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The need to evaluate the performances of Object-Ori-
ented Database Management Systems (OODBMSs) is impor-
tant both to designers and users. Performance evaluation is
useful to designers to determine elements of architecture,
choose between caching strategies, and select Object Identi-
fier (OID) type, among others. It helps them validate or refute
hypotheses regarding the actual behavior of an OODBMS.
Thus, performance evaluation is an essential component in
the development process of efficient and well-designed ob-
ject stores. Users may also employ performance evaluation,
either to compare the efficiency of different technologies
before selecting an OODBMS or to tune a system.

The work presented in this paper was initially motivated
by the evaluation of object clustering techniques. The ben-
efits induced by such techniques on global performances are
widely acknowledged and numerous clustering strategies
have been proposed. As far as we know, there is no generic
approach allowing for their comparison. This problem is inter-
esting for both designers (to set up the corresponding
functionalities in the system kernel) and users (for perfor-
mance tuning).

There are different approaches used to evaluate the
performances of a given system: experimentation, simulation,
and mathematical analysis. This paper focuses only on the
first two approaches. Mathematical analysis is not consid-
ered because it invariably uses strong simplification hypoth-
eses (Benzaken, 1990; Gardarin et al., 1995) and its results may
well differ from reality.

Experimentation on the real system is the most natu-
ral approach and a priori the simplest to complete. However,

the studied system must have been acquired, installed, and
have a real database implanted in it. This database must also
be significant of future exploitation of the system. Total
investment and exploitation costs may be quite high, which
can be drawbacks when selecting a product.

Simulation is casually used in substitution or as a
complement to experimentation. It does not necessitate in-
stalling nor acquiring the real system. It can even be per-
formed on a system still in development (a priori evaluation).
The execution of a simulation program is generally much
faster than experimentation. Investment and exploitation costs
are very low. However, this approach necessitates the design
of a functioning model for the studied system. The reliability
of results directly depends on the quality and the validity of
this model. Thus, the main difficulty is to elaborate and
validate the model. A modelling methodology can help and
secure these tasks.

Experimentation and simulation both necessitate a
workload model (database and operations to run on this
database) and a set of performance metrics. These elements
are traditionally provided by benchmarks. Though interest for
benchmarks is well recognized for experimentation, simula-
tion approaches usually use workloads that are dedicated to
a given study, rather than workloads suited to performance
comparisons. We believe that benchmarking techniques can
also be useful in simulation. Benchmarking can help validate
a simulation model as compared to experimental results or
support a mixed approach in which some performance criteria
necessitating precision are measured by experimentation and
other criteria that does not necessitate precision are evalu-
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2
 OODB and another one within the Texas persistent object store. The

performances of a specific clustering policy called DSTC (Dynamic, Statistical, Tunable Clustering) have also been
evaluated with OCB.
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ated by simulation.
There is no standard benchmark for OODBs, even if the

more popular benchmarks, OO1, HyperModel, and OO7 are de
facto standards. These benchmarks are aimed at engineering
applications (Computer Aided Design, Manufacturing, or
Software Engineering). These general-purpose benchmarks
feature quite simple databases and are not well suited to the
study of clustering, which is very data-dependent. Many
benchmarks have been developed to study particular do-
mains. A fair number of them are more or less based on OO1,
HyperModel, or OO7.

In order to evaluate the performances of clustering
algorithms within OODBs, we designed our own benchmark:
OCB (Darmont et al., 1998). It originally had a generic object
base and was clustering-oriented through its workload. It
actually appeared afterwards that OCB could become more
general, provided the focused workload was extended, as
described in this paper.

The objective of this paper is to present full specifica-
tions for a new version of OCB. More precisely, we address
the following points: the generalization of the OCB workload
so that the benchmark becomes fully generic, a comparison of
OCB to the main existing benchmarks, and a full set of experi-
ments performed to definitely validate OCB. These perfor-
mance tests were performed on the O

2
 OODB (Deux, 1991), the

Texas persistent object store (Singhal et al., 1992), and the
DSTC clustering technique (Bullat & Schneider, 1996). The
results obtained are discussed in this paper.

We are aware of the legal difficulties pointed out by
Carey et al. (1993) and Carey et al. (1994). Indeed, OODBMS
vendors are sometimes reluctant to see benchmark results
published. The objective of our effort is rather to help soft-
ware designers or users evaluate the adequacy of their prod-
uct in a particular environment. OCB should also prove useful
at least for researchers, to benchmark OODB prototypes and/
or evaluate implementation techniques.

The remainder of this paper is organized as follows. The
de facto standards in object-oriented benchmarking are briefly
presented (OO1, HyperModel, and OO7; as well as the Justitia
benchmark, which is interesting due to its multi-user ap-
proach). Next, our proposed benchmark, OCB, is described
and compared to the other benchmarks. Experiments per-
formed to validate our benchmark are also presented. We
conclude the paper with future research directions.

RELATED WORK

The OO1 Benchmark
OO1, also referred to as the “Cattell Benchmark” (Cattell,

1991), was developed early in the 1990’s when there was no
appropriate benchmark for engineering applications. OO1 is a
simple benchmark that is very easy to implement. It was used
to test a broad range of systems including object-oriented

DBMS, relational DBMS, and other systems such as Sun’s
INDEX (B-tree based) system. The visibility and simplicity of
OO1 provide a standard for OODB benchmarking. A major
drawback of this tool is that its data model is too elementary
to measure the elaborate traversals that are common in many
types of object-oriented applications, including engineering
applications. Furthermore, OO1 only supports simple naviga-
tional and update tasks and has a limited notion of complex
objects (only one composite hierarchy).

The HyperModel Benchmark
The HyperModel Benchmark (Anderson et al., 1990),

also referred to as the Tektronix Benchmark, is recognized for
the richness of the tests it proposes. HyperModel possesses
both a richer schema and a wider extent of operations than
OO1. This renders it potentially more effective than OO1 in
measuring the performances of engineering databases. How-
ever, this added complexity also makes HyperModel harder to
implement, especially since its specifications are not as com-
plete as OO1’s. The presence of complex objects in the
HyperModel Benchmark is limited to a composition hierarchy
and two inheritance links. The scalability of HyperModel is
also not clearly expressed in the literature, whereas other
benchmarks explicitly support different and well identified
database sizes.

The OO7 Benchmark
OO7 (Carey et al., 1993) is a more recent benchmark than

OO1 and HyperModel. It reuses their structures to propose a
more complete benchmark and to simulate various transac-
tions running on a diversified database. It has also been
designed to be more generic than its predecessors and to
correct their weaknesses in terms of object complexity and
associative accesses. This is achieved with a rich schema and
a comprehensive set of operations.

However, if OO7 is a good benchmark for engineering
applications, it is not the case for other types of applications
such as financial, telecommunication, and multimedia applica-
tions (Tiwary et al., 1995). Since its schema is static, it cannot
be adapted to other purposes. Eventually, the database struc-
ture and operations of OO7 are nontrivial. Hence, the bench-
mark is quite difficult to understand, adapt, or even implement.
Yet, to be fair, OO7 implementations are available by anony-
mous FTP1.

The Justitia Benchmark
Justitia (Schreiber, 1994) has been designed to address

the shortcomings of existing benchmarks regarding multi-
user functionality, which is important in evaluating client-
server environments. Justitia is also aimed at testing OODB
capacity in reorganizing its database.

Because Justitia’s published specifications lack preci-
sion, the author’s work cannot be easily reused. Furthermore,
taking multiple users into account renders the benchmark
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quite complex. Justitia is fairly tunable and supposed to be
generic, but it still uses structures that are typical of engineer-
ing applications. Its database schema is more limited than
those of HyperModel or OO7. Though the object types are
diverse, inter-class relationships are very few. The inherit-
ance graph is substantial, but other types of references are
limited to composition.

THE OBJECT CLUSTERING BENCHMARK

Originally, the purpose of OCB was to test the perfor-
mances of clustering algorithms within object-oriented sys-
tems. OCB is structured around a rich object base including
many different classes  and numerous types of references
allowing the design of multiple interleaved hierarchies. This
database is wholly generic. The OCB workload, once cluster-
ing-oriented, has been extended with relevant, significant,
and reproducible transactions. Thus, the workload became
fully generic.

The flexibility of OCB is achieved through an extensive
set of parameters. Many different kinds of object bases can be
modeled with OCB as well as many different kinds of applica-
tions running on these databases. This is an important feature
since there exists no canonical OODB application. OCB can
indeed be easily parameterized to model a generic application
or dedicated to a given type of object base and/or application.
OCB is also readily scalable in terms of size and complexity
resulting in a wide range of object bases. Usage time can be
set up as well to be rather short or more extensive. Moreover,
OCB’s parameters are easy to set up.

OCB’s code is very compact and easily implemented on
any platform. OCB is currently implemented in C++ to bench-
mark O

2
 and Texas. Both versions are freely available2. The

C++ code is less than 1,500 lines long. OCB has also been
ported into QNAP2 and C++ simulation models. QNAP2 is a
simulation software that supports a non object-oriented lan-
guage close to Pascal. The QNAP2 code dealing with OCB is
shorter than 1,000 lines.

The next version of OCB, which is currently in develop-
ment, shall support multiple users viewed as processes in a
very simple way to test the efficiency of concurrency control.
As far as we know, Justitia is the only benchmark to have
actually addressed this problem, though OO7 also has a multi-
user version in development. OO1 was designed as multi-
user, but the published results only involve a single user. One
of our research objectives is to provide clear specifications for
our benchmark so that others can readily implement it and
provide feedback to improve it.

OCB Database
The OCB database is highly generic because it is rich,

simple to achieve, and very tunable. It is made of a predefined
number of classes (NC) derived from the same metaclass

(Figure 1). A class has a unique logical identifier, Class_ID,
and is defined by two parameters: MAXNREF, the maximum
number of references in the class’ instances; and BASESIZE,
an increment size used to compute the InstanceSize after the
inheritance graph is processed at database generation time.
On Figure 1, note that the UML « bind » clause indicates that
classes are instantiated from the metaclass using the param-
eters between brackets.

Since different references can point to the same class, 0-
N, 1-N, and M-N links are implicitly modeled. Each of these
CRef references has a type: TRef. There are NTREF different
types of references. A reference type can be, for instance, a
type of inheritance, aggregation, or user association. Eventu-
ally, an Iterator is maintained within each class to save
references toward all its instances.

Objects in the database (instances of class OBJECT)
are characterized by a unique logical identifier OID and by
their class through the ClassPtr pointer. Each object pos-
sesses ATTRANGE integer attributes that may be read and
updated by transactions. A string of size InstanceSize, the
Filler, simulates the actual size the object should occupy on
disk.

After instantiating the database schema, an object O of
class C points through the ORef references to at most
MAXNREF objects. These objects are selected from the iterator
of the class referenced by C through the corresponding CRef
reference. For each direct reference identified by an ORef link
from an object o

i
 toward an object o

j
, there is also a backward

reference (BackRef) from o
j
 to o

i
.

The database generation proceeds through three pri-
mary steps.

1) Instantiation of the CLASS metaclass into NC classes:
creation of the classes without any reference, then selection
of the classes referenced by each class. The type of the
references (TRef) can either follow the DIST1 random distribu-
tion or be set up a priori. The referenced classes belong to the
[Class_ID – CLOCREF, Class_ID + CLOCREF] interval that
models a certain locality of reference, as introduced by OO1,
but at the class level. The class reference selection can either
follow the DIST2 random distribution or be set up a priori.
NIL references are possible.

2) Database consistency check-up: suppression of all
the cycles and discrepancies within the graphs that do not
allow them, e.g., inheritance graphs or composition hierar-
chies.

3) Instantiation of the NC classes into NO objects:
creation of the objects, without any reference — their class
follows the DIST3 random distribution, then random selection
of the objects referenced by each object. The referenced
objects belong to the [OID – OLOCREF, OID + OLOCREF]
interval that models a certain locality of reference at the
instance level. The random selection of object references
follows the DIST4 random distribution. Reverse references
(BackRef) are instantiated when the direct links are instanti-
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ated.
The random numbers are generated by the Lewis-Payne

random generator (Lewis & Payne, 1973), which is one of the
best pseudorandom number generators currently available.
The database parameters are summarized in Table 1.

OCB Workload

The core of the workload is organized around several
transactions, the traversals, which are able to explore the
effects of clustering. Several operations that do not benefit

from any clustering effort have been re-introduced, e.g., cre-
ation and update operations. A full description of the
benchmark’s operations follows.

• Random Access: Access to NRND objects following
the DIST5 random distribution.

• Sequential Scan: Browse the instances of a class
following the DIST6 random distribution (Simple Scan). A
Range Lookup additionally tests the value of NTEST at-
tributes in each instance.

• Traversals: Traversal operations are divided into

Instances

O B J E C T

OID: Integer
Filler:  Array [1..ClassPtr.InstanceSize] of Byte
Attr ibute:  Array [1. .ATTRANGE] of  Integer

Class_ID: Integer
TRef :  Array  [1 . .MAXNREF]  of  TypeRef
Iterator:  Array [0. .*] of Reference to OBJECT
InstanceSize: Integer

C L A S S  # 1

«bind»
< M A X N R E F 1, B A S E S I Z E 1>

C L A S S  # 2

«bind»
< M A X N R E F 2, B A S E S I Z E 2>

C L A S S  # N C

«bind»
< M A X N R E F N C , B A S E S I Z E N C >

S c h e m a

C L A S S

MAXNREF:  In teger
BASESIZE: Integer

ClassPtr

1

CRef

1 . . M A X N R E F

ORef

1 . .C la s sP t r .MAXNREF

BackRef

0..*

Figure 1: OCB database schema (UML Static Structure Diagram)

Parameter name Parameter Default value
NC Number of classes in the database 50
MAXNREF (i) Maximum number of references, per class 10
BASESIZE (i) Instances base size, per class 50 bytes
NO Total number of objects 20,000
NREFT Number of reference types (inheritance, aggregation, etc.) 4
ATTRANGE Number of integer attributes in an object 1
CLOCREF Class locality of reference NC
OLOCREF Object locality of reference NO
MAXRETRY Maximum number of retries when linking objects 3
DIST1 Reference types random distribution Uniform
DIST2 Class references random distribution Uniform
DIST3 Objects in classes random distribution Uniform
DIST4 Objects references random distribution Uniform

Table 1: OCB database parameters
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two types: Set-Oriented Accesses (or Associative Accesses)
and Navigational Accesses, which have been empirically
found by Mc Iver (1994) to match breadth-first and depth-first
traversals; respectively. Navigational Accesses are further
divided into Simple, depth-first traversals, Hierarchy Tra-
versals that always follow the same type of reference, and
finally Stochastic Traversals that randomly select the next
link to cross. Stochastic traversals effectively simulate the
access patterns caused by real queries, according to Tsangaris
& Naughton (1992). An object bears at most MAXNREF
references numbered from 1 to MAXNREF. At each step of a
stochastic traversal, the probability to follow reference num-
ber N (N ∈  [1, MAXNREF]) is p(N) = 1/2N. Each type of
traversal proceeds from a root object following the DIST7
random distribution and up to a predefined depth depending
on the traversal type. All these transactions can be reversed
to follow the links backward, “ascending” the graphs.

• Update: Update operations are also subdivided into
different types. Schema Evolutions deal with individual inser-
tion and deletion of Class objects. The class to be deleted
follows the DIST8 random distribution. Database Evolutions
deal with individual insertion and deletion of objects. The
object to be deleted follows the DIST9 random distribution.
Eventually, Attribute Updates allow attribute changes, either
of random accessed objects (Random Update of NUPDT
objects following the DISTA random distribution) or of in-

stances of a class following the DISTB random distribution
(Sequential Update).

The execution of transactions by each client (the bench-
mark is to be multi-user) is organized according to the follow-
ing protocol:

1) cold run of COLDN transactions whose types are
determined randomly according to predefined probabilities.
The purpose of this step is to fill in the cache in order to
observe the real, stationary behavior of the clustering algo-
rithm implemented in the benchmarked system;

2) warm run of HOTN transactions.
A latency time THINK can be introduced between each

transaction run. Furthermore, the whole benchmark execution
may be replicated so that the same set of transactions is
executed on different randomly-generated object bases. This
feature allows the computation of mean values and confi-
dence intervals, which are typically more significant than a
single measurement. The OCB workload parameters are sum-
marized in Table 2.

The metrics measured by OCB are basically:
• database response time (global and per transaction type)

and throughput. In a client-server environment, times must
be measured on the client side with standard system primi-
tives like time() or getrusage() in C++. The replication of the
transactions compensates for the possible inaccuracy of
these functions. If the number of transactions is suffi-

Parameter(s) name(s) Parameter(s) Default value(s)
NRND Number of objects accessed in Random Accesses 50
NTEST Number of attributes tested in Range Lookups 1
SETDEPTH, SIMDEPTH,
HIEDEPTH, STODEPTH Depth: Set-oriented Access, Simple Traversal, 3, 3,

Hierarchy Traversal, Stochastic Traversal  5, 50
NUPDT Number of updated objects in Random Updates 50
DIST5,
DIST6, DIST7,
DIST8, DIST9,
DISTA, DISTB Random distribution law: Random Access objects,

Sequential Scan classes, Transaction root objects,
Schema Evolution classes, Database Evolution objects,
Random Update objects, Sequential Update classes  Uniform

PRND, PSCAN,
PRANGE, PSET, PSIMPLE,
PHIER, PSTOCH,
PCINSERT, PCDEL, POINSERT,
PODEL, PRNDUP, PSEQUP Occurrence probability: Random Access, Simple Scan, 0.1, 0.05,

Range Lookup, Set Access, Simple Traversal, 0.05, 0.2, 0.2,
Hierarchy Traversal, Stochastic Traversal, 0.2, 0.1, 0.005,
Class Insertion, Class Deletion, Object Insertion, 0.005, 0.02,
Object Deletion, Random Update, Sequential Update 0.02, 0.025, 0.025

COLDN Number of transactions executed during the cold run 1,000
HOTN Number of transactions executed during the warm run 10,000
THINK Average latency time between two transactions 0
CLIENTN Number of clients 1
RSEED Random generator seed Default seed

Table 2 : OCB workload parameters
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ciently large, the absence of such system functions can be
compensated by a manual timing, as it is specified for OO1;

• number of accessed objects (both globally and per trans-
action type). The computation of these usage statistics
must be included in the benchmark’s code;

• number of Input/Output (I/Os) performed. The I/Os neces-
sary to execute the transactions and the I/Os needed to
cluster the database (clustering overhead) must be distin-
guished. I/O usage can be obtained through the C++
getrusage() function or by statistics provided by the DBMS.
For instance, O

2
 provides such statistics.

Comparison of OCB to the Existing Benchmarks

Genericity of OCB
Since we intend to provide a generic benchmark, our

tool must be able to model various types of databases and
applications. In addition, it must also be able to imitate the
demeanor of previous object-oriented benchmarks. Schreiber
(1994) claims Justitia bestows this property provided the
benchmark is properly parameterized. However, he does not
provide any solid evidence to back up his claim.

We have shown that the OCB database is generic by
comparing it to the object bases from existing benchmarks
(Tables 3 and 4). In terms of workload, however, the demon-
stration of genericity is more difficult to achieve. OO7 espe-
cially offers a wide range of complex transactions. Some of
them have been discarded when designing OCB, because
they added complexity without providing much insight. Still,
the transactional behavior of OO1, HyperModel, and Justitia
can easily be imitated. Furthermore, some of OCB’s opera-
tions, if combined, can be equivalent to OO7’s complex opera-
tions.

Comparison with Gray’s Criteria
Gray (1993) defines four primary criteria concerning the

specification of a good benchmark:
1) relevance: it must concern aspects of performance

that appeal to the largest number of potential users;
2) portability: it must be reusable to test the perfor-

mances of different OODBs;
3) simplicity: it must be feasible and must not require

too many resources;
4) scalability: it must be able to be adapted to small or

large computer systems, or new architectures.

When designing OCB, we mainly intended to palliate
two shortcomings in existing benchmarks: their lack of
genericity and their inability to properly evaluate the perfor-
mances of object clustering techniques. To achieve this goal,
we designed a fully tunable benchmark, allowing it either to be
generic or to be specialized for a given purpose. The conse-
quences of this choice on Gray’s criteria are the following:

• relevance: as previously stated, all the transactions
from existing benchmarks have been included in OCB except
the most intricate operations from OO7;

• portability: OCB has been used to evaluate the
performances of the O

2
 and the Texas systems. Both these

implementations have been made in C++. OCB has also been
included in simulation models written in QNAP2 and a simu-
lation package called DESP-C++. OCB’s code is short and
simple in all these cases;

• simplicity: complete specifications for our bench-
mark are provided in this section in order to support under-
standability and ease of implementation;

OCB parameter OO1 HyperModel
NC 2 3
MAXNREF (i) Parts: 3 Connections: 2 5 (Parent/Children)

+ 5 (PartOf/Part)
+ NO (RefTo/RefFrom)
+ 1 (Specialization)

BASESIZE (i) Parts: 50 bytes Node: 20 bytes
Connections: 50 bytes TextNode: 1000 bytes

FormNode: 20008 bytes
NO 20000 parts + 60000 connections 3906 Nodes + 125 FormNodes

+ 15500 TextNodes
NREFT 3 4
CREFLOC N C N C
OREFLOC RefZone Level k+1 in the Parent/Children

hierarchy
DIST1 Constant (non random) Constant (non random)
DIST2 Constant (non random) Constant (non random)
DIST3 Constant (non random) Constant (non random)
DIST4 Uniform Uniform

Table 3: OCB tuning to imitate OO1 and HyperModel object bases
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OCB parameter OO7 Justitia
NC 10 6
MAXNREF (i) Design object: Database Entry: 0

0 Atomic part: 20 Node: 2
Connection: 18  CO: 3

Composite part: NumAtomicPerComp + 8  PO: PO_ATT_SIZE + 3
Document: 1

Manual: 1
Assembly: 2

Complex assembly: NumAssmPerAssm + 2
Base assembly: NumComPerAssm x 2 + 1

Module: ∑
=

elsNumAssmLev

i

iAssmNumAssmPer
0

BASESIZE (i) Design object: 18 bytes Database entry: 4 bytes
Atomic part: 12 bytes PO: 0
Connection: 14 bytes Node: 4 bytes

 Composite part: 0 CO: 0
Document: DocumentSize + 44 bytes   DO: DO_ATT_SIZE bytes

Manual: ManualSize + 48 bytes SO: SO_ATT_SIZE bytes
Assembly: 0

Complex assembly: 0
Base assembly: 0

Module : 0
NO NumModules modules SECTION . MAXWIDTH .

+ NumModules manuals MAXLEVEL

+ ∑
−

=

1

0

elsNumAssmLev

i

iAssmNumAssmPer  complex assemblies

+ NumPerAssmNumAssmLevels base assemblies
+ NumCompPerModule composite parts

+ NumCompPerModule documents
+ NumAtomicPerComp . NumCompPerModule atomic parts

+ NumAtomicPerComp . NumCompPerModule . Num
ConnPerAtomic connections

NREFT 12 3
CREFLOC NC NC
OREFLOC NO NO
DIST1 Constant (non random) Constant (non random)
DIST2 Constant (non random) Constant (non random)
DIST3 Constant (non random) Constant (non random)
DIST4 Constant + Uniform Constant (non random)

Table 5: Comparison of existing benchmarks to OCB

Table 4: OCB tuning to imitate OO7 and Justitia object bases

Relevance                         Portability                  Simplicity              Scalability
OO1 – – ++ ++ –
HyperModel + + – – –
OO7 ++ + – –
Justitia – – – + +
OCB ++ + + ++

Strong point : + Very strong point : ++Weak point : –Very weak point : – –
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• scalability: OCB is a very flexible benchmark due to an
extensive set of parameters. Its object base can take different
sizes and complexity levels and its various transactions can
model a fair number of applications.

The characteristics of the existing benchmarks and
OCB according to these criteria are summarized in Table 5.

VALIDATION EXPERIMENTS

We present in this section performance evaluations per-
formed with OCB on the O

2
 OODB, the Texas persistent object

store, and the DSTC clustering technique, which is implemented in
Texas. Our research objective did not include a comparison of the
performances of O

2
 and Texas. This would have been troublesome

since our versions of these systems did not run on the same platform.
Furthermore, O

2
 and Texas are quite different in their philosophy

and functionalities. O
2
 is a full OODB supporting concurrent and

secure accesses while Texas is positioned as an efficient persistent
store for C++. We only intended to show that OCB provided valid
performance evaluations.

Since we recommended the use of a complex object
base, the feasibility of our specifications has been checked by
measuring the database average generation time function of
the database size (number of classes and number of instances).
For schemas containing 10, 20, and 50 classes, the number of
instances NO was varied from 5,000 to 50,000. The actual database
size was also measured for all these configurations.

Next, the object base configuration was varied: number
of classes NC, number of instances NO, number of inter-
object references MAXNREF. Four database configurations were
obtained using NC values of 20 and 50, and MAXNREF values of 5
and 10. Then, the number of instances in the database was varied
from 500 to 20,000 for each configuration. The scope of this study
is limited raw performance results, i.e., the average response time and
the average number of I/Os necessary to execute the operations.

The efficiency of the DSTC clustering technique has been
assessed by measuring the performances achieved by Texas before
and after object clustering, on a medium and on a large database. The
medium database was OCB’s default object base: 50 classes, 20,000
instances, about 20 MB with Texas. Technical problems were
encountered with Texas/DSTC to cluster a large database. The
problem was circumvented by reducing the amount of available
memory so that the database size was actually big compared to the
size of the memory. To observe a significant gain in performances,
DSTC was placed in advantageous conditions by running very
characteristic transactions (hierarchy traversals and simple travers-
als from predefined root objects).

Note: All our experiments have been replicated 100 times so
that mean tendencies could be assessed.

Results for O
2

Material Conditions
The O

2
 server (version 5.0) was installed on an IBM RISC

6000 43P240 biprocessor workstation. Each processor was a Power
PC 604e 166. The workstation had 1 GB ECC RAM. The operating
system was AIX version 4. The O

2
 server cache size was 16 MB by

default.

Object Base Generation
Figure 2 displays the database generation time function of the

number of classes and the number of instances in the base. It shows
that generation time increased linearly when the schema was made of
10 or 20 classes. The increase was more accentuated with 50 classes,
because when the O

2
 client cache was full, which happened with the

biggest databases, an execution error occurred. To fix this problem,
the generation process has been marked out with commits. These
multiple commits ware more costly than a single validation at the end
of the generation process. The feasibility of OCB was also demon-
strated, since in the worst case generation time was less than one
hour. Moreover, a given object base could be saved and reused
multiple times so that the generation process could be avoided each
time.

Figure 3 shows how the size of the randomly generated
database linearly evolved with the number of classes and
instances. Hence, it was easy to foresee the final size of a database
when setting the NC and NO parameters. The default OCB database
(50 classes, 20,000 instances) had a mean size of 30 MB, which is
average for a benchmark. For instance, the large database in OO1 has
a size of 40 MB. However, we showed that larger databases are
possible.

Object Base Usage
In Figure 4, we plotted the mean number of I/Os globally

necessary to execute the transactions function of the number
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of instances in the object base (NO) for our four database configura-
tions. We did the same in Figure 5 for the mean response time.

We can see that the performances of O
2
 logically decreased in

the three following cases.
• NC increase — This was due to the structure of the OCB

schema. The more classes it contained, the deeper the
inheritance graph was. Since information is inherited at
each level from the upper level, leaf classes in the inherit-
ance graph have bigger instances than root classes. Hence,
a higher number of classes induced bigger object sizes, so
the database occupied more disk pages.

• MAXNREF increase — The number of objects accessed
by transactions that browsed all the references increased.

• NO increase — The database got bigger and objects were
distributed over more disk pages.

The evolution of our two performance criteria was quite
similar. This result was expected, since most treatments per-
formed by the system when running OCB deal with loading
objects from disk.

Results for Texas
Material Conditions

Texas version 0.5 was installed on a PC Pentium-II 266
with a 64 MB SDRAM. The host operating system was Linux
2.0.30. The swap partition size was 64 MB. Texas has been
compiled with the GNU C++ compiler version 2.7.2.1.

Object Base Generation
Figure 6 displays the average time for database genera-

tion function of the number of instances and the number of
classes in the database. It shows that generation time did not
increase linearly. However, the longest generation times were
approximately 10 minutes long, which was an acceptable rate.

Texas did not appear to have the same behavior than O
2

because average generation time was greater when the schema
contained few classes. This result can be attributed to two
phenomena.
• The graph consistency check for acyclic graphs was more

complex when the number of classes was low. In these
conditions, the interclass references were dispersed in a reduced
class interval and formed very dense graphs.

• When the database did not fit wholly into the main memory,

the system swapped, which was costly both in terms of I/Os and
time.

The actual size of the object bases generated with Texas
was always less than 60 MB, as shown in Figure 8, allowing
them to be stored in the 64 MB memory. Hence, the graph
consistency check was prevalent while in the case of O

2
, swap

was prevalent. This hypothesis has been checked with Texas
by reducing the available memory under Linux to 16 MB.
Figure 7 displays the results of these tests, which confirmed
our assumption.

Figure 8 eventually shows how the database real size evolved
with the number of instances and the number of classes in the
database. As happened with O

2
, this evolution was linear. The

average database size was about 20 MB with Texas. The object
bases generated with O

2
 were one third bigger due to the objects

storage format: Texas directly uses the memory format while O
2
 uses

the WiSS (Chou, 1985) record structures that are more elaborate.

Object Base Usage
In Figure 9, we plotted the mean number of I/Os globally

necessary to execute the transactions function of the number
of instances in the object base (NO), for our four database
configurations. We did the same in Figure 10 for the mean
response time.

In the case of Texas, the correlation between the mean number
of I/Os and the mean response time appeared tighter than for O

2
. O

2

indeed includes many more features than Texas (security, concurrency
control, and others) that add an overhead that is not directly linked
to disk accesses.
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Results for DSTC/Texas
The transactions selected for this series of experiments were

depth-3 hierarchy traversals and depth-2 simple traversals. The
depth of traversals was reduced regarding OCB’s default parameters
so that the generated clusters were not too big and the effects of
clustering were clear. Technical problems were also encountered
when the database size increased and DSTC attempted to build too
large clusters. The traversals have been performed from 100 pre-
defined root objects and each of them was executed 10 times.

Table 6 displays mean numbers of I/Os and response times
concerning database usage before and after clustering. Our results
showed that for both the transaction types used, the DSTC cluster-
ing technique allowed substantial increases in performances. The
gain factor was about 5 for a medium object base and about 30 for a
large one. We had the confirmation that the effects of clustering were
stronger when the database size was greater than the memory size.
Indeed, the smaller the database size, the more the system has to
perform page replacements. Unused pages do not normally remain
in memory for long.

Clustering overhead does not appear in the “large” base
column because the medium base was reused (both the initial and the
clustered configurations) with a reduced amount of memory. The

results obtained show that this overhead was very important both in
terms of time and I/Os. This is actually why techniques such as
DSTC are usually triggered when the database is idle. Furthermore,
reclustering the database is not a usual operation: a given object
clustering may be employed during several sessions before being
reconsidered. It is then important to determine the period after which
clustering becomes advantageous, i.e., the time after which the
induced overhead becomes lower than the achieved performance
increase.

CONCLUSIONS AND FUTURE RESEARCH

We have presented in this paper the full specifications for a
new object-oriented benchmark: OCB. Its main qualities are its
richness, its flexibility, and its compactness. OCB indeed offers an
object base whose complexity has never been achieved before in
object-oriented benchmarks. Furthermore, since this database and
likewise the transactions running on it are wholly tunable through a
collection of comprehensive but easily set parameters, OCB can be
used to model many kinds of object-oriented database applications.
Eventually, OCB’s code is short, reasonably easy to implement, and
easily portable.
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Medium base “Large” base
Hierarchy traversals Simple traversals Hierarchy traversals Simple traversals

Pre-clustering usage 1890.7 17.7 1837.4 15.7 12504.6 102.1 12068.1 103.1
Post-clustering usage 330.6 3.3 313.1 3.0 424.3 2.9 401.3 2.7
Gain factor 5.7 5.4 5.9 5.2 29.5 35.2 30.1 38.7
Clustering overhead 12799.6 125.8 12708.8 124.3

Table 6: Effect of DSTC on Texas’ performances (mean number of I/Os / mean response time, in ms)
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We have shown our benchmark was merely feasible by
measuring generation time for its random database. It appears that in
the worst case, an OCB object base is generated in less than one hour,
which is quite acceptable. Furthermore, the largest databases can be
saved for multiple uses.

We have also illustrated the genericity of our bench-
mark by showing how it could imitate both the schema and the
operations of four existing benchmarks. The flaws identified
in these previous benchmarks have been underlined and an
attempt was made to correct them. We eventually demon-
strated that OCB could be used as a general-purpose benchmark by
evaluating the performances of the O

2
 OODB and the Texas persis-

tent object store. We also showed it could serve as a more specialized
benchmark by testing the effects of the DSTC clustering method on
the performances of Texas.

Future work concerning this study chiefly concerns the
actual exploitation of OCB. We plan to benchmark several
different systems featuring clustering techniques or not, for the sake
of performance comparison or to determine if their configuration fits
a certain purpose. Other aspects of OODB performance could also
be tested, like buffering or indexing.

Future research about the OCB benchmark itself is mainly
divided into two axes. First, we only exposed the principles of a
multi-user version of our benchmark. The transition from the single-
user version toward an operational multi-user version is not imme-
diate and requires a particular care. The aim of this evolution is to
evaluate the efficiency of concurrency control and to see how
systems react when faced to a more important and heterogeneous
workload. Since OODBs normally operate in a concurrent environ-
ment, their performances cannot be gauged with a single-user bench-
mark.

Second, one very different aspect we did not consider
yet is the “qualitative” element that is important to take into
account when selecting an OODB. Atkinson, Birnie, Jackson,
and Philbrow (1992), Banerjee and Gardner (1995), Kempe,
Kowarschick, Kießling, Hitzelgerger, and Dutkowski (1995) all
insist on the fact that functionality is at least as important as
raw performances. Hence, criteria concerning these
functionalities should be worked out. Sheer performance
could be viewed as one of these criteria. Concerning optimi-
zation methods, we could, for instance, evaluate if a clustering
heuristic’s parameters are easy to apprehend and set up or if
the algorithm is easy to use or transparent to the user.

Eventually, another point that can be considered is the
adequacy of OCB to evaluate the performances of object-
relational systems. Our generic model can of course be imple-
mented with an object-relational system and most the opera-
tions are relevant for such a system. Thus, OCB can allow the
comparison of different logical or physical organizations (dis-
tribution of the objects into tables, implementation of associa-
tions by values or by pointers, distribution of tables into
tablespaces, index…). OCB can be considered as a candidate
benchmark for this type of systems, even if extensions are
needed to take into account additional aspects, regarding

Abstract Data Types, in particular.
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