

 328 Int. J. Business Information Systems, Vol. 2, No. 3, 2007

 Copyright © 2007 Inderscience Enterprises Ltd.

Efficient online mining of large databases

Fadila Bentayeb, Jérôme Darmont and
Cécile Favre*
ERIC, University of Lyon 2,
5 avenue Pierre Mendès-France,
69676 Bron Cedex, France
E-mail: bentayeb@eric.univ-lyon2.fr
E-mail: jerome.darmont@univ-lyon2.fr
E-mail: cfavre@eric.univ-lyon2.fr
*Corresponding author

Cédric Udréa
EURISE, University of St Etienne,
23 rue du Docteur Paul Michelon,
42023 Saint Etienne Cedex 2, France
E-mail: cedric.udrea@univ-st-etienne.fr

Abstract: Great efforts have been achieved to apply data mining algorithms
onto large databases. However, long processing times remain a practical issue.
This paper presents a framework to offer to database users online operators for
mining large databases without size limit, in acceptable processing times. First,
we integrate decision tree algorithms directly into database management
systems. We are thus only limited by disc capacity and not by main memory.
However, disc accesses still induce long response times. Hence, we propose
two optimisations in a second step: reducing the size of the learning database
by building its corresponding contingency table and reducing the number of
database accesses by exploiting bitmap indices. Thus, the various decision tree
based methods we implemented within Oracle deal with contingency tables or
bitmap indices rather than with the whole training set. Experimentations
performed show the efficiency of our integrated methods.

Keywords: bitmap indices; contingency table; databases; decision trees;
online data mining; performance; relational views.

Reference to this paper should be made as follows: Bentayeb, F., Darmont, J.,
Favre, C. and Udréa, C. (2007) ‘Efficient online mining of large databases’, Int.
J. Business Information Systems, Vol. 2, No. 3, pp.328–350.

Biographical notes: Fadila Bentayeb has been an Associate Professor at the
University of Lyon 2, France, since 2001. She is a Member of the Decision
Support Databases Research Group within the ERIC laboratory. She received
her PhD degree in Computer Science from the University of Orléans, France, in
1998. Her current research interests regard database management systems,
including the integration of data mining techniques into DBMSs and data
warehouse design, with a special interest for schema evolution, XML and
complex data warehousing, benchmarking and optimisation techniques.

 Efficient online mining of large databases 329

Jérôme Darmont received his PhD degree in Computer Science from the
University of Clermont-Ferrand II, France, in 1999. He has been an Associate
Professor at the University of Lyon 2, France, since then, and became the Head
of the Decision Support Databases Research Group within the ERIC laboratory
in 2000. His current research interests mainly relate to the evaluation and
optimisation of database management systems and data warehouses
(benchmarking, auto-administration, optimisation techniques, etc.), but also
include XML and complex data warehousing and mining, and medical or
health-related applications.

Cécile Favre is currently a PhD student in Computer Science at the University
of Lyon 2, France. She is a Member of the Decision Support Databases
Research Group within the ERIC laboratory. She received her MSc degree in
Knowledge Discovery in Databases from the University of Lyon 2 in 2003.
After researching on the integration of data mining techniques into DBMSs, her
current research interests now relate to data warehouse design and evolution,
and especially the integration of users’ knowledge in data warehouses.

Cédric Udréa received his MSc degree in Knowledge Discovery in Databases
from the University of Lyon 2, France, in 2004. His Masters thesis was about
integrating data mining techniques into DBMSs. He is currently a PhD student
in Computer Science at the University of St Etienne, France, and the Member
of the EURISE laboratory. There, he is working on pattern database
management in the context of the BINGO project (INductive dataBases and
GEnomics in English).

1 Introduction

The input of traditional data mining algorithms are data structured as attribute-value
tables. Since these algorithms operate in main memory, the size of the processed
databases is limited. Nowadays, one of the key challenges in Knowledge Discovery in
Databases (KDD) is to integrate data mining methods within the framework of traditional
database systems so that their implementations can take advantage of the efficiency
provided by SQL engines (Chaudhuri, 1998).

Data mining and databases should indeed not remain as separate components in
decision support systems. Integrating data mining tools into Database Management
Systems (DBMSs) is a promising research direction for the following reasons.

 Data mining tools need integrated, consistent and cleaned data. A database is
precisely constructed through such pre-processing steps.

 Data mining algorithms operate in main memory, which limits the size of the
processed databases. DBMSs provide a framework to manage large databases
without size limit, theoretically.

 Some of the more popular data mining algorithms, namely decision tree methods,
compute many successive frequencies to build trees. The SQL language includes
COUNT and GROUP BY commands to easily compute such frequencies. Moreover,
the use of indices can improve data access time when processing the database.

 330 F. Bentayeb et al.

 When data warehouses have been stored into relational databases, OnLine Analytical
Processing (OLAP) has been integrated within DBMSs. In the same way, we
propose to extend DBMSs’ analysis features with online data mining tools.

In this paper, we propose a full integrated solution for mining large databases within
DBMSs. We aim at the following two main objectives: mine very large databases without
size limit and achieve acceptable processing times. Moreover, in opposition to the
integrated approaches proposed in the literature, our approach also presents two main
advantages: no extension of the SQL language is needed and no programming through an
Application Programming Interface (API) is required. We achieve our first objective by
integrating data mining algorithms, especially decision tree-based methods, within
DBMSs. However, processing times are quite long. To improve processing time and
carry out our second objective, we efficiently exploit some structures and primitives
provided by SQL engines for data retrieval.

In our approach, we propose three integrated methods: a view-based method
(Bentayeb and Darmont, 2002), a contingency table-based method (Bentayeb, Darmont
and Udréa, 2004) and a bitmap index-based method (Favre and Bentayeb, 2005). Each
method is based on a specific database tool.

1 View-based method. Decision tree methods generate a tree (or more generally a
graph) that is a succession of smaller and smaller partitions of an initial training set
(table or view). Our key idea comes from this very definition. Indeed, we can make
an analogy between building successive, related partitions and creating successive,
related relational views. Each node of the decision tree is then associated to the
corresponding view. Then, to build thd decision tree, we only need relational views
that we exploit through SQL queries. We show that we can process very large
databases with this method, theoretically without any size limit, while classical,
in-memory data mining software cannot. However, processing times are quite long
because of multiple accesses to the database.

2 Contingency table-based method. In order to improve processing times, preparing
the data before the data mining process becomes crucial. We propose an original
method to achieve this goal, which comprises reducing the size of the training set.
We build a contingency table, i.e. a table that contains the frequencies,
corresponding to the whole training set and whose size is normally much smaller
than the table containing the whole training set. Data mining methods are then
adapted so that they can apply to this contingency table. To the best of our
knowledge, no data mining method currently uses such a data preparation phase.

3 Bitmap index-based method. Another method for improving processing times
comprises reducing the number of data accesses within the DBMS. The method we
propose exploits database indices, namely bitmap indices that have many useful
properties, such as count and bitwise operations that we exploit through SQL queries
to build decision trees. Our method presents an important advantage because there is
no need to access the source data, since we deal with bitmap indices rather than with
the whole training set.

We implemented different decision tree algorithms, such as ID3, C4.5 and CART
following our three methods within the Oracle DBMS, as PL/SQL stored procedures. In
this paper, we detail the algorithm and performance results for the ID3 method, which are

 Efficient online mining of large databases 331

quite similar than those of C4.5 and CART. We observe that our integrated approach
allows to process larger databases than in-memory implementations while presenting
interesting processing times.

This paper expands our previous work along four axes. First, our motivation in this
paper is to globally present our integrated approach as a whole. Second, we present a
complete overview of the existing approaches for mining large databases from both the
data mining and the database fields and compare them to our solution. Third, we detail
implementation issues. Finally, we present new experiments on several data sets and
discuss the results we obtained when comparing our three integrated methods.

The remainder of this paper is organised as follows. First, we discuss the related work
regarding large databases mining in Section 2. Section 3 presents the principles of
decision tree-based methods. In Sections 4, 5 and 6, we detail our different integrated
methods and present their implementation, as well as complexity studies, respectively.
We also present, in Section 7, the experiments we performed to validate our approach.
We finally conclude this paper and discuss the research perspectives in Section 8.

2 Related work

Efficiently mining large databases has been the subject of many research studies for
several years. Since traditional data mining algorithms operate in main memory, the size
of the processed databases is limited. Different approaches have emerged to overcome
this limit. The first one comprises pre-processing of the data to reduce the size of the
learning databases. The second one uses optimisation techniques to assure the methods’
scalability. The third one develops tools for integrating data mining algorithms into
DBMSs.

2.1 Data pre-processing

Variable and feature selection have become the focus of much research in areas of
application for which datasets with tens or hundreds of thousands of variables are
available. The objective of variable selection is to improve the prediction performance of
the predictors. In fact, it comprises exploiting the data pre-processing techniques. First,
feature selection (Liu and Motoda, 1998; Fu and Wang, 2005) aims at reducing the
number of predictive attributes. The feature selection must assume that the attributes that
are deleted from the learning population do not impact the learning result, i.e. it must
delete the less-pertinent attributes for learning. Sampling techniques (Toivonen, 1996;
Chauchat and Rakotomalala, 2001; Scheffer and Wrobel, 2002) aim at considering fewer
individuals for learning. The main objective is to obtain a sampling of the learning
population that is representative of the whole population. However, the learning quality
must not be decreased. It has indeed been proved that, with a well-chosen sampling,
decision tree algorithms can provide better results than with the whole learning
population (Chauchat and Rakotomalala, 2001).

2.2 Scalability

Data mining often induces problems of combinatorial explosion in terms of space and
time. Thus, there has been an impressive amount of work related to scalability, which

 332 F. Bentayeb et al.

focuses on scaling data mining techniques to work on large datasets. Scalability is
achieved by two means:

 Optimising the algorithms (Agrawal et al., 1996; Gehrke, Ramakrishnan and Ganti,
2000; Lee, Park and Park, 2003), i.e. exploring how to improve the efficiency of the
mining algorithms.

 Optimising data accesses (Dunkel and Soparkar, 1999; Lu and Liu, 2000; Ramesh,
Maniatty and Zaki, 2002), i.e. focusing on the impact of representation, organisation
and access to data on performance of mining algorithms.

2.3 Integrated methods

Recently, a new approach has emerged to apply data mining algorithms on large
databases. It comprises integrating data mining methods within DBMSs (Chaudhuri,
1998). A first step in this integration process has been achieved with the rise of data
warehousing, whose primary purpose is decision support rather than reliable storage. A
closely related area is OLAP (Codd, 1993). Database vendors also recently integrated
data mining methods into their systems under the form of ‘black box’ tools, either by
developing extensions of SQL or by developing ad hoc APIs (Oracle, 2001; Soni, Tang
and Yang, 2001). These tools allow client applications to explore and manipulate the
existing mining models and their applications through an interface similar to that used for
exploring tables, views and other first-class relational objects.

Many other integrated approaches have been proposed in the literature. They usually
use either extensions of SQL for developing new operators (Meo, Psaila and Ceri, 1998;
Sarawagi, Thomas and Agrawal, 1998; Geist and Sattler, 2002), new languages (Han et
al., 1996; Imielinski and Virmani, 1999; Elfeky, Saad and Fouad, 2000; Wang, Zaniolo
and Luo, 2003; Meo, 2003; Feng and Dillon, 2005; Luo et al., 2005) or extensions of the
DBMS itself by introducing the concept of ‘virtual mining view’ (Calders, Goethals and
Prado, 2006).

There are also advances in the context of integrated approaches that neither use any
API nor extensions of SQL. A new index type has indeed been proposed (Morzy and
Zakrzewicz, 1998). It can be considered as an extension of bitmap indices and helps
improving subset searching in large databases. This approach could be used in the field of
association rule mining. Moreover, in Ordonez (2006), the author proposes to integrate
the K-Means clustering method with a relational DBMS using SQL.

In conclusion, integrating data mining algorithms within the framework of traditional
database systems becomes one of the key challenges for research in both the database and
the data mining fields (Chaudhuri, 1998). Indeed, it provides online data mining
operators to the users in addition to the usual SQL operators.

3 Decision tree-based methods

3.1 Principle

Decision trees are among the most popular supervised learning methods proposed in the
literature. They are appreciated for their simplicity and the high efficiency of their
algorithms, for their ease of use and for the easily interpretable results they provide.

 Efficient online mining of large databases 333

Many induction tree methods have been proposed so far in the literature. Some, such as
‘Induction Decision Tree’ (ID3) (Quinlan, 1986) and C4.5 (Quinlan, 1993), build n-ary
trees. Others such as ‘Classification And Regression Tree’ (CART) (Breiman et al.,
1984) produce binary trees.

An induction tree may be viewed as a succession of smaller and smaller partitions of
an initial training set. It takes a set of objects (tuples) described by a collection of
attributes as the input. Each object belongs to one of a set of mutually exclusive classes.
The induction task determines the class of any object from the values of its attributes. A
training set of objects whose class is known is needed to build the induction graph.
Hence, an induction graph building method takes a set of objects defined by predictive
attributes and a class attribute, which is the attribute to predict as the input.

Decision tree construction methods apply successive criteria on the training
population to obtain these partitions, wherein the size of one class is maximised. In the
ID3 algorithm, for example, the discriminating power of an attribute for splitting a node
of the decision tree is expressed by a variation of entropy. The entropy hs of a node sk

(more precisely, its entropy of Shannon) is

ik ik
2

1

() log
c

s k
k ki

n n
h s n n (1)

where nk is the frequency of sk and nik is the number of objects of sk that belongs to class
Ci. The information carried by a partition SK of K nodes is then the weighted average of
the entropies,

1

() ()
K

k
K s k

j
k

n
E S h sn (2)

where nj is the frequency of the splitted node sj. Finally, the information gain associated
to SK is

() () ()K s j KG S h s E S (3)

Figure 1 provides an example of decision tree with its associated rules, where p(Class #i)
is the probability of objects to belong to Class #i.

Figure 1 Example of decision tree

 334 F. Bentayeb et al.

3.2 Running example

To illustrate how the different methods presented in this paper operate, we use the
TITANIC database as an example (Table 1), which is a training set of 2201 tuples. It is
commonly used to test decision tree building methods.
Table 1 TITANIC database

Class Age Gender Survivor

1st Adult Female Yes
3rd Adult Male Yes
2nd Child Male Yes
3rd Adult Male Yes
1st Adult Female Yes
2nd Adult Male No
1st Adult Male Yes
Crew Adult Female No
Crew Adult Female Yes
2nd Adult Male No
3rd Adult Male No
Crew Adult Male No

The aim is to predict which classes of passengers of the TITANIC are more likely to
survive the wreck. Those passengers are described by three predictive attributes:
Class = {lst; 2nd; 3rd; Crew}; Age = {Adult; Child}; Gender = {Female; Male} and the
attribute to predict Survivor = {No; Yes}.

4 View-based method

4.1 Principle

In our first integrated method (Bentayeb and Darmont, 2002), the key idea is to associate
each node in the decision tree with its corresponding relational view. In this method, the
root node of the decision tree is represented by a relational view corresponding to the
whole training dataset. Since each sub-node in the decision tree represents a
sub-population of its parent node, we build a relational view for each node which is based
on its parent view. Then, these views are used to count the frequency of each class in the
node with simple GROUP BY queries. These counts are used to determine the criterion
that helps either partitioning the current node into a set of disjoint sub-partitions based on
the values of a specific attribute or concluding that the node is a leaf, i.e. a terminal node.
To illustrate our method, we show in Figure 2 how these views are created based on the
TITANIC training set (Table 1). Then we represent in Figure 3 the SQL statements for
creating the views associated to the sample decision tree from Figure 2. This set of views
constitutes the decision tree.

 Efficient online mining of large databases 335

Figure 2 TITANIC sample decision tree

Figure 3 Relational views associated with the TITANIC sample decision tree

4.2 Implementation

We present the algorithm for the ID3 method that we call View_ID3. We implemented
this algorithm within the Oracle 10 g DBMS as a PL/SQL stored procedure.

Algorithm

Input parameters. The input parameters of our algorithm are given in Table 2.
Table 2 View_ID3 algorithm input parameters

Parameter Name Default value

Data source table name table_name –
Class attribute (attribute to predict) class –
Results table name res_name BTRES
(Strict) minimum information gain for node building min_gain 0
Root node view name root_view BTROOT
Clean-up views after execution (True/False) del TRUE

 336 F. Bentayeb et al.

Pseudo-code. We call a procedure named Entropy () that computes both the entropy and
the frequency of a node. These data are used when computing the information gain.
Entropy () is coded in PL/SQL. Our algorithm pseudo-code for the View_ID3 procedure
is provided in Figure 4.

Figure 4 Pseudo-code for View_ID3 stored procedure

Result output. The output of our stored procedure, namely a decision tree, is stored into
a relational table whose name is specified as an input parameter. The table structure
reflects the hierarchical structure of the tree. Its fields are:

 node, the node ID number (primary key, the root node ID is always #0 – note that
there is a direct link between the node ID and the associated view name).

 parent, the ID number of the parent node in the tree (foreign key, references a node
ID number).

 Efficient online mining of large databases 337

 rule, the rule that lead to the creation of this node, e.g. Gender = ‘Female’.

 frequency, for each value V of attribute E, a field labelled E_V, the frequency for the
considered value of the attribute in this node.

Such a table is best queried using Oracle SQL hierarchical statements. The result is
directly a textual description of the output decision tree. A sample query is provided in
Figure 5. From this representation, it is very easy to deduce the corresponding set of
production rules.

Figure 5 Hierarchical SQL query for decision tree display

5 Contingency table-based method

5.1 Definition

A contingency table is usually represented by means of a multidimensional table of
frequencies that may contain NULL values. In our approach, data mining algorithms are
integrated within DBMSs and hence operate onto relational data structures. In this
context, contingency tables are represented by means of relational tables or views and
contain only non-NULL frequency values. This considerably reduces the size of the table.
An additional attribute is then added to the contingency table structure to represent
frequency values.

5.2 Principle

In this method (Bentayeb et al., 2004), we aim at reducing the size of the initial training
set to improve processing times. Thus, we build the contingency table, i.e. a table that
contains the frequencies corresponding to the whole training set. It can be computed by a
simple SQL query. For example, let TS be a training set defined by n predictive attributes
A1, , An and the class attribute C. The associated contingency table CT is obtained by
executing the SQL query displayed in Figure 6.

Figure 6 Relational view associated to contingency table CT

Therefore, decision tree methods have to be adapted to be applied on this contingency
table whose size is normally much smaller than the initial training set. Hence, the gain in
terms of processing time is normally significant.

 338 F. Bentayeb et al.

5.3 Running example and implementation

The classical contingency table corresponding to the TITANIC training set (Table 1) is
provided in Figure 7. Its relational representation is obtained with a simple SQL query
(Figure 8). Its result contains only 24 tuples (Figure 9).

Figure 7 Classical contingency table for TITANIC

Figure 8 Relational view associated to the TITANIC contingency table

Figure 9 Relational representation of the TITANIC contingency table

 Efficient online mining of large databases 339

We used Oracle 10g to implement our adaptation of ID3 to contingency tables under the
form of a PL/SQL stored procedure named CT_ID3.

5.4 New formula for the information gain

Since the training set is a contingency table (a table containing frequencies), this induces
changes for computing the information gain for each predictive attribute and,
consequently, for computing the entropy.

To compute the information gain for a predictive attribute, our view-based ID3
implementation (View_ID3) reads all the tuples in the whole partition corresponding to
the current node of the decision tree, in order to determine the tuple distribution regarding
the values of each predictive attribute and the class attribute. In our contingency
table-based method, it is quite simple to obtain the size of a sub-population satisfying a
given set of rules Er (e.g. Age = ‘Child’ AND Gender = ‘Female’) by summing the values
of the Frequency attribute from the contingency table, for the tuples that satisfy Er.
Hence, we reduce the number of read operations to one only for computing the
information gain of a predictive attribute. Indeed, as presented in Section 3, the usual
calculation of the information gain for an attribute having k possible values and with a
class attribute having c possible value is

ik ik
2

1 1

() () log
K c

k
K s j

j k kk i

n n n
G S h s n n n (4)

where nj is the node frequency, nk is the frequency of the sub-node having value Vk for
the predictive attribute, nik is the frequency of the sub-node partition having value Vk for
the predictive attribute and value Ci for the class attribute. However, if we develop
Equation (4) and since log2(a/b) = log2a – log2b, by adding up nik and nk, we obtain

ik 2 ik 2
1 1 1

1() () log log
K c K

K s j k k
j k i k

G S h s n n n nn (5)

By applying Equation (5) to the contingency table (that we read only once), we obtain the
information gain easily. Indeed, in this formula, it is not necessary to know various
frequencies at the same time (nj, nk, nik), and we obtain nk by summing the nik and nj by
summing the nk.

5.5 Complexity study

Our objective here is to compare the complexity of both our integrated methods (CT_ID3
and View_ID3) in terms of processing times. We suppose that both algorithms are
optimised in their implementation so that only the necessary tuples are read. In this study,
we are interested in the time spent reading and writing data, since these are the most
expensive operations. We consider that a tuple is read or written in one time unit. Finally,
we consider that the obtained decision tree is balanced and whole, i.e. at each level of the
tree, the union of the populations of the various nodes equals the whole database.

Let N be the total number of tuples in the training set. Let K be the number of
predictive attributes. Let T be the size of the corresponding contingency table.

 340 F. Bentayeb et al.

With View_ID3, to reach level i + 1 from an unspecified level i of the tree, each node
must be read as many times as there are predictive attributes at this level, i.e. (K – i). As
the sum of the frequencies at this level corresponds to the frequency of the starting
database, it is thus necessary to read N tuples (K – i) times (number of tuples size of a
tuple number of attributes). Hence, the total reading time for level i is N(K – i). In order
to reach this level, it is also necessary to write the corresponding tuples. The writing time
is thus N.

Since
1

(1) / 2,
K

i
i K K we obtain the following final complexity from the root

to the leaves (level K):

 reading complexity: N[(K2/2) – (K/2)] time units, therefore NK2

 writing complexity: NK time units.

In our contingency table-based method, we first create the contingency table. The writing
time is thus T. To compute the contingency table, we read the whole database once. The
reading time is thus N. When reaching level i + 1 from level i, we read all the T tuples
(K – i) times, for a total time by level of T (K – i).

Hence, with CT_ID3, the complexity results are:

 reading complexity: T [(K2/2) – (K/2)] + N time units, therefore TK2 or N if N > TK2

 writing complexity: T time units.

In conclusion, in terms of processing times, our contingency table-based method allows
an improvement of N/T or K2 (if N > TK2) for reading and of NK/T for writing. Since N is
usually much greater than T, this improvement is significant.

6 Bitmap index-based method

6.1 Principle

Bitmap indices improve the performance of SQL queries including COUNT or bitwise
operations by not accessing the source data. This type of queries is similar to those we
need to build a decision tree and more precisely to define the size of the nodes’
sub-populations. Indeed, as we are going to explain next, in Table 4, to find the total
number of ‘male survivors’, the SQL engine performs logical AND and COUNT
operators onto bitmap indices and retrieves the result without accessing the source data.
In the case of a decision tree-based method, this query may correspond to a splitting step
for obtaining the frequency of class Survivor = ‘Yes’ in the node corresponding to the rule
Gender = ‘Male’. Our key idea comes from this very definition (Favre and Bentayeb,
2005).

6.2 Bitmap indices

Originally, a bitmap index is a data structure used to efficiently access large databases
(O’Neil, 1987; O’Neil and Quass, 1997). Generally, the purpose of an index is to provide
pointers to the rows in a table that contain a given key value. In a regular index, this is
achieved by storing a list of row identifiers (RowIds) for each key corresponding to the

 Efficient online mining of large databases 341

rows with that key value. In a bitmap index, records in a table are assumed to be
numbered sequentially from 1. For each key value, a bitmap (array of bits) is used instead
of a list of RowIds. Each bit in the bitmap corresponds to a possible RowId. If the bit is
set to ‘1’, the row with the corresponding RowId contains the key value; otherwise, the
bit is set to ‘0’. A mapping function converts the bit position to an actual RowId; hence
the bitmap index provides the same functionality as a regular index even though it
internally uses a different representation.

Example. To illustrate how bitmap indices work, we use as an example, the TITANIC
database, presented in Table 1. A bitmap index on the Survivor attribute is presented in
Table 3.
Table 3 Survivor bitmap index

 RowId 12 11 10 9 8 7 6 5 4 3 2 1

Survivor No 1 1 1 0 1 0 1 0 0 0 0 0
 Yes 0 0 0 1 0 1 0 1 1 1 1 1

Table 4 Bitmap (Survivor = ‘Yes’) AND bitmap (Gender = ‘Male’)

RowId 12 11 10 9 8 7 6 5 4 3 2 1

Survivor = ‘Yes’ 0 0 0 1 0 1 0 1 1 1 1 1
Gender = ‘Male’ 1 1 1 0 0 1 1 0 1 1 1 0
AND 0 0 0 0 0 1 0 0 1 1 1 0

Properties. Bitmap indices are designed for efficient queries on multiple keys. Hence,
queries are answered using bitwise operations such as intersection (AND) and union
(OR). Each operation exploits two bitmaps of the same size and is applied on
corresponding bits to get the result bitmap. Every ‘1’ bit in the result marks the desired
tuple. Counting the number of tuples in the result is even faster. For queries such as
‘SELECT COUNT () WHERE AND OR ’, the logical operations can provide
answers without accessing the source data.

In addition to standard operations, the SQL engine can use bitmap indices to
efficiently perform special set-based operations using combinations of multiple indices,
without accessing source data. For example, to find the total number of ‘male survivors’,
the SQL engine can simply perform a logical AND operator between bitmaps
Survivor = ‘Yes’ and Gender = ‘Male’, and then count the number of ‘1’ in the result
bitmap (Table 4). Hence, 367 men survived the shipwreck. Note that, to obtain the result,
the SQL engine does not require to browse the TITANIC table.

6.3 Bitmap indices for building decision trees

In order to build decision trees using bitmap indices, for an initial training set, we create
its associated set of bitmap indices for both the predictive attributes and the class
attribute. For the root node of the decision tree, the frequency of each class is obtained by
simply counting the total number of ‘1’ values in the corresponding bitmap. For each
other node in the decision tree, we compute a new set of bitmaps, each one corresponding
to a class in the node. The bitmap characterising each class in the current node is obtained

 342 F. Bentayeb et al.

by applying the AND operator between the bitmap associated to the node and the bitmaps
corresponding to the successive related nodes from the root to the current node. To
compute the frequency of each class in this node, we count the total number of ‘1’ in the
result bitmap. Since the information gain is based on population frequencies, it is also
computed with bitmap indices.

6.4 Running example

To illustrate our method, let us take the TITANIC database presented in Table 1 as an
example.

For each predictive attribute and the class attribute, we create its corresponding
bitmap index (Table 5). Thus, our new learning population is precisely composed of these
four bitmap indices. Hence, we apply the decision tree building method directly on this
set of bitmap indices instead of the whole TITANIC database.
Table 5 Bitmap indices for the TITANIC database

 RowId 12 11 10 9 8 7 6 5 4 3 2 1

Crew 1 0 0 1 1 0 0 0 0 0 0 0 Class
1st 0 0 0 0 0 1 0 1 0 0 0 1

 2nd 0 0 1 0 0 0 1 0 0 1 0 0
 3rd 0 1 0 0 0 0 0 0 1 0 1 0

Child 0 0 0 0 0 0 0 0 0 1 0 0 Age
Adult 1 1 1 1 1 1 1 1 1 0 1 1
Female 0 0 0 1 0 0 0 1 0 0 0 1 Gender
Male 1 1 1 0 1 1 1 0 1 1 1 0
No 1 1 1 0 0 0 1 0 0 0 0 0 Survivor
Yes 0 0 0 1 1 1 0 1 1 1 1 1

To build the root node of the decision tree, we just have to determine the frequency of
each class. In our running example, the class attribute Survivor has two possible values:
‘Yes’ or ‘No’. Thus, we have to determine two sub-populations, one for Survivor = ‘Yes’
and the other for Survivor = ‘No’ from the bitmap index of the Survivor attribute
(Table 3). The frequency of each class in the Survivor attribute is obtained by counting
the number of ‘1’ in the bitmap associated to Survivor = ‘Yes’ and in the bitmap
associated to Survivor = ‘No’, respectively (Figure 10).

Figure 10 Root node

The variation of entropy indicates that the splitting attribute is Gender. This attribute has
two possible values ‘Female’ and ‘Male’. The population of the current node is then
divided into two sub-nodes corresponding to the rules Gender = ‘Male’ and
Gender = ‘Female’, respectively. Each sub-node is composed of two sub-populations that

 Efficient online mining of large databases 343

survived or not. To obtain the sizes of these sub-populations, we apply the logical
operator AND firstly between the Gender = ‘Male’ and the Survivor = ‘Yes’ bitmaps and
secondly between the Gender = ‘Male’ and the Survivor = ‘No’ bitmaps, as shown in
Table 6.
Table 6 AND_bitmaps for the node Gender = ‘Male’

RowId 12 11 10 9 8 7 6 5 4 3 2 1

Survivor = ‘Yes’ 0 0 0 1 0 1 0 1 1 1 1 1
Gender = ‘Male’ 1 1 1 0 0 1 1 0 1 1 1 0
AND 0 0 0 0 0 1 0 0 1 1 1 0
Survivor = ‘No’ 1 1 1 0 1 0 1 0 0 0 0 0
Gender = ‘Male’ 1 1 1 0 0 1 1 0 1 1 1 0
AND 1 1 1 0 0 0 1 0 0 0 0 0

To obtain the frequency of the sub-population associated to the rule “Survivor = ‘Yes’
AND Gender = ‘Male’ ” (respectively “Survivor = ‘No’ AND Gender = ‘Male’ ”), we
simply count the total number of ‘1’ in the corresponding AND_bitmap (Table 6). The
same process is applied for the node corresponding to the rule Gender = ‘Female’
(Figure 11).

Figure 11 Splitting with the Gender attribute

The variation of entropy now indicates that the next splitting attribute is Class. From the
node Gender = ‘Male’, we obtain four sub-nodes since the Class attribute has four values
(‘1st’, ‘2nd’, ‘3rd’ and ‘Crew’). For example, to obtain the frequencies of the
sub-populations corresponding to the node Class = ‘1st’, we compute two AND_bitmaps,
namely (Gender = ‘Male’ AND Class = ‘1st’ AND Survivor = ‘Yes’) and
(Gender = ‘Male’ AND Class = ‘1st’ AND Survivor = ‘No’) (Table 7). The
sub-populations’ frequencies are then obtained by counting the total number of ‘1’ in
each AND_bitmap obtained.
Table 7 AND_bitmaps associated to the node corresponding to the rule Class = ‘1st’

RowId 12 11 10 9 8 7 6 5 4 3 2 1

Survivor = ‘Yes’ AND Gender = ‘Male’ 0 0 0 0 0 1 0 0 1 1 1 0
Class = ‘1st’ 0 0 0 0 0 1 0 1 0 0 0 1
AND 0 0 0 0 0 1 0 0 0 0 0 0
Survivor = ‘No’ AND Gender = ‘Male’ 1 1 1 0 0 0 1 0 0 0 0 0
Class = ‘1st’ 0 0 0 0 0 1 0 1 0 0 0 1
AND 0 0 0 0 0 0 0 0 0 0 0 0

 344 F. Bentayeb et al.

6.5 Implementation

The implementation of the ID3 method using bitmap indices takes the form of a PL/SQL
stored procedure named Bitmap_ID3 under Oracle 10 g. This stored procedure allows us
to create the necessary bitmap indices for a given training set and then to build the
decision tree. Since Oracle uses B-Tree indices by default, we forced it to use bitmap
indices. The nodes of the decision tree are built by using an SQL query that is based on
an AND operation applied on its own bitmaps and its parent bitmaps. Then, the obtained
AND_bitmaps are used to count the population frequency of each class in the node with
simple COUNT queries. These counts are used to determine the criterion that helps either
partitioning the current node into a set of disjoint sub-partitions based on the values of a
specific attribute or concluding that the node is a leaf, i.e. a terminal node. Similarly, to
compute the information gain for a predictive attribute, our implementation uses bitmap
indices rather than the whole training set.

6.6 Complexity study

Our objective here is to confirm, from a theoretical point of view, the gain induced by
considering the set of bitmap indices rather than the initial training set as the learning set
(we denote them as bitmap index-based method and classical method, respectively). For
this study we place ourselves in the worst case, i.e. the indices are too large to be loaded
in main memory.

Let N be the total number of tuples in the training set, K the number of attributes, L
the average length, in bits, of each attribute and A the average number of values of each
attribute.

First, we evaluate the size of training sets. The size of the initial training set is
N L K bits. For our bitmap index-based method, this initial training set is replaced by
the set of bitmap indices. Thus K bitmap indices are created with an average number of A
bitmaps for each index. Each bitmap has a size of N bits. In this case, the size of the
training set is N A K bits. As regards to the size of the training set and thus the
loading time, our method is preferable if A < L, which corresponds to a majority of cases.

In terms of data reading time, we consider that a bit is read in one time unit. The total
number of nodes on the ith depth level can be approximated by Ai – 1. Indeed we suppose
that the obtained decision tree is complete and balanced. To reach level i + 1 from an
unspecified level i of the tree, each training set must be read as many times as there are
predictive attributes remaining at this level, i.e. (K – i).

In the classical method, as the size of the training set is N L K, the reading time
for level i (in time units) is (K – i) N L K Ai – 1. Hence, to build the whole decision

tree in the classical method, the reading time is : 1
1
() .

K i
i

K i N L K A

In our bitmap index-based method, the index size is approximated by N A bits. To
reach level i + l from an unspecified level i of the tree for a given predictive attribute, the
number of index to read is i + 1. Thus, at level i, the reading time is: (i + 1)(K – i)N Ai.
Hence, to build the whole decision tree with our bitmap index-based method, the reading

time is:
1
(1)() .

K i
i

i K i N A

 Efficient online mining of large databases 345

To evaluate the gain in time, we build the following ratio:

1

1

()
time with classical method .

time with bitmap index-based method
()(1)

K
i

i
K

i

i

KL
K i A

A
R

K i i A

After computing we obtain: 1

1 1

()

() ()

K
i

i
K K

i i

i i

KL
K i A

A
R

K i A i K i A

1 1

1

()
1 (1)

()

K
i

i
K

i

i

i K i A
A A

R G
KL KL

K i A

As we consider the polynomials of higher degree, G is of complexity K. Thus R–1 is of
complexity A/L. Indeed R–1 = (A/KL)(1 + K) = (A/L)[1+(1/K)] and 1/K is insignificant.
Our method is interesting if the ratio R–1 is lower than one, that means if A < L, which
corresponds to a majority of cases.

7 Performance

In order to validate our integrated implementation of data mining methods and to
compare its performance with an in-memory implementation, we carried out tests on
different views from the CovType database1. The CovType database contains 581,012
tuples defined by 54 predictive attributes and one class (with seven distinct values). We
created five views, each one containing a part of the CovType database and defined by
three predictive attributes (each one having five values) and the class. The predictive
attributes we used and the size of each view are provided in Figure 12. These tests have
been performed on a PC computer with l.50 GHz and 512 MB of RAM running the
Personal Oracle DBMS version 10 g.

Figure 12 Views used in CovType tests

 346 F. Bentayeb et al.

Figure 13 shows the results achieved with our different implementations of ID3. The
classical in-memory method using the Sipina software (Zighed and Rakotomalala, 1996),
the view-based, the contingency table-based and the bitmap index-based implementations
are, respectively, labelled as Sipina_ID3, View_ID3, CT_ID3 and Bitmap_ID3. For
integrated approaches, we add the time required for building bitmap indices and the
contingency table to processing time. In opposition, processing time with Sipina_ID3
includes loading time, since it is necessary to load the data from the database into the
memory each time the algorithm is executed.

Figure 13 Performance comparison of ID3 implementations

First of all, we note that for databases larger than 2,270 MB, with the hardware
configuration used for the tests, Sipina is unable to build the decision tree, whereas our
integrated methods can. Sipina is indeed limited by the size of the memory.

Moreover, our results clearly underline the gain induced by our integrated approach,
compared with the classical in-memory, approach. The processing time for Sipina_ID3,
indeed, increases from about 16 to 80 sec when the view size is multiplied by 5. Thus, the
processing time for Sipina_ID3 is multiplied by about 5, whereas it is multiplied by 3 for
view-based and bitmap index-based methods, and by a little more than 1 for the
contingency table-based method.

Now, if we compare our different integrated methods, processing time increases more
smoothly. The processing time increase is almost identical for View_ID3, and
Bitmap_ID3 (from about 9 to 22 sec for View_ID3, and from about 5 to 16 sec for
Bitmap_ID3). Processing time for CT_ID3 is almost constant (from about 2 to 3 sec).

Our experimental results also demonstrate that the contingency table-based method is
the best integrated method. For CT_ID3, the induced gain mainly depends on the size of
the contingency table, which is generally considerably smaller than the size of the initial
training set. Nevertheless, in extreme cases, the size of the contingency table may be so
close to that of the whole training set so that the profit becomes negligible. However, this
is very rare in real-life cases, and scanning the contingency table can never be worse than
scanning the whole database.

View_ID3 is the slowest integrated method. In this case, processing times remain
quite long because of multiple accesses to the database, because it does not use any
optimisation tool. The bitmap index-based method is about 30% faster than View_ID3 on

 Efficient online mining of large databases 347

an average. This result was expected since using bitmap indices avoids many data
accesses.

Finally, we can say that our integrated methods are particularly interesting for large
databases. Sipina is indeed very fast for computing and very slow for loading data,
whereas our integrated methods bear the opposite behaviour; and loading time increases
quicker than computing time when the database grows larger. The use of a contingency
table as an optimisation tool improves processing times the most significantly.

8 Conclusion and perspectives

In order to apply data mining algorithms to large databases, two main approaches are
proposed in the literature: the classical approach and the integrated approach. The
classical approach is limited by the size of the processed databases, since it exploits
separate data mining pieces of software that operate in main memory. The main objective
in this approach is then to reduce the size of databases, either by using techniques for
pre-processing data or by sampling. The integrated approach comprises processing of the
data mining methods within DBMSs, using only the tools offered by these systems. By
exploiting their management of persistent data, the database size limit is toppled.

Following the integrated approach, we proposed in this paper a framework to offer to
DBMS users the online data mining operators for mining large databases without size
limit and in acceptable processing times. We proposed three integrated methods (a view-
based method, a contingency table-based method and a bitmap index-based method) for
applying decision tree algorithms on large databases. Each method is based on a specific
database tool, namely relational views, contingency table and bitmap indices,
respectively.

To validate our online data mining approach, we have implemented three decision
tree building methods (ID3, C4.5, CART)2 under Oracle 10g, as a PL/SQL package
named decision_tree that is available online3.

Moreover, we carried out tests on different data sets to compare our different
integrated methods with the classical in-memory method. Our experimentation clearly
underlined the efficiency of our integrated methods when the database is large. We
showed that we could process very large databases without any size limit, while Sipina
could not. In addition, we showed that our contingency table-based method presented the
best processing time. This result could be expected since it is based on aggregated data
that reduce the size of the initial training set. Note that in-memory data mining methods
could also use contingency tables instead of original learning sets to improve their
processing time.

The perspectives opened by this study are numerous. First, we plan to add in the
decision_tree package other procedures to supplement the offered data mining tools, such
as sampling, missing values management, learning validation techniques and
non-supervised learning methods.

We also aim to adapt our integrated approach to mine data warehouses, since they can
be stored as relational databases. For example, our contingency-table based method can
be performed on relational data cubes by applying the SUM function.

Finally, most of data mining research has concentrated on the single table case. We
are currently extending our integrated approach to deal with multiple relational tables.
Our first idea comprises using bitmap join indices. Then, we can talk about online

 348 F. Bentayeb et al.

database mining, which incorporates the ability to directly access the data stored in a
database (several related tables) rather than online data mining (one single table).

Acknowledgement

The authors are very grateful to the anonymous reviewers and the editor of this article,
whose comments and suggestions greatly helped to improve this work.

References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. and Verkamo, A.I. (1996) ‘Fast discovery of

association rules’, In Advances in Knowledge Discovery and Data Mining (pp.307–328).
Boston, MA: AAAI/MIT Press.

Bentayeb, F. and Darmont, J. (2002) ‘Decision tree modeling with relational views’, Paper
presented at the XIIIth International Symposium on Methodologies for Intelligent Systems
(ISMIS 02), Lyon, France, Vol. 2366 of LNAI, pp.423–431. Springer. In proceedings.

Bentayeb, F., Darmont, J. and Udréa, C. (2004) ‘Efficient integration of data mining techniques in
DBMSs’, Paper presented at the VIIIth International Database Engineering and Applications
Symposium (IDEAS 04), Coimbra, Portugal, (pp.59–67). IEEE Computer Society. In
proceedings.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression
Trees. UK: Wadsworth.

Calders, T., Goethals, B. and Prado, A. (2006) ‘Integrating pattern mining in relational databases’,
Paper presented at the Xth European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD 06), Berlin, Germany. LNAI, Springer. In proceedings.

Chauchat, J.H. and Rakotomalala, R. (2001) ‘Sampling strategy for building decision trees from
very large databases comprising many continuous attributes’, In Instance Selection and
Construction for Data Mining, Vol. 608 of International Series in Engineering and Computer
Science, pp.171–188. New York: Kluwer Academic Publishers.

Chaudhuri, S. (1998) ‘Data mining and database systems: where is the intersection?’, Data
Engineering Bulletin, Vol. 21, pp.4–8.

Codd, E.F. (1993) ‘Providing OLAP (On-Line Analytical Processing) to user-analysts: an IT
mandate’, Techinical report E.F. Codd and Associates.

Dunkel, B. and Soparkar, N. (1999) ‘Data organization and access for efficient data mining’, Paper
presented at the XVth International Conference on Data Engineering (ICDE 99), Sydney,
Australia, pp.522–529. IEEE Computer Society. In proceedings.

Elfeky, M.G., Saad, A.A. and Fouad, S.A. (2000) ‘QDMQL object data mining query language’,
Paper presented at the International Symposium on Objects and Databases (ECOOP 00),
Sophia Antipolis, France, Vol. 1944 of LNCS, pp.128–140. Springer. In proceedings.

Favre, C. and Bentayeb, F. (2005) ‘Bitmap index-based decision trees’, Paper presented at the XVth
International Symposium on Methodologies for Intelligent Systems (ISMIS 05), Saratoga
Springs, New York, USA, Vol. 3488 of LNCS, pp.65–73. Springer. In proceedings.

Feng, L. and Dillon, T.S. (2005) ‘An XML-enabled data mining query language: XML-DMQL’,
Int. J. Business Intelligence and Data Mining, Vol. 1, pp.22–41.

Fu, X. and Wang, L. (2005) ‘Data dimensionality reduction with application to improving
classification performance and explaining concepts of data sets’, Int. J. Business Intelligence
and Data Mining, Vol. l, pp.65–87.

Gehrke, J., Ramakrishnan, R. and Ganti, V. (2000) ‘RainForest – a framework for fast decision tree
construction of large datasets’, Data Mining and Knowledge Discovery, Vol. 4, pp.127–162.

 Efficient online mining of large databases 349

Geist, I. and Sattler, K.U. (2002) ‘Towards data mining operators in database systems: algebra and
implementation’, Paper presented at the IInd International Workshop on Databases,
Documents, and Information Fusion (DBFusion 02) – Information Integration and Mining in
Databases and on the Web, Karlsruhe, Germany. In proceedings.

Han, J., Fu, Y., Wang, W., Koperski, K. and Zaiane, O. (1996) ‘DMQL: a data mining query
language for relational databases’, Paper presented at the SIGMOD 96 Workshop on Research
Issues in Data Mining and Knowledge Discovery (DMKD 96), Montreal, Canada, pp.27–34.
In proceedings.

Imielinski, T. and Virmani, A. (1999) ‘MSQL: a query language for database mining’, Data Mining
and Knowledge Discovery, Vol. 3, pp.373–408.

Lee, H.J., Park, W-H. and Park, D-S. (2003) ‘An efficient algorithm for mining quantitative
association rules to raise reliance of data in large databases’, Paper presented at the IIIrd
International Conference on Hybrid Intelligent Systems (HIS 03), Melbourne, Australia, Vol.
105 of Frontiers in Artificial Intelligence and Applications, pp.672–681. IOS Press. In
proceedings.

Liu, H. and Motoda, H. (1998) Feature Selection for Knowledge Discovery and Data Mining. New
York: Kluwer Academic Publishers.

Lu, H. and Liu, H. (2000) ‘Decision tables: scalable classification exploring RDBMS capabilities’,
Paper presented at the XXVIth International Conference on Very Large Data Bases (VLDB
00), Cairo, Egypt, pp.373–384. Morgan Kaufmann. In proceedings.

Luo, C., Thakkar, H., Wang, H., and Zaniolo, C. (2005) ‘A native extension of SQL for mining
data streams’, Paper presented at the XXIVth ACM SIGMOD International Conference on
Management of Data (SIGMOD 05), Baltimore, Maryland, USA, pp.873–875. ACM Press. In
proceedings.

Meo, R. (2003) ‘Optimization of a language for data mining’, Paper presented at the ACM
Symposium on Applied computing (SAC 03), Melbourne, Florida, USA, pp.437–444. ACM
Press. In proceedings.

Meo, R., Psaila, G. and Ceri, S. (1998) ‘An extension to SQL for mining association rules’, Data
Mining and Knowledge Discovery, Vol. 2, pp.195–224.

Morzy, T. and Zakrzewicz, M. (1998) ‘Group bitmap index: a structure for association rules
retrieval’, Paper presented at the IVth International Conference on Knowledge Discovery and
Data Mining (KDD 98), pp.284–288. AAAI Press. In proceedings.

O’Neil, P.E. (1987) ‘Model 204 architecture and performance’, Paper presented at the IInd
International Workshop on High Performance Transaction Systems, Asilomar, California,
USA, Vol. 359 of LNCS, pp.40–59. Springer-Verlag. In proceedings.

O’Neil, P.E. and Quass, D. (1997) ‘Improved query performance with variant indexes’, Paper
presented at the ACM SIGMOD International Conference on Management of Data
(SIGMOD 97), Tucson, Arizona, USA, pp.38–49. ACM Press. In proceedings.

Oracle (2001) ‘Oracle 9i data mining’, White paper.
Ordonez, C. (2006) ‘Integrating K-means clustering with a relational DBMS using SQL’, IEEE

Transactions on Knowledge and Data Engineering, Vol. 18, pp.188–201.
Quinlan, J.R. (1986) ‘Induction of decision trees’, Machine Learning, Vol. 1, pp.81–106.
Quinlan, J.R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.
Ramesh, G., Maniatty, W. and Zaki, M.J. (2002) ‘Indexing and data access methods for database

mining’, Paper presented at the VIIth ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD 02), Madison, Wisconsin, USA. In proceedings.

Sarawagi, S., Thomas, S. and Agrawal, R. (1998) ‘Integrating mining with relational database
systems: alternatives and implications’, Paper presented at the ACM SIGMOD International
Conference on Management of Data (SIGMOD 98), Seattle, Washington, USA, pp.343–354.
ACM Press. In proceedings.

 350 F. Bentayeb et al.

Scheffer, T. and Wrobel, S. (2002) ‘A scalable constant-memory sampling algorithm for pattern
discovery in large databases’, Paper presented at the VIth European Conference on Principles
of Data Mining and Knowledge Discovery (PKDD 02), Helsinki, Finland, Vol. 2431 of LNCS,
pp.397–409. Springer. In proceedings.

Soni, S., Tang, Z. and Yang, J. (2001) ‘Performance study of Microsoft data mining algorithms’,
Technical report Microsoft Corp.

Toivonen, H. (1996) ‘Sampling large databases for association rules’, Paper presented at the
XXIInd International Conference on Very Large Data Bases (VLDB 96), Bombay, India,
pp.134–145. Morgan Kaufmann. In proceedings.

Wang, H., Zaniolo, C. and Luo, C.R. (2003) ‘ATLAS: a small but complete SQL extension for data
mining and data streams’, Paper presented at the XXIVth International Conference on Very
Large Data Bases (VLDB 03), Berlin, Germany, pp.1113–1116. Morgan Kaufmann.

Zighed, D.A. and Rakotomalala, R. (1996) ‘SIPINA-W(c) for Windows: user’s guide’, Technical
report, ERIC laboratory University of Lyon 2, France.

Notes
1http://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/
2In this paper, we have detailed the algorithm and results only for the ID3 method.
3http://bdd.univ-lyon2.fr/download/decision_tree.zip

