Benchmarking OODBswith a

Generic Tool

JérdmeDar mont, Michel Schneider
Univer sitéBlaisePascal —Clermont-Ferrand ||

We present in this paper a generic object-oriented benchmark (OCB: the Object Clustering Benchmark) that has been
designedto eval uatethe performancesof Object-Oriented Databases(OODBSs), and morespecifically theperformances
of clustering policies within OODBs. OCB is generic because its sampl e database may be customized to fit any of the
databasesintroduced by themain existing benchmarks, e.g., OO1 (Object Operation 1) or OO7. Thefirst versionof OCB
was purposely clustering-oriented dueto aclustering-oriented workload, but OCB has been thoroughly extended to be
ableto suit other purposes. Eventually, OCB’ s code is compact and easily portable. OCB has been validated through
two implementations: one within the O, OODB and another one within the Texas persistent object store. The
performances of a specific clustering policy called DSTC (Dynamic, Statistical, Tunable Clustering) have also been

evaluatedwithOCB.

The need to evaluate the performances of Object-Ori-
ented Database M anagement Systems(OODBM Ss) i simpor-
tant both to designers and users. Performance evaluation is
useful to designers to determine elements of architecture,
choose between caching strategies, and select Object Identi-
fier (OID) type, anong others. It helpsthem validate or refute
hypotheses regarding the actual behavior of an OODBMS.
Thus, performance evaluation is an essential component in
the development process of efficient and well-designed ob-
ject stores. Users may also employ performance evaluation,
either to compare the efficiency of different technologies
before selecting an OODBMS or to tune a system.

Thework presentedinthispaper wasinitially motivated
by the evaluation of object clustering techniques. The ben-
efitsinduced by such techniques on global performancesare
widely acknowledged and numerous clustering strategies
have been proposed. As far as we know, there is no generic
approachallowingfor their comparison. Thisproblemisinter-
esting for both designers (to set up the corresponding
functionalities in the system kernel) and users (for perfor-
mancetuning).

There are different approaches used to evaluate the
performancesof agiven system: experimentation, simulation,
and mathematical analysis. This paper focuses only on the
first two approaches. Mathematical analysis is not consid-
ered becauseit invariably uses strong simplification hypoth-
eses(Benzaken, 1990; Gardarinetal., 1995) anditsresultsmay
wdll differ fromreality.

Experimentation onthereal systemisthemost natu-
ral approach and a priori the simplest to complete. However,

the studied system must have been acquired, installed, and
have areal database implanted in it. This database must also
be significant of future exploitation of the system. Total
investment and exploitation costs may be quite high, which
can be drawbacks when selecting a product.

Simulation is casually used in substitution or as a
complement to experimentation. It does not necessitate in-
stalling nor acquiring the real system. It can even be per-
formed onasystem still indevelopment (apriori evaluation).
The execution of a simulation program is generally much
faster than experimentation. Investment and expl oitation costs
arevery low. However, this approach necessitatesthe design
of afunctioning model for the studied system. Thereliability
of results directly depends on the quality and the validity of
this model. Thus, the main difficulty is to elaborate and
validate the model. A modelling methodology can help and
secure these tasks.

Experimentation and simulation both necessitate a
workload model (database and operations to run on this
database) and a set of performance metrics. These elements
aretraditionally provided by benchmarks. Thoughinterest for
benchmarksiswell recognized for experimentation, simula-
tion approaches usually use workloads that are dedicated to
a given study, rather than workloads suited to performance
comparisons. We believe that benchmarking techniques can
also be useful insimulation. Benchmarking can help validate
a simulation model as compared to experimental results or
support amixed approachinwhich someperformancecriteria
necessitating precision are measured by experimentation and
other criteria that does not necessitate precision are evalu-

16 Jul-Sept 2000

Jour nal of DatabaseM anagement

Vol. 11, No. 3

ated by simulation.

Thereisno standard benchmark for OODBS, evenif the
morepopular benchmarks, OO1, HyperModel,and OO7 arede
facto standards. These benchmarks are aimed at engineering
applications (Computer Aided Design, Manufacturing, or
Software Engineering). These general-purpose benchmarks
feature quite simple databases and are not well suited to the
study of clustering, which is very data-dependent. Many
benchmarks have been developed to study particular do-
mains. A fair number of them are more or less based on OO1,
HyperModel, or OO7.

In order to evaluate the performances of clustering
algorithmswithin OODBs, wedesigned our own benchmark:
OCB (Darmont et al., 1998). It originally had ageneric object
base and was clustering-oriented through its workload. It
actually appeared afterwards that OCB could become more
general, provided the focused workload was extended, as
described in this paper.

The objective of this paper isto present full specifica-
tionsfor anew version of OCB. More precisely, we address
thefollowing points: the generalization of the OCB workload
sothat thebenchmark becomesfully generic, acomparison of
OCB tothemain existing benchmarks, and afull set of experi-
ments performed to definitely validate OCB. These perfor-
mancetestswereperformedontheO, OODB (Deux, 1991), the
Texas persistent object store (Singhal et a., 1992), and the
DSTC clustering technique (Bullat & Schneider, 1996). The
results obtained are discussed in this paper.

We are aware of the legal difficulties pointed out by
Carey etal. (1993) and Carey et al. (1994). Indeed, OODBMS
vendors are sometimes reluctant to see benchmark results
published. The objective of our effort is rather to help soft-
ware designers or users eval uate the adequacy of their prod-
uctinaparticular environment. OCB should also proveuseful
at least for researchers, to benchmark OODB prototypesand/
or evaluate implementation techniques.

Theremainder of thispaper isorganized asfollows. The
defacto standardsin object-oriented benchmarking arebriefly
presented (OO1, HyperModel, and OO7; aswell asthe Justitia
benchmark, which is interesting due to its multi-user ap-
proach). Next, our proposed benchmark, OCB, is described
and compared to the other benchmarks. Experiments per-
formed to validate our benchmark are also presented. We
conclude the paper with future research directions.

RELATEDWORK

TheOO1Benchmark
001, dsoreferredtoasthe” Cattell Benchmark” (Cattell,
1991), was devel oped early in the 1990’ s when there was no
appropriatebenchmark for engineering applications. OOlisa
simplebenchmark that isvery easy toimplement. It was used
to test a broad range of systems including object-oriented

DBMS, relational DBMS, and other systems such as Sun’s
INDEX (B-treebased) system. Thevisibility andsimplicity of
OO0L1 provide a standard for OODB benchmarking. A major
drawback of thistool isthat its datamodel istoo elementary
to measure the el aborate traversal s that are common in many
types of object-oriented applications, including engineering
applications. Furthermore, OO1 only supportssimplenaviga-
tional and update tasks and has a limited notion of complex
objects (only one composite hierarchy).

TheHyper M odel Benchmark

The HyperModel Benchmark (Anderson et a., 1990),
alsoreferredtoasthe Tektronix Benchmark, isrecognizedfor
the richness of the tests it proposes. HyperModel possesses
both a richer schema and a wider extent of operations than
OOL. Thisrendersit potentially more effective than OO1 in
measuring the performances of engineering databases. How-
ever, thisadded compl exity al somakesHyperM odel harder to
implement, especially sinceits specificationsare not ascom-
plete as OOL's. The presence of complex objects in the
HyperModel Benchmark islimitedtoacomposition hierarchy
and two inheritance links. The scalability of HyperModel is
also not clearly expressed in the literature, whereas other
benchmarks explicitly support different and well identified
database sizes.

TheOO7Benchmark

OO7 (Carey etd., 1993) isamorerecent benchmark than
001 and HyperModel. It reusestheir structuresto propose a
more complete benchmark and to simulate various transac-
tions running on a diversified database. It has also been
designed to be more generic than its predecessors and to
correct their weaknesses in terms of object complexity and
associative accesses. Thisisachieved with arich schemaand
a comprehensive set of operations.

However, if OO7 isagood benchmark for engineering
applications, it is not the case for other types of applications
suchasfinancial, telecommunication, and multimediaapplica
tions(Tiwary etal., 1995). Sinceitsschemaisstatic, it cannot
be adapted to other purposes. Eventually, the database struc-
ture and operations of OO7 are nontrivial. Hence, the bench-
mark isquitedifficulttounderstand, adapt, or evenimplement.
Y et, tobefair, OO7 implementations are avail able by anony-
mousFTP.

TheJustitiaBenchmark

Justitia (Schreiber, 1994) has been designed to address
the shortcomings of existing benchmarks regarding multi-
user functionality, which is important in evaluating client-
server environments. Justitiais also aimed at testing OODB
capacity in reorganizing its database.

Because Justitia’' s published specifications lack preci-
sion, theauthor’ swork cannot be easily reused. Furthermore,
taking multiple users into account renders the benchmark

Jour nal of DatabaseM anagement

Jul-Sept 2000 17

quite complex. Justitiais fairly tunable and supposed to be
generic, butit still usesstructuresthat aretypical of engineer-
ing applications. Its database schema is more limited than
those of HyperModel or OO7. Though the object types are
diverse, inter-class relationships are very few. The inherit-
ance graph is substantial, but other types of references are
limitedto composition.

THEOBJECT CLUSTERINGBENCHMARK

Originally, the purpose of OCB was to test the perfor-
mances of clustering algorithms within object-oriented sys-
tems. OCB is structured around arich object base including
many different classes and numerous types of references
allowing the design of multipleinterleaved hierarchies. This
databaseiswholly generic. The OCB workload, oncecluster-
ing-oriented, has been extended with relevant, significant,
and reproducible transactions. Thus, the workload became
fully generic.

Theflexibility of OCB isachievedthroughanextensive
set of parameters. Many different kindsof object basescanbe
modeled with OCB aswell asmany different kindsof applica-
tionsrunning on these databases. Thisisan important feature
since there exists no canonical OODB application. OCB can
indeed beeasily parameterized to model agenericapplication
or dedicated to agiven type of object baseand/or application.
OCB isalso readily scalable in terms of size and complexity
resulting in awide range of object bases. Usage time can be
set up aswell to berather short or more extensive. Moreover,
OCB’s parameters are easy to set up.

OCB' scodeisvery compact and easily implemented on
any platform. OCB iscurrently implementedin C++tobench-
mark O, and Texas. Both versions are freely available?. The
C++ code is less than 1,500 lines long. OCB has also been
ported into QNAP2 and C++ simulation models. QNAP2isa
simulation software that supports a non object-oriented lan-
guagecloseto Pascal. The QNAP2 codedealingwithOCB is
shorter than 1,000 lines.

Thenextversionof OCB, whichiscurrently indevelop-
ment, shall support multiple users viewed as processesin a
very simpleway totest the efficiency of concurrency control.
As far as we know, Justitia is the only benchmark to have
actually addressed thisproblem, though OO7 alsohasamulti-
user version in development. OO1 was designed as multi-
user, but the published resultsonly involveasingle user. One
of our research objectivesisto providecl ear specificationsfor
our benchmark so that others can readily implement it and
provide feedback to improveit.

OCB Database
The OCB databaseis highly generic becauseit isrich,
simpleto achieve, and very tunable. It ismade of apredefined
number of classes (NC) derived from the same metaclass

(Figure 1). A classhasaunique logical identifier, Class ID,
and isdefined by two parameters; MAXNREF, the maximum
number of referencesin theclass' instances; and BASES ZE,
an increment size used to compute the | nstanceS ze after the
inheritance graph is processed at database generation time.
OnFigure1, notethat the UML « bind » clauseindicatesthat
classes are instantiated from the metaclass using the param-
eters between brackets.

Sincedifferent referencescan point tothesameclass, 0-
N, 1-N, and M-N links areimplicitly modeled. Each of these
CRef references has atype: TRef. There are NTREF different
types of references. A reference type can be, for instance, a
typeof inheritance, aggregation, or user association. Eventu-
aly, an Iterator is maintained within each class to save
referencestoward all itsinstances.

Objects in the database (instances of class OBJECT)
are characterized by a unique logical identifier OID and by
their class through the ClassPtr pointer. Each object pos-
sesses ATTRANGE integer attributes that may be read and
updated by transactions. A string of size InstanceSize, the
Filler, simulates the actual size the object should occupy on
disk.

After instantiating the database schema, an object O of
class C points through the ORef references to at most
MAXNREF objects. Theseobjectsaresel ectedfromtheiterator
of the class referenced by C through the corresponding CRef
reference. For each direct referenceidentified by an ORef link
from an object o, toward an object 0, thereisalso abackward
reference (BackRef) from 0,too.

The database generation proceeds through three pri-
mary steps.

1) Instantiationof the CLASSmetaclassintoNC classes:
creation of the classes without any reference, then selection
of the classes referenced by each class. The type of the
references(TRef) caneither follow the DI ST1 random distribu-
tionor beset upapriori. Thereferenced classesbelongtothe
[Class ID—CLOCREF, Class ID+ CLOCREF] interval that
modelsacertainlocality of reference, asintroduced by OO1,
but at the classlevel. The classreference sel ection can either
follow the DIST2 random distribution or be set up a priori.
NIL referencesare possible.

2) Database consistency check-up: suppression of all
the cycles and discrepancies within the graphs that do not
allow them, e.g., inheritance graphs or composition hierar-
chies.

3) Instantiation of the NC classes into NO objects:
creation of the objects, without any reference — their class
followstheDI ST3 randomdistribution, thenrandom selection
of the objects referenced by each object. The referenced
objects belong to the [OID — OLOCREF, OID + OLOCREF]
interval that models a certain locality of reference at the
instance level. The random selection of object references
follows the DIST4 random distribution. Reverse references
(BackRef) are instantiated when the direct links are instanti-

18 Jul-Sept 2000

Jour nal of DatabaseM anagement

Vol. 11, No. 3

Figure 1. OCB database schema (UML Satic Structure Diagram)

Schema

\

CLASS #1

CLASS #2

CLASS #NC

\\\«hmd»

<MAXNREF | BASESIZE > cbiids

- SMAXNREF {,BASESIZE ;>

«bi ng»/’/

<MAXNB,EF’,;’C,BASESIZE e

MAXNREF: Integer

CRef

BASESIZE: Integer

Class_ID: Integer

InstanceSize: Integer

TRef: Array [1..MAXNREF] of TypeRef
Iterator: Array [0..*] of Reference to OBJECT

1..MAXNREF

Ny [

Instances

ORef

ClassPtr

OBJECT

BackRef

OID: Integer

Filler: Array [1..ClassPtr.InstanceSize] of Byte
Attribute: Array [1..ATTRANGE] of Integer

1..ClassPtr. MAXNREF

Table 1: OCB database parameters
Parameter name Parameter Default value
NC Number of classes in the database 50
MAXNREF (i) Maximum number of references, per class 10
BASESIZE (i) Instances base size, per class 50 bytes
NO Total number of objects 20,000
NREFT Number of reference types (inheritance, aggregation, etc.) 4
ATTRANGE Number of integer attributes in an object 1
CLOCREF Class locality of reference NC
OLOCREF Object locality of reference NO
MAXRETRY Maximum number of retries when linking objects 3
DIST1 Reference types random distribution Uniform
DIST2 Class references random distribution Uniform
DIST3 Objects in classes random distribution Uniform
DIST4 Objects references random distribution Uniform

ated.

Therandomnumbersaregenerated by thel ewis-Payne
random generator (Lewis& Payne, 1973), whichisoneof the
best pseudorandom number generators currently available.
The database parametersare summarized in Table 1.

OCBWorkload
The core of the workload is organized around severa

transactions, the traversals, which are able to explore the
effects of clustering. Several operations that do not benefit

from any clustering effort have been re-introduced, e.g., cre-
ation and update operations. A full description of the
benchmark’ s operationsfollows.

* RandomAccess: Accessto NRND objectsfollowing
the DIST5 random distribution.

* Sequential Scan: Browse the instances of a class
following the DIST6 random distribution (Smple Scan). A
Range Lookup additionally tests the value of NTEST at-
tributes in each instance.

» Traversals: Traversal operations are divided into

Jour nal of DatabaseM anagement

Jul-Sept 2000 19

two types: Set-Oriented Accesses (or Associative Accesses)
and Navigational Accesses, which have been empirically
found by Mc Iver (1994) to match breadth-first and depth-first
traversals; respectively. Navigational Accesses are further
divided into Smple, depth-first traversals, Hierarchy Tra-
versals that always follow the same type of reference, and
finally Sochastic Traversals that randomly select the next
link to cross. Stochastic traversals effectively simulate the
accesspatternscaused by real queries, accordingto Tsangaris
& Naughton (1992). An object bears at most MAXNREF
references numbered from 1 to MAXNREF. At each step of a
stochastic traversal, the probability to follow reference num-
ber N (N O [1, MAXNREF]) is p(N) = 1/2V. Each type of
traversal proceeds from a root object following the DIST7
random distribution and up to a predefined depth depending
on the traversal type. All these transactions can be reversed
to follow the links backward, “ascending” the graphs.

» Update: Update operations are also subdivided into
differenttypes. SchemaEvolutionsdeal withindividual inser-
tion and deletion of Class objects. The class to be deleted
followsthe DIST8 random distribution. Database Evolutions
deal with individual insertion and deletion of objects. The
object to be deleted follows the DIST9 random distribution.
Eventually, Attribute Updatesallow attribute changes, either
of random accessed objects (Random Update of NUPDT
objects following the DISTA random distribution) or of in-

Table 2 : OCB workload parameters

stances of a class following the DISTB random distribution

(Sequential Update).

Theexecution of transactionsby each client (thebench-
mark isto bemulti-user) isorganized according to thefollow-
ing protocol:

1) cold run of COLDN transactions whose types are
determined randomly according to predefined probabilities.
The purpose of this step is to fill in the cache in order to
observe the real, stationary behavior of the clustering algo-
rithmimplemented in the benchmarked system;

2) warmrun of HOTN transactions.

A latency time THINK can beintroduced between each
transactionrun. Furthermore, thewhol ebenchmark execution
may be replicated so that the same set of transactions is
executed on different randomly-generated object bases. This
feature allows the computation of mean values and confi-
dence intervals, which are typically more significant than a
singlemeasurement. The OCB workload parametersaresum-
marizedinTable2.

Themetricsmeasured by OCB arebasically:

* database response time (global and per transaction type)
andthroughput. Inaclient-server environment, timesmust
bemeasured ontheclient sidewith standard system primi-
tivesliketime() or getrusage() in C++. Thereplication of the
transactions compensates for the possible inaccuracy of
these functions. If the number of transactions is suffi-

Parameter (s) name(s) Parameter (s) Default value(s)

NRND Number of objects accessed in Random Accesses 50

NTEST Number of attributes tested in Range Lookups 1

SETDEPTH, SIMDEPTH,

HIEDEPTH, STODEPTH Depth: Set-oriented Access, Simple Traversal, 3,3,
Hierarchy Traversal, Stochastic Traversal 5, 50

NUPDT Number of updated objects in Random Updates 50

DISTS5,

DIST6, DIST7,

DIST8, DIST9,

DISTA, DISTB Random distribution law: Random Access objects,
Sequential Scan classes, Transaction root objects,
Schema Evolution classes, Database Evolution objects,
Random Update objects, Sequential Update classes Uniform

PRND, PSCAN,

PRANGE, PSET, PSIMPLE,

PHIER, PSTOCH,

PCINSERT, PCDEL, POINSERT,

PODEL, PRNDUP, PSEQUP Occurrence probability: Random Access, Simple Scan, 0.1, 0.05,
Range Lookup, Set Access, Simple Traversal, 0.05, 0.2, 0.2,
Hierarchy Traversal, Stochastic Traversal, 0.2, 0.1, 0.005,
Class Insertion, Class Deletion, Object Insertion, 0.005, 0.02,
Object Deletion, Random Update, Sequential Update 0.02, 0.025, 0.025

COLDN Number of transactions executed during the cold run 1,000

HOTN Number of transactions executed during the warm run 10,000

THINK Average latency time between two transactions 0

CLIENTN Number of clients 1

RSEED Random generator seed Default seed

20 Jul-Sept 2000

Jour nal of DatabaseM anagement

Vol. 11, No. 3

ciently large, the absence of such system functions can be
compensated by amanual timing, asitisspecifiedfor OO1,

» number of accessed objects (both globally and per trans-
action type). The computation of these usage statistics
must be included in the benchmark’ s code;

» number of Input/Output (I/0s) performed. Thel/Osneces-
sary to execute the transactions and the 1/Os needed to
cluster the database (clustering overhead) must be distin-
guished. /O usage can be obtained through the C++
getrusage() functionor by statisticsprovided by theDBMS.
For instance, O, provides such statistics.

Comparison of OCBtotheExistingBenchmarks

Genericity of OCB

Since we intend to provide a generic benchmark, our
tool must be able to model various types of databases and
applications. In addition, it must also be able to imitate the
demeanor of previousobject-oriented benchmarks. Schreiber
(1994) claims Justitia bestows this property provided the
benchmark is properly parameterized. However, he does not
provide any solid evidence to back up hisclaim.

We have shown that the OCB database is generic by
comparing it to the object bases from existing benchmarks
(Tables 3 and 4). Interms of workload, however, the demon-
stration of genericity ismoredifficult to achieve. OO7 espe-
cially offers awide range of complex transactions. Some of
them have been discarded when designing OCB, because
they added complexity without providing muchinsight. Still,
thetransactional behavior of OO1, HyperModel, and Justitia
can easily be imitated. Furthermore, some of OCB'’s opera-
tions, if combined, canbeequiva entto OO7’ scomplex opera
tions.

Comparison with Gray's Criteria

Gray (1993) definesfour primary criteriaconcerningthe
specification of agood benchmark:

1) relevance: it must concern aspects of performance
that appeal to the largest number of potential users;

2) portability: it must be reusable to test the perfor-
mancesof different OODBS;

3) simplicity: it must be feasible and must not require
too many resources,

4) scalability: it must be able to be adapted to small or
large computer systems, or new architectures.

When designing OCB, we mainly intended to palliate
two shortcomings in existing benchmarks: their lack of
genericity and their inability to properly evaluate the perfor-
mances of object clustering techniques. To achievethisgoal,
wedesigned afully tunablebenchmark, allowingit eithertobe
generic or to be specialized for a given purpose. The conse-
guences of this choice on Gray’ s criteriaare thefollowing:

» relevance: as previously stated, all the transactions
from existing benchmarkshave beenincludedin OCB except
the most intricate operationsfrom OO7;

 portability: OCB has been used to evaluate the
performances of the O, and the Texas systems. Both these
implementations have been madein C++. OCB hasalso been
includedin simulation modelswrittenin QNAP2 and asimu-
lation package called DESP-C++. OCB’s code is short and
simplein all these cases;

» simplicity: complete specifications for our bench-
mark are provided in this section in order to support under-
standability and ease of implementation;

Table 3: OCB tuning to imitate OO1 and HyperModel object bases

OCB parameter 001 HyperModel
NC 2 3
MAXNREF (i) Parts: 3 Connections: 2 5 (Parent/Children)

BASESIZE (i) Parts: 50 bytes Node: 20 bytes
Connections: 50 bytes TextNode: 1000 bytes

FormNode: 20008 bytes

NO 20000 parts + 60000 connections 3906 Nodes + 125 FormNodes
+ 15500 TextNodes

NREFT 3 4

CREFLOC NC NC

OREFLOC RefZone Level k+1 in the Parent/Children
hierarchy

DIST1 Constant (non random) Constant (non random)

DIST2 Constant (non random) Constant (non random)

DIST3 Constant (non random) Constant (non random)

DIST4 Uniform Uniform

+ 5 (PartOf/Part)
+ NO (RefTo/RefFrom)
+ 1 (Speciaization)

Jour nal of DatabaseM anagement

Jul-Sept 2000 21

Table 4: OCB tuning to imitate OO7 and Justitia object bases

OCB parameter
NC
MAXNREF (i)

BASESIZE (i)

NO

NREFT
CREFLOC
OREFLOC
DIST1
DIST2
DIST3
DIST4

007
10
Designobject:
0 Atomic part: 20
Connection: 18
Composite part: NumAtomicPerComp + 8
Document: 1
Manual: 1
Assembly: 2
Complex assembly: NumAssmPer Assm + 2
Base assembly: NumComPerAssmx 2 + 1

NumAssmLevels .
Module: Z NumAssmPer Assm'
1=

Design object: 18 bytes
Atomic part: 12 bytes
Connection: 14 bytes
Composite part: 0
Document: DocumentSize + 44 bytes
Manual: Manual Size + 48 bytes
Assembly: 0
Complex assembly: 0
Base assembly: 0
Module: O
NumModules modules
+ NumModules manuals

NumAssmLevels-1

Z NumAssmPerAssm' complex assemblies
1=

+ NumPer AssmumssmLevels hase assemblies
+ NumCompPerModule composite parts
+ NumCompPer Modul e documents

+ NumAtomicPer Comp . NumCompPer Module atomic parts
+ NumAtomicPer Comp . NumCompPerModule . Num

ConnPer Atomic connections
12
NC
NO
Constant (non random)
Constant (non random)
Constant (non random)
Constant + Uniform

Justitia
6
Database Entry: 0
Node: 2
CO: 3
PO: PO_ATT_SZE + 3

Database entry: 4 bytes
PO: 0
Node: 4 bytes
COo: 0
DO: DO_ATT_SIZE bytes
SO: SO_ATT_SIZE bytes

SECTION . MAXWIDTH .
MAXLEVEL

3
NC
NO
Constant (non random)
Constant (non random)
Constant (non random)
Constant (non random)

Table 5: Comparison of existing benchmarks to OCB

001
Hyper M odel
007
Justitia
OoCB

Relevance Portability
—— ++
+ +
++ +
++ +

Simplicity Scalability
++ -
+ +
+ ++

Strong point : +

Very strong point: ++Weak point: —Very weak point: — —

22 Jul-Sept 2000

Jour nal of DatabaseM anagement

Vol. 11, No. 3

e scalability: OCB isavery flexiblebenchmark duetoan
extensive set of parameters. Itsobject base can take different
sizes and complexity levels and its various transactions can
model afair number of applications.

The characteristics of the existing benchmarks and
OCB according to these criteriaare summarized in Table5.

VALIDATIONEXPERIMENTS

Wepresentinthissection performanceeval uationsper-
formedwithOCB ontheO, OODB, the Texaspersi stent obj ect
store, andtheDST C clusteringtechnique, whichisimplementedin
Texas. Our research objectivedidnotincludeacomparison of the
performancesof O,and Texas. Thiswoul dhavebeentroublesome
sinceour versonsof thesesystemsdidnot runonthesamepl atform.
Furthermore, O,and Texasarequitedifferentintheir philosophy
andfunctionalities. O, isafull OODB supporting concurrentand
secureaccesseswhile Texasispositioned asan efficient persistent
storefor C++. Weonlyintendedto show that OCB providedvaid
performanceeva uations.

Since we recommended the use of a complex object
base, thefeasibility of our specificationshasbeen checked by
measuring the database average generation time function of
thedatabasesize (number of classesand number of instances).
For schemas containing 10, 20, and 50 classes, the number of
instancesNOwasvariedfrom5,000t050,000. Theactual database
sizewasa someasuredfor al theseconfigurations.

Next, the object base configuration wasvaried: number
of classes NC, number of instances NO, number of inter-
object referencesMAXNREF. Four databaseconfigurationswere
obtained usingNCval uesof 20and 50, and MAXNREF val uesof 5
and 10. Then, thenumber of instancesinthedatabasewasvaried
from500t020,000for each configuration. Thescopeof thisstudy
islimitedraw performancereaults i.e., theaverageresponsetimeand
theaveragenumber of I/Osnecessary toexecutetheoperations.

Theefficiency of theDST C clustering techniquehasbeen
assessed by measuring theperformancesachieved by Texasbefore
andafter object clustering, onamediumandonalargedatabase. The
mediumdatabasewasOCB’ sdefault object base: 50classes, 20,000
instances, about 20 M B with Texas. Technical problemswere
encounteredwith Texas/DSTCtocluster alargedatabase. The
problemwascircumvented by reducingtheamount of available
memory sothat thedatabases zewasactually bigcomparedtothe
sizeof thememory. Toobserveasignificant gainin performances,
DSTCwasplacedinadvantageousconditionsby runningvery
characterigtictransactions(hierarchy traversalsandsmpletravers-
alsfrom predefinedroot objects).

Note: All our experimentshavebeenreplicated 100timesso
that meantendenciescoul d beassessed.

Resultsfor O,
Material Conditions
TheO, server (version5.0) wasinstalledonan|BM RISC

Figure 2: Database generation time (O,)

@ 3000
£ 2500 A

& 2000 —e— 10classes
& 1500 —m— 20 dlasses
§, 1000 —a— 50 classes
@ /‘

& 500

5

z oA ‘ : ‘ ; ‘

5000 10000 20000 30000 40000 50000

Number of instances

Figure 3. Actual database size (O,)

& 80000
¥ 70000 R

& 60000 //

2 50000 / —e— 10 classes
S 40000 A —m— 20 dasses
& 30000 e | dees
8 20000 Pl S

g 10000 %‘/’(

= 0

5000 10000 20000 30000 40000 50000

Number of instances

600043P240bi processor workstation. Each processor wasaPower
PC604e166. Theworkstationhad1 GB ECCRAM. Theoperating
systemwasAlX version4. TheO, server cachesizewas16 MB by
defaullt.

ObjectBaseGeneration

Figure2displaysthedatabasegenerationtimefunctionof the
number of classesand thenumber of instancesinthebase. It shows
that generationtimeincreasedlinearly whentheschemawasmadeof
100r20classes. Theincreasewasmoreaccentuatedwith50cl asses,
becausewhentheO, client cachewasfull, whichhappenedwiththe
biggest databases, anexecutionerror occurred. Tofixthisproblem,
thegeneration processhasbeen marked out withcommits. These
multiplecommitswaremorecostly thanasinglevalidationattheend
of thegenerationprocess. Thefeasibility of OCB wasal sodemon-
strated, sinceintheworst casegenerationtimewaslessthanone
hour. Moreover, agiven object base could be saved and reused
multipletimessothat thegenerati onprocesscoul dbeavoidedeach
time

Figure 3 showshow the size of therandomly generated
database linearly evolved with the number of classes and
instances. Hence, itwaseasy toforeseethefina sizeof adatabase
whensettingtheNCandNOparameters. Thedefault OCB database
(50classes, 20,000instances) hadameansizeof 30 MB, whichis
averageforabenchmark. Foringtance, thelargedatabaseinOO1 has
asizeof 40 MB. However, weshowedthat larger databasesare

posshle

ObjectBaseUsage
InFigure4, wepl otted themean number of 1/Osglobally
necessary to execute the transactions function of the number

Jour nal of DatabaseM anagement

Jul-Sept 2000 23

Figure4: Meannumber of1/0s(O,)
8000

« 7000

= 6000 / —e—NC=20,

b / MAXNREF =5

o 5000 / NG 20

£ 4000 A " e
S A MAXNREF = 10

£ %000 =7 —a—NC=50

§ 2000 * o

=

MAXNREF =5
1000 +
0 ——NC =50,
500 1000 2000 5000 10000 20000 MAXNREF =10
NO

of instancesintheobject base(NO) for our four databaseconfigura:

tions. WedidthesameinFigure5for themeanresponsetime.

Wecanseethattheperformancesof O, logically decreasedin
thethreefoll owingcases.

* NC increase — Thiswas due to the structure of the OCB
schema. The more classes it contained, the deeper the
inheritance graph was. Since information is inherited at
each level from the upper level, leaf classesin theinherit-
ancegraph havebigger instancesthanroot classes. Hence,
ahigher number of classesinduced bigger object sizes, so
the database occupied more disk pages.

* MAXNREF increase — The number of objects accessed
by transactions that browsed al the references increased.

* NO increase — The database got bigger and objects were
distributed over more disk pages.

Theevolutionof our two performancecriteriawasquite
similar. Thisresult was expected, since most treatments per-
formed by the system when running OCB deal with loading
objectsfrom disk.

Resultsfor Texas
Material Conditions
Texasversion 0.5wasinstalled on aPC Pentium-11 266
witha64 MB SDRAM. Thehost operating systemwasLinux
2.0.30. The swap partition size was 64 MB. Texas has been
compiledwiththeGNU C++compilerversion2.7.2.1.

Object Base Generation

Figure 6 displaysthe averagetimefor database genera-
tion function of the number of instances and the number of
classesin the database. It shows that generation time did not
increaselinearly. However, thelongest generationtimeswere
approximately 10 minuteslong, whichwasan acceptablerate.

Texasdid not appear to havethe samebehavior than O,
becauseaveragegenerationtimewasgreater whentheschema
contained few classes. This result can be attributed to two
phenomena.

» Thegraph consistency check for acyclic graphswas more
complex when the number of classes was low. In these
conditions, theinterclassreferencesweredispersedinareduced
classinterval andformedvery densegraphs.

* Whenthedatabasedidnot fit wholly intothemainmemory,

Figure5: Meanresponsetime(O,)

N
N
o

=
N
o

—e—NC=20,
o // MAXNREF =5
80 —=—NC=20,

M M AXNREF = 10

—a—NC =50,
| g“ MAXNREF =5
—»—NC =50,

MAXNREF = 10

N A
o O

Mean response time (ms)
(2}
o

o

T |
500 1000 2000 5000 10000 20000

NO

Figure 6: Database generation time (Texas)

700
600 2

500

—e— 10 classes

—m— 20 classes

400
300 / y

200 /://./ —a— 50 classes
100 —

ol o —a——"

5000 10000 20000 30000 40000 50000

Average generation time (s)

Number of instances

thesystemswapped, whichwascostly bothintermsof 1/Osand
time

Theactual sizeof theobject basesgenerated with Texas
was aways lessthan 60 MB, as shown in Figure 8, allowing
them to be stored in the 64 MB memory. Hence, the graph
consistency check wasprevalent whileinthecaseof O,, swap
was prevalent. This hypothesis has been checked with Texas
by reducing the available memory under Linux to 16 MB.
Figure 7 displays the results of these tests, which confirmed
our assumption.

Figure8eventually showshowthedatabasered sizeevolved
with the number of instances and the number of classesinthe
database. Ashappenedwith O,, thisevolutionwaslinear. The
averagedatabasesizewasabout 20 M B with Texas. Theobject
basesgeneratedwith O, wereonethirdbigger duetotheobjects
storageformat: Texasdirectly usesthememory formatwhileO, uses
theWi SS(Chou, 1985) record structuresthat aremoreéd aborate.

ObjectBaseUsage

InFigure9, wepl otted themean number of 1/Osglobally
necessary to execute the transactions function of the number
of instances in the object base (NO), for our four database
configurations. We did the same in Figure 10 for the mean
responsetime.

Inthecaseof Texas, thecorre ati on betweenthemeannumber
of I/Osandthemeanresponsetimeappearedtighter thanfor O,. O,
indeedind udesmany morefeaturesthanTexas(security, concurrency
control, and others) that add anoverhead thatisnot directly linked
todisk accesses.

24 Jul-Sept 2000

Jour nal of DatabaseM anagement

Vol. 11, No. 3

Figure7: DBgenerationtimewith16 MBmemory

@ 8000
2 7000 A
£
S 6000
c
© 5000 —e— 10 classes
& 4000 el —m— 20 dlasses
§1 3000 / / —a— 50 dasses
g 2000
5 1000 P
2o e ee———
5000 10000 20000 30000 40000 50000
Number of instances
Figure 9: Mean number of I/Os (Texas)
5000
8 /
O 4000 —e—NC=20,
5 / MAXNREF =5
g 3000)/ —m—NC=20,
g 2000 A MAXNREF = 10
/ —a—NC=50,
é 1000 MAXNREF =5
0l —»—NC =50,

MAXNREF = 10

500 1000 2000 5000 10000 20000
NO

Figure8: Actual databasesize(Texas)

& 60000
< 50000 A
-g /
8 40000 / —e— 10 classes
2 30000 —m— 20 classes
ks / —a—
T 20000 50 classes
2 0000
g
< 0 : ; ; ; ; ‘
5000 10000 20000 30000 40000 50000
Number of instances
Figure 10: Mean response time (Texas)
50
w
E 40 /)< —e—NC =20,
g MAXNREF =5
g 0 —=—NC=20,
S 5 /,- MAXNREF = 10
@' /)//// —a—NC=50,
g 10 -+ MAXNREF =5
= .é%) ——NC =50,

MAXNREF = 10

500 1000 2000 5000 10000 20000

NO

Table 6: Effect of DSTC on Texas' performances (mean number of I/Os/ mean response time, in ms)

Medium base “Large” base

Hierarchy traversals Simpletraversals Hierarchy traversals Simpletraversals
Pre-clustering usage 1890.7 17.7 18374 157 12504.6 102.1 12068.1 103.1
Post-clustering usage 3306 33 3131 30 4243 29 401.3 27
Gain factor 5.7 5.4 5.9 5.2 29.5 35.2 30.1 38.7
Clustering overhead 12799.6 125.8 12708.8 124.3

Resultsfor DSTC/Texas

Thetransactionsse ectedfor thi sseriesof experimentswere
depth-3hierarchy traversalsand depth-2simpletraversals. The
depthof traversal swasreducedregarding OCB’ sdefault parameters
sothat thegenerated clusterswerenot too big and theeffectsof
clusteringwereclear. Technica problemswereal soencountered
whenthedatabasesizeincreasedand DST Cattemptedtobuildtoo
largeclusters. Thetraversalshavebeen performedfrom 100 pre-
definedroot objectsandeach of themwasexecuted 10times.

Table6displaysmeannumbersof I/Osandresponsetimes
concerning databaseusagebeforeand after clustering. Our results
showedthat for boththetransactiontypesused, theDST Ccluster-
ingtechniqueallowed substantial increasesinperformances. The
gainfactorwasabout 5for amedium object baseand about 30fora
largeone. Wehadtheconfirmationthat theeffectsof clusteringwere
stronger whenthedatabasesizewasgreater thanthememory size.
Indeed, thesmaller thedatabasesize, themorethesystemhasto
perform pagereplacements. Unused pagesdonot normally remain
inmemoryforlong.

Clustering overhead doesnot appear inthe“large” base
columnbecausethemediumbasewasreused (boththeinitia andthe
clustered configurations) withareduced amount of memory. The

resultsobtai ned show that thisoverhead wasvery important bothin
termsof timeand1/Os. Thisisactually why techniquessuchas
DSTCareusudlytriggeredwhenthedatabaseisidle. Furthermore,
reclustering thedatabaseisnot ausual operation: agiven object
clusteringmay beemployedduring severa onsbeforebeing
reconsidered. Itisthenimportanttodeterminetheperiodafterwhich
clusteringbecomesadvantageous, i .e., thetimeafter whichthe
induced overhead becomesl ower thantheachieved performance
increase

CONCLUSIONSAND FUTURE RESEARCH

Wehavepresentedinthispaper thefull specificationsfora
new obj ect-oriented benchmark: OCB. Itsmainqualitiesareits
richness, itsflexibility, anditscompactness. OCB indeed of fersan
obj ect basewhosecompl exity hasnever beenachievedbeforein
object-orientedbenchmarks. Furthermore, sincethisdatabaseand
likewisethetransactionsrunningonitarewholly tunablethrougha
collectionof comprehensivebut easily set parameters, OCB canbe
usedtomodel many kindsof object-oriented databaseapplications.
Eventualy, OCB'’ scodeisshort, reasonably easy toimplement, and
eadly portable.

Jour nal of DatabaseM anagement

Jul-Sept 2000 25

We have shown our benchmark was merely feasible by
measuringgenerationtimeforitsrandomdatabase. Itappearsthatin
theworst case, anOCB object basei sgeneratedinlessthanonehour,
whichisquiteacceptable. Furthermore, thelargest databasescanbe
savedformultipleuses.

We have also illustrated the genericity of our bench-
mark by showinghow it couldimitateboth theschemaandthe
operations of four existing benchmarks. The flawsidentified
in these previous benchmarks have been underlined and an
attempt was made to correct them. We eventually demon-
stratedthat OCB coul d beusedasagenera -purposebenchmark by
eval uatingtheperformancesof theO,OODB andthe Texaspersis-
tent object store. Wea soshowedit couldserveasamorespeciaized
benchmark by testingtheeffectsof theDST Cclusteringmethodon
theperformancesof Texas.

Futurework concerning thisstudy chiefly concernsthe
actual exploitation of OCB. We plan to benchmark several
different systemsfeaturing clusteringtechniquesor not, forthesake
of performancecomparisonortodetermineif their configurationfits
acertainpurpose. Other aspectsof OODB performancecouldalso
betested, likebufferingorindexing.

Futureresearch about the OCB benchmark itselfismainly
dividedintotwoaxes. First, weonly exposedtheprinciplesof a
multi-userversonof our benchmark. Thetrangtionfromthesingle-
user versiontowardanoperationa multi-user versionisnotimme-
diateandrequiresaparticular care. Theaimof thisevolutionisto
eval uatetheefficiency of concurrency control and to seehow
systemsreact whenfacedtoamoreimportant and heterogeneous
workload. SinceOODBshormally operateinaconcurrentenviron-
ment, their performancescannot begaugedwithasingle-user bench-
mark.

Second, one very different aspect we did not consider
yet isthe “qualitative” element that isimportant to take into
account when selectingan OODB. Atkinson, Birnie, Jackson,
and Philbrow (1992), Banerjee and Gardner (1995), Kempe,
Kowarschick, Kiefdling, Hitzelgerger, and Dutkowski (1995) all
insist on the fact that functionality is at least asimportant as
raw performances. Hence, criteria concerning these
functionalities should be worked out. Sheer performance
could be viewed as one of these criteria. Concerning optimi-
zationmethods, wecould, forinstance, evaluateif aclustering
heuristic’ s parameters are easy to apprehend and set up or if
the algorithm is easy to use or transparent to the user.

Eventually, another point that can be considered isthe
adequacy of OCB to evaluate the performances of object-
relational systems. Our generic model can of coursebeimple-
mented with an object-relational system and most the opera-
tionsarerelevant for such asystem. Thus, OCB can allow the
comparisonof differentlogical or physical organizations(dis-
tribution of theobjectsintotabl es, implementation of associa-
tions by values or by pointers, distribution of tables into
tablespaces, index...). OCB can be considered asacandidate
benchmark for this type of systems, even if extensions are
needed to take into account additional aspects, regarding

Abstract Data Types, in particular.

ACKNOWLEDGEMENTS

The authors would like to thank the editor and anony-
mousrefereesfor their thoughtful criticismsand suggestions,
through which this paper was greatly improved.

REFERENCES

Anderson, T.L., Berre, A.J.,, Madlison, M., Porter, H.H.,
& Scheider, B. (1990). The HyperModel Benchmark. Interna-
tional Conference on Extending Database Technology,
Venice, Italy. 317-331.

Atkinson, M.P., Birnie, A., Jackson, N., & Philbrow,
P.C. (1992). Measuring Persistent Object Systems. 5" Inter-
national Workshop on Persistent Object Systems, San Miniato
(Pisa), Italy. 63-85.

Banerjee, S., & Gardner, C. (1995). Towards An Improved
Evaluation Metric For Object Database Management Systems.
OOPSLA ‘95 Workshop on Object Database Behavior, Bench-
marks and Performance, Austin, Texas.

Benzaken, V. (1990). An Evaluation Model for Cluster-
ing Strategies in the O, Object-Oriented Database System. 3™
International Conference on Database Theory, Paris, France.
126-140.

Bullat, F., & Schneider, M. (1996). Dynamic Clustering
in Object Database Exploiting Effective Use of Relationships
Between Objects. ECOOP '96, Linz, Austria. Lecture Notes
in Computer Science. 1098, 344-365.

Carey, M.J.,, Dewitt, D.J.,, & Naughton, J.F. (1993). The
007 Benchmark. ACM SIGMOD International Conference
on Management of Data, Washington DC. 12-21.

Carey, M.J.,, Dewitt, D.J,, Kant, C., & Naughton, J.F.
(1994). A Status Report on the OO7 OODBMS Benchmarking
Effort. SGPLAN Notices. 29(10), 414-426.

Cattell, R.G.G. (1991). An Engineering Database Bench-
mark. The Benchmark Handbook for Database Transaction
Processing Systems, Jim Gray, Ed. Morgan Kaufmann. 247-
281.

Chou, H.-T. (1985). Design and implementation of the
Wisconsin storage system. Software Practice and Experi-
ence. 15(10).

Darmont, J., Petit, B., & Schneider, M. (1998). OCB: A
Generic Benchmark to Evaluate the Performances of Object-
Oriented Database Systems. 6" International Conference on
Extending Database Technology (EDBT ‘98), Valencia,
Spain. Lecture Notes in Computer Science. 1377, 326-340.

Deux, O. (1991). The O, System. Communications of the
ACM. 34(10), 34-48.

Gardarin, G., Gruser, J.-R., & Tang, Z.-H. (1995). A Cost
Model for Clustered Object-Oriented Databases, 21% Inter-
national Conference on Very Large Data Bases (VLDB ’'95),
Zurich, Switzerland. 323-334.

Gray, J., Ed. (1993). The Benchmark Handbook for
Database and Transaction Processing Systems 2™ edition.
Morgan Kaufmann.

Kempe, J., Kowarschick, W., Kieflling, W., Hitzelgerger,
R., & Dutkowski, F. (1995). Benchmarking Object-Oriented
Database Systems for CAD. 6" International Conference on

26 Jul-Sept 2000

Jour nal of DatabaseM anagement

Vol. 11, No. 3

Database and Expert Systems Applications (DEXA ’95), London,
UK. Lecture Notesin Computer Science. 978, 167-176.

Lewis, T.G., & Payne, W.H. (1973). Generalized feedback
shift register pseudorandom number al gorithm. Journal ACM. 20(3),
456-468.

Mc lver, W.J., & King, R. (1994). Self-Adaptive, On-
LineReclustering of Complex Object Data. ACM SSIGMOD Confer-
ence, Minneapolis, Minnesota. 407-418.

Schreiber, H. (1994). JUSTITIA: a generic benchmark
for the OODBMS selection. 4™ International Conference on
Data and Knowledge Systems in Manufacturing and Engi-
neering, Shatin, Hong Kong. 324-331.

Singhal, V., Kakkad, S.V., & Wilson, P.R. (1992). Texas:
An Efficient, Portable Persistent Store. 5" International Work-

shop on Persistent Object Systems, San Miniato, Italy.

Tiwary, A., Narasayya, V.R., & Levy, H.M. (1995).
Evaluation of OO7 as a system and an application benchmark.
OOPSLA ‘95 Workshop on Object Database Behavior,
Benchmarks and Performance, Austin, Texas.

Tsangaris, M.M., & Naughton, J.F. (1992). On the Per-
formance of Object Clustering Techniques. ACM SIGMOD
International Conference on Management of Data, San Di-
ego, California. 144-153.

ENDNOTES
Ltp://ftp.cs.wisc.edu/OO7
2http://1ibd2.univ-bpclermont.fr/~darmont/downl oad/

Jéréme Darmont received his M.Sc. and Ph.D. degrees in computer science from Blaise Pascal University,
Clermont-Ferrand, Francein 1994 and 1999, respectively. He hasbeen an assistant professor at the University
of Lyon 2, France since September 1999. His current research interests include object-oriented databases,
optimization techniques, and database performance evaluation by benchmarking and/or simulation.

Michel Schneider isfull professor incomputer scienceat Blaise Pascal University, Clermont-Ferrand, France.
He has been contributing for many yearsto the devel opment of this discipline. Heis presently in charge of the
Computer Science Doctoral School. His current research interests include clustering in object-oriented
databases, benchmarking, document retrieval, and web-based systems.

Jour nal of DatabaseM anagement

Jul-Sept 2000 27

