10: ar->Event10(client);break;
  //case 11: ar->Event11(client);break;

  default: printf("Error: unknown event #%d at time %f\n",code,simul->Tnow());
  }
}

// CLASS EventManager : Statistics initialization for each resource

void EventManager::Init() {

  // Passive resources
  //pr->ResetStats();
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  // Active resources
  //ar->ResetStats();
}

// CLASS EventManager : Replication initialization

void EventManager::InitRep() {

  // Scheduler
  simul->Sched()->Purge();
  // Passive resources
  //pr->ResetCounters();
  //pr->PurgeQueue();
  // Active resources
  //ar->ResetCounters();
  //ar->PurgeQueue();
}

// CLASS EventManager : Statistics computation for each resource

void EventManager::Stats() {

  // Passive resources
  //pr->Stats();
  // Active resources
  //ar->Stats();
}
// CLASS EventManager : Statistics display for each resource

void EventManager::DisplayStats() {

  printf("\n*** SIMULATION STATISTICS ***\n\n");
  printf("\n*** PASSIVE RESOURCES\n");
//  pr->DisplayStats();
  printf("\n*** ACTIVE RESOURCES\n");
//  ar->DisplayStats();
}

//
// CLASS AR
//

// CLASS AR : Constructor

// AR::AR(char name[STRS], int capacity, Simulation *sim):
//   Resource(name, capacity, sim) {
// }

// CLASS AR : Event #0

// void AR::Event0(Client *client) {
//   code for event #0
// }

// ...


