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Abstract: Great efforts have been achieved to apply data mining algorithms 
onto large databases. However, long processing times remain a practical issue. 
This paper presents a framework to offer to database users online operators for 
mining large databases without size limit, in acceptable processing times. First, 
we integrate decision tree algorithms directly into database management 
systems. We are thus only limited by disc capacity and not by main memory. 
However, disc accesses still induce long response times. Hence, we propose 
two optimisations in a second step: reducing the size of the learning database 
by building its corresponding contingency table and reducing the number of 
database accesses by exploiting bitmap indices. Thus, the various decision tree 
based methods we implemented within Oracle deal with contingency tables or 
bitmap indices rather than with the whole training set. Experimentations 
performed show the efficiency of our integrated methods. 
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1 Introduction 

The input of traditional data mining algorithms are data structured as attribute-value 
tables. Since these algorithms operate in main memory, the size of the processed 
databases is limited. Nowadays, one of the key challenges in Knowledge Discovery in 
Databases (KDD) is to integrate data mining methods within the framework of traditional 
database systems so that their implementations can take advantage of the efficiency 
provided by SQL engines (Chaudhuri, 1998). 

Data mining and databases should indeed not remain as separate components in 
decision support systems. Integrating data mining tools into Database Management 
Systems (DBMSs) is a promising research direction for the following reasons. 

 Data mining tools need integrated, consistent and cleaned data. A database is 
precisely constructed through such pre-processing steps. 

 Data mining algorithms operate in main memory, which limits the size of the 
processed databases. DBMSs provide a framework to manage large databases 
without size limit, theoretically. 

 Some of the more popular data mining algorithms, namely decision tree methods, 
compute many successive frequencies to build trees. The SQL language includes 
COUNT and GROUP BY commands to easily compute such frequencies. Moreover, 
the use of indices can improve data access time when processing the database. 
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 When data warehouses have been stored into relational databases, OnLine Analytical 
Processing (OLAP) has been integrated within DBMSs. In the same way, we 
propose to extend DBMSs’ analysis features with online data mining tools. 

In this paper, we propose a full integrated solution for mining large databases within 
DBMSs. We aim at the following two main objectives: mine very large databases without 
size limit and achieve acceptable processing times. Moreover, in opposition to the 
integrated approaches proposed in the literature, our approach also presents two main 
advantages: no extension of the SQL language is needed and no programming through an 
Application Programming Interface (API) is required. We achieve our first objective by 
integrating data mining algorithms, especially decision tree-based methods, within 
DBMSs. However, processing times are quite long. To improve processing time and 
carry out our second objective, we efficiently exploit some structures and primitives 
provided by SQL engines for data retrieval. 

In our approach, we propose three integrated methods: a view-based method 
(Bentayeb and Darmont, 2002), a contingency table-based method (Bentayeb, Darmont 
and Udréa, 2004) and a bitmap index-based method (Favre and Bentayeb, 2005). Each 
method is based on a specific database tool. 

1 View-based method. Decision tree methods generate a tree (or more generally a 
graph) that is a succession of smaller and smaller partitions of an initial training set 
(table or view). Our key idea comes from this very definition. Indeed, we can make 
an analogy between building successive, related partitions and creating successive, 
related relational views. Each node of the decision tree is then associated to the 
corresponding view. Then, to build thd decision tree, we only need relational views 
that we exploit through SQL queries. We show that we can process very large 
databases with this method, theoretically without any size limit, while classical,  
in-memory data mining software cannot. However, processing times are quite long 
because of multiple accesses to the database. 

2 Contingency table-based method. In order to improve processing times, preparing 
the data before the data mining process becomes crucial. We propose an original 
method to achieve this goal, which comprises reducing the size of the training set. 
We build a contingency table, i.e. a table that contains the frequencies, 
corresponding to the whole training set and whose size is normally much smaller 
than the table containing the whole training set. Data mining methods are then 
adapted so that they can apply to this contingency table. To the best of our 
knowledge, no data mining method currently uses such a data preparation phase. 

3 Bitmap index-based method. Another method for improving processing times 
comprises reducing the number of data accesses within the DBMS. The method we 
propose exploits database indices, namely bitmap indices that have many useful 
properties, such as count and bitwise operations that we exploit through SQL queries 
to build decision trees. Our method presents an important advantage because there is 
no need to access the source data, since we deal with bitmap indices rather than with 
the whole training set. 

We implemented different decision tree algorithms, such as ID3, C4.5 and CART 
following our three methods within the Oracle DBMS, as PL/SQL stored procedures. In 
this paper, we detail the algorithm and performance results for the ID3 method, which are 
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quite similar than those of C4.5 and CART. We observe that our integrated approach 
allows to process larger databases than in-memory implementations while presenting 
interesting processing times. 

This paper expands our previous work along four axes. First, our motivation in this 
paper is to globally present our integrated approach as a whole. Second, we present a 
complete overview of the existing approaches for mining large databases from both the 
data mining and the database fields and compare them to our solution. Third, we detail 
implementation issues. Finally, we present new experiments on several data sets and 
discuss the results we obtained when comparing our three integrated methods. 

The remainder of this paper is organised as follows. First, we discuss the related work 
regarding large databases mining in Section 2. Section 3 presents the principles of 
decision tree-based methods. In Sections 4, 5 and 6, we detail our different integrated 
methods and present their implementation, as well as complexity studies, respectively. 
We also present, in Section 7, the experiments we performed to validate our approach. 
We finally conclude this paper and discuss the research perspectives in Section 8. 

2 Related work 

Efficiently mining large databases has been the subject of many research studies for 
several years. Since traditional data mining algorithms operate in main memory, the size 
of the processed databases is limited. Different approaches have emerged to overcome 
this limit. The first one comprises pre-processing of the data to reduce the size of the 
learning databases. The second one uses optimisation techniques to assure the methods’ 
scalability. The third one develops tools for integrating data mining algorithms into 
DBMSs. 

2.1 Data pre-processing 

Variable and feature selection have become the focus of much research in areas of 
application for which datasets with tens or hundreds of thousands of variables are 
available. The objective of variable selection is to improve the prediction performance of 
the predictors. In fact, it comprises exploiting the data pre-processing techniques. First, 
feature selection (Liu and Motoda, 1998; Fu and Wang, 2005) aims at reducing the 
number of predictive attributes. The feature selection must assume that the attributes that 
are deleted from the learning population do not impact the learning result, i.e. it must 
delete the less-pertinent attributes for learning. Sampling techniques (Toivonen, 1996; 
Chauchat and Rakotomalala, 2001; Scheffer and Wrobel, 2002) aim at considering fewer 
individuals for learning. The main objective is to obtain a sampling of the learning 
population that is representative of the whole population. However, the learning quality 
must not be decreased. It has indeed been proved that, with a well-chosen sampling, 
decision tree algorithms can provide better results than with the whole learning 
population (Chauchat and Rakotomalala, 2001). 

2.2 Scalability 

Data mining often induces problems of combinatorial explosion in terms of space and 
time. Thus, there has been an impressive amount of work related to scalability, which 
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focuses on scaling data mining techniques to work on large datasets. Scalability is 
achieved by two means: 

 Optimising the algorithms (Agrawal et al., 1996; Gehrke, Ramakrishnan and Ganti, 
2000; Lee, Park and Park, 2003), i.e. exploring how to improve the efficiency of the 
mining algorithms. 

 Optimising data accesses (Dunkel and Soparkar, 1999; Lu and Liu, 2000; Ramesh, 
Maniatty and Zaki, 2002), i.e. focusing on the impact of representation, organisation 
and access to data on performance of mining algorithms. 

2.3 Integrated methods 

Recently, a new approach has emerged to apply data mining algorithms on large 
databases. It comprises integrating data mining methods within DBMSs (Chaudhuri, 
1998). A first step in this integration process has been achieved with the rise of data 
warehousing, whose primary purpose is decision support rather than reliable storage. A 
closely related area is OLAP (Codd, 1993). Database vendors also recently integrated 
data mining methods into their systems under the form of ‘black box’ tools, either by 
developing extensions of SQL or by developing ad hoc APIs (Oracle, 2001; Soni, Tang 
and Yang, 2001). These tools allow client applications to explore and manipulate the 
existing mining models and their applications through an interface similar to that used for 
exploring tables, views and other first-class relational objects. 

Many other integrated approaches have been proposed in the literature. They usually 
use either extensions of SQL for developing new operators (Meo, Psaila and Ceri, 1998; 
Sarawagi, Thomas and Agrawal, 1998; Geist and Sattler, 2002), new languages (Han et 
al., 1996; Imielinski and Virmani, 1999; Elfeky, Saad and Fouad, 2000; Wang, Zaniolo 
and Luo, 2003; Meo, 2003; Feng and Dillon, 2005; Luo et al., 2005) or extensions of the 
DBMS itself by introducing the concept of ‘virtual mining view’ (Calders, Goethals and 
Prado, 2006). 

There are also advances in the context of integrated approaches that neither use any 
API nor extensions of SQL. A new index type has indeed been proposed (Morzy and 
Zakrzewicz, 1998). It can be considered as an extension of bitmap indices and helps 
improving subset searching in large databases. This approach could be used in the field of 
association rule mining. Moreover, in Ordonez (2006), the author proposes to integrate 
the K-Means clustering method with a relational DBMS using SQL. 

In conclusion, integrating data mining algorithms within the framework of traditional 
database systems becomes one of the key challenges for research in both the database and 
the data mining fields (Chaudhuri, 1998). Indeed, it provides online data mining 
operators to the users in addition to the usual SQL operators. 

3 Decision tree-based methods 

3.1 Principle 

Decision trees are among the most popular supervised learning methods proposed in the 
literature. They are appreciated for their simplicity and the high efficiency of their 
algorithms, for their ease of use and for the easily interpretable results they provide. 



      

      

   Efficient online mining of large databases 333    

      

      

      

Many induction tree methods have been proposed so far in the literature. Some, such as 
‘Induction Decision Tree’ (ID3) (Quinlan, 1986) and C4.5 (Quinlan, 1993), build n-ary 
trees. Others such as ‘Classification And Regression Tree’ (CART) (Breiman et al., 
1984) produce binary trees. 

An induction tree may be viewed as a succession of smaller and smaller partitions of 
an initial training set. It takes a set of objects (tuples) described by a collection of 
attributes as the input. Each object belongs to one of a set of mutually exclusive classes. 
The induction task determines the class of any object from the values of its attributes. A 
training set of objects whose class is known is needed to build the induction graph. 
Hence, an induction graph building method takes a set of objects defined by predictive 
attributes and a class attribute, which is the attribute to predict as the input. 

Decision tree construction methods apply successive criteria on the training 
population to obtain these partitions, wherein the size of one class is maximised. In the 
ID3 algorithm, for example, the discriminating power of an attribute for splitting a node 
of the decision tree is expressed by a variation of entropy. The entropy hs of a node sk

(more precisely, its entropy of Shannon) is 

ik ik
2

1

( ) log
c

s k
k ki

n n
h s n n  (1) 

where nk is the frequency of sk and nik is the number of objects of sk that belongs to class 
Ci. The information carried by a partition SK of K nodes is then the weighted average of 
the entropies, 

1

( ) ( )
K

k
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j
k

n
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where nj is the frequency of the splitted node sj. Finally, the information gain associated 
to SK is 

( ) ( ) ( )K s j KG S h s E S  (3) 

Figure 1 provides an example of decision tree with its associated rules, where p(Class #i) 
is the probability of objects to belong to Class #i. 

Figure 1 Example of decision tree 



      

      

   334 F. Bentayeb et al.    

      

      

      

3.2 Running example 

To illustrate how the different methods presented in this paper operate, we use the 
TITANIC database as an example (Table 1), which is a training set of 2201 tuples. It is 
commonly used to test decision tree building methods. 
Table 1 TITANIC database 

Class Age Gender Survivor 

1st Adult Female Yes 
3rd Adult Male Yes 
2nd Child Male Yes 
3rd Adult Male Yes 
1st Adult Female Yes 
2nd Adult Male No 
1st Adult Male Yes 
Crew Adult Female No 
Crew Adult Female Yes 
2nd Adult Male No 
3rd Adult Male No 
Crew Adult Male No 

The aim is to predict which classes of passengers of the TITANIC are more likely to 
survive the wreck. Those passengers are described by three predictive attributes: 
Class = {lst; 2nd; 3rd; Crew}; Age = {Adult; Child}; Gender = {Female; Male} and the 
attribute to predict Survivor = {No; Yes}.

4 View-based method 

4.1 Principle 

In our first integrated method (Bentayeb and Darmont, 2002), the key idea is to associate 
each node in the decision tree with its corresponding relational view. In this method, the 
root node of the decision tree is represented by a relational view corresponding to the 
whole training dataset. Since each sub-node in the decision tree represents a  
sub-population of its parent node, we build a relational view for each node which is based 
on its parent view. Then, these views are used to count the frequency of each class in the 
node with simple GROUP BY queries. These counts are used to determine the criterion 
that helps either partitioning the current node into a set of disjoint sub-partitions based on 
the values of a specific attribute or concluding that the node is a leaf, i.e. a terminal node. 
To illustrate our method, we show in Figure 2 how these views are created based on the 
TITANIC training set (Table 1). Then we represent in Figure 3 the SQL statements for 
creating the views associated to the sample decision tree from Figure 2. This set of views 
constitutes the decision tree. 
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Figure 2 TITANIC sample decision tree 

Figure 3 Relational views associated with the TITANIC sample decision tree 

4.2 Implementation 

We present the algorithm for the ID3 method that we call View_ID3. We implemented 
this algorithm within the Oracle 10 g DBMS as a PL/SQL stored procedure. 

Algorithm 

Input parameters. The input parameters of our algorithm are given in Table 2. 
Table 2 View_ID3 algorithm input parameters 

Parameter Name Default value 

Data source table name table_name – 
Class attribute (attribute to predict) class – 
Results table name res_name BTRES 
(Strict) minimum information gain for node building min_gain 0 
Root node view name root_view BTROOT 
Clean-up views after execution (True/False) del TRUE 
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Pseudo-code. We call a procedure named Entropy () that computes both the entropy and 
the frequency of a node. These data are used when computing the information gain. 
Entropy () is coded in PL/SQL. Our algorithm pseudo-code for the View_ID3 procedure 
is provided in Figure 4. 

Figure 4 Pseudo-code for View_ID3 stored procedure 

Result output. The output of our stored procedure, namely a decision tree, is stored into 
a relational table whose name is specified as an input parameter. The table structure 
reflects the hierarchical structure of the tree. Its fields are: 

 node, the node ID number (primary key, the root node ID is always #0 – note that 
there is a direct link between the node ID and the associated view name). 

 parent, the ID number of the parent node in the tree (foreign key, references a node 
ID number). 
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 rule, the rule that lead to the creation of this node, e.g. Gender = ‘Female’. 

 frequency, for each value V of attribute E, a field labelled E_V, the frequency for the 
considered value of the attribute in this node. 

Such a table is best queried using Oracle SQL hierarchical statements. The result is 
directly a textual description of the output decision tree. A sample query is provided in 
Figure 5. From this representation, it is very easy to deduce the corresponding set of 
production rules. 

Figure 5 Hierarchical SQL query for decision tree display 

5 Contingency table-based method 

5.1 Definition 

A contingency table is usually represented by means of a multidimensional table of 
frequencies that may contain NULL values. In our approach, data mining algorithms are 
integrated within DBMSs and hence operate onto relational data structures. In this 
context, contingency tables are represented by means of relational tables or views and 
contain only non-NULL frequency values. This considerably reduces the size of the table. 
An additional attribute is then added to the contingency table structure to represent 
frequency values. 

5.2 Principle 

In this method (Bentayeb et al., 2004), we aim at reducing the size of the initial training 
set to improve processing times. Thus, we build the contingency table, i.e. a table that 
contains the frequencies corresponding to the whole training set. It can be computed by a 
simple SQL query. For example, let TS be a training set defined by n predictive attributes 
A1, , An and the class attribute C. The associated contingency table CT is obtained by 
executing the SQL query displayed in Figure 6. 

Figure 6 Relational view associated to contingency table CT

Therefore, decision tree methods have to be adapted to be applied on this contingency 
table whose size is normally much smaller than the initial training set. Hence, the gain in 
terms of processing time is normally significant. 
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5.3 Running example and implementation 

The classical contingency table corresponding to the TITANIC training set (Table 1) is 
provided in Figure 7. Its relational representation is obtained with a simple SQL query 
(Figure 8). Its result contains only 24 tuples (Figure 9). 

Figure 7 Classical contingency table for TITANIC 

Figure 8 Relational view associated to the TITANIC contingency table 

Figure 9 Relational representation of the TITANIC contingency table 
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We used Oracle 10g to implement our adaptation of ID3 to contingency tables under the 
form of a PL/SQL stored procedure named CT_ID3.

5.4 New formula for the information gain 

Since the training set is a contingency table (a table containing frequencies), this induces 
changes for computing the information gain for each predictive attribute and, 
consequently, for computing the entropy. 

To compute the information gain for a predictive attribute, our view-based ID3 
implementation (View_ID3) reads all the tuples in the whole partition corresponding to 
the current node of the decision tree, in order to determine the tuple distribution regarding 
the values of each predictive attribute and the class attribute. In our contingency  
table-based method, it is quite simple to obtain the size of a sub-population satisfying a 
given set of rules Er (e.g. Age = ‘Child’ AND Gender = ‘Female’) by summing the values 
of the Frequency attribute from the contingency table, for the tuples that satisfy Er.
Hence, we reduce the number of read operations to one only for computing the 
information gain of a predictive attribute. Indeed, as presented in Section 3, the usual 
calculation of the information gain for an attribute having k possible values and with a 
class attribute having c possible value is 

ik ik
2

1 1

( ) ( ) log
K c

k
K s j

j k kk i

n n n
G S h s n n n  (4) 

where nj is the node frequency, nk is the frequency of the sub-node having value Vk for 
the predictive attribute, nik is the frequency of the sub-node partition having value Vk for 
the predictive attribute and value Ci for the class attribute. However, if we develop 
Equation (4) and since log2(a/b) = log2a – log2b, by adding up nik and nk, we obtain 

ik 2 ik 2
1 1 1

1( ) ( ) log log
K c K

K s j k k
j k i k

G S h s n n n nn  (5) 

By applying Equation (5) to the contingency table (that we read only once), we obtain the 
information gain easily. Indeed, in this formula, it is not necessary to know various 
frequencies at the same time (nj, nk, nik), and we obtain nk by summing the nik and nj by 
summing the nk.

5.5 Complexity study 

Our objective here is to compare the complexity of both our integrated methods (CT_ID3
and View_ID3) in terms of processing times. We suppose that both algorithms are 
optimised in their implementation so that only the necessary tuples are read. In this study, 
we are interested in the time spent reading and writing data, since these are the most 
expensive operations. We consider that a tuple is read or written in one time unit. Finally, 
we consider that the obtained decision tree is balanced and whole, i.e. at each level of the 
tree, the union of the populations of the various nodes equals the whole database. 

Let N be the total number of tuples in the training set. Let K be the number of 
predictive attributes. Let T be the size of the corresponding contingency table. 
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With View_ID3, to reach level i + 1 from an unspecified level i of the tree, each node 
must be read as many times as there are predictive attributes at this level, i.e. (K – i). As 
the sum of the frequencies at this level corresponds to the frequency of the starting 
database, it is thus necessary to read N tuples (K – i) times (number of tuples  size of a 
tuple  number of attributes). Hence, the total reading time for level i is N(K – i). In order 
to reach this level, it is also necessary to write the corresponding tuples. The writing time 
is thus N.

Since 
1

( 1) / 2,
K

i
i K K  we obtain the following final complexity from the root 

to the leaves (level K):

 reading complexity: N[(K2/2) – (K/2)] time units, therefore NK2

 writing complexity: NK time units. 

In our contingency table-based method, we first create the contingency table. The writing 
time is thus T. To compute the contingency table, we read the whole database once. The 
reading time is thus N. When reaching level i + 1 from level i, we read all the T tuples 
(K – i) times, for a total time by level of T (K – i).

Hence, with CT_ID3, the complexity results are: 

 reading complexity: T [(K2/2) – (K/2)] + N time units, therefore TK2 or N if N > TK2

 writing complexity: T time units. 

In conclusion, in terms of processing times, our contingency table-based method allows 
an improvement of N/T or K2 (if N > TK2) for reading and of NK/T for writing. Since N is 
usually much greater than T, this improvement is significant. 

6 Bitmap index-based method 

6.1 Principle 

Bitmap indices improve the performance of SQL queries including COUNT or bitwise 
operations by not accessing the source data. This type of queries is similar to those we 
need to build a decision tree and more precisely to define the size of the nodes’  
sub-populations. Indeed, as we are going to explain next, in Table 4, to find the total 
number of ‘male survivors’, the SQL engine performs logical AND and COUNT 
operators onto bitmap indices and retrieves the result without accessing the source data. 
In the case of a decision tree-based method, this query may correspond to a splitting step 
for obtaining the frequency of class Survivor = ‘Yes’ in the node corresponding to the rule 
Gender = ‘Male’. Our key idea comes from this very definition (Favre and Bentayeb, 
2005). 

6.2 Bitmap indices 

Originally, a bitmap index is a data structure used to efficiently access large databases 
(O’Neil, 1987; O’Neil and Quass, 1997). Generally, the purpose of an index is to provide 
pointers to the rows in a table that contain a given key value. In a regular index, this is 
achieved by storing a list of row identifiers (RowIds) for each key corresponding to the 
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rows with that key value. In a bitmap index, records in a table are assumed to be 
numbered sequentially from 1. For each key value, a bitmap (array of bits) is used instead 
of a list of RowIds. Each bit in the bitmap corresponds to a possible RowId. If the bit is 
set to ‘1’, the row with the corresponding RowId contains the key value; otherwise, the 
bit is set to ‘0’. A mapping function converts the bit position to an actual RowId; hence 
the bitmap index provides the same functionality as a regular index even though it 
internally uses a different representation. 

Example. To illustrate how bitmap indices work, we use as an example, the TITANIC 
database, presented in Table 1. A bitmap index on the Survivor attribute is presented in 
Table 3. 
Table 3 Survivor bitmap index 

 RowId 12 11 10 9 8 7 6 5 4 3 2 1 

Survivor No 1 1 1 0 1 0 1 0 0 0 0 0 
 Yes 0 0 0 1 0 1 0 1 1 1 1 1 

Table 4 Bitmap (Survivor = ‘Yes’) AND bitmap (Gender = ‘Male’)

RowId 12 11 10 9 8 7 6 5 4 3 2 1 

Survivor = ‘Yes’ 0 0 0 1 0 1 0 1 1 1 1 1 
Gender = ‘Male’ 1 1 1 0 0 1 1 0 1 1 1 0 
AND 0 0 0 0 0 1 0 0 1 1 1 0

Properties. Bitmap indices are designed for efficient queries on multiple keys. Hence, 
queries are answered using bitwise operations such as intersection (AND) and union 
(OR). Each operation exploits two bitmaps of the same size and is applied on 
corresponding bits to get the result bitmap. Every ‘1’ bit in the result marks the desired 
tuple. Counting the number of tuples in the result is even faster. For queries such as 
‘SELECT COUNT ()  WHERE  AND  OR ’, the logical operations can provide 
answers without accessing the source data. 

In addition to standard operations, the SQL engine can use bitmap indices to 
efficiently perform special set-based operations using combinations of multiple indices, 
without accessing source data. For example, to find the total number of ‘male survivors’, 
the SQL engine can simply perform a logical AND operator between bitmaps 
Survivor = ‘Yes’ and Gender = ‘Male’, and then count the number of ‘1’ in the result 
bitmap (Table 4). Hence, 367 men survived the shipwreck. Note that, to obtain the result, 
the SQL engine does not require to browse the TITANIC table. 

6.3 Bitmap indices for building decision trees 

In order to build decision trees using bitmap indices, for an initial training set, we create 
its associated set of bitmap indices for both the predictive attributes and the class 
attribute. For the root node of the decision tree, the frequency of each class is obtained by 
simply counting the total number of ‘1’ values in the corresponding bitmap. For each 
other node in the decision tree, we compute a new set of bitmaps, each one corresponding 
to a class in the node. The bitmap characterising each class in the current node is obtained 
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by applying the AND operator between the bitmap associated to the node and the bitmaps 
corresponding to the successive related nodes from the root to the current node. To 
compute the frequency of each class in this node, we count the total number of ‘1’ in the 
result bitmap. Since the information gain is based on population frequencies, it is also 
computed with bitmap indices. 

6.4 Running example 

To illustrate our method, let us take the TITANIC database presented in Table 1 as an 
example. 

For each predictive attribute and the class attribute, we create its corresponding 
bitmap index (Table 5). Thus, our new learning population is precisely composed of these 
four bitmap indices. Hence, we apply the decision tree building method directly on this 
set of bitmap indices instead of the whole TITANIC database. 
Table 5 Bitmap indices for the TITANIC database 

 RowId 12 11 10 9 8 7 6 5 4 3 2 1 

Crew 1 0 0 1 1 0 0 0 0 0 0 0 Class
1st 0 0 0 0 0 1 0 1 0 0 0 1 

 2nd 0 0 1 0 0 0 1 0 0 1 0 0 
 3rd 0 1 0 0 0 0 0 0 1 0 1 0 

Child 0 0 0 0 0 0 0 0 0 1 0 0 Age
Adult 1 1 1 1 1 1 1 1 1 0 1 1 
Female 0 0 0 1 0 0 0 1 0 0 0 1 Gender 
Male 1 1 1 0 1 1 1 0 1 1 1 0 
No 1 1 1 0 0 0 1 0 0 0 0 0 Survivor 
Yes 0 0 0 1 1 1 0 1 1 1 1 1 

To build the root node of the decision tree, we just have to determine the frequency of 
each class. In our running example, the class attribute Survivor has two possible values: 
‘Yes’ or ‘No’. Thus, we have to determine two sub-populations, one for Survivor = ‘Yes’
and the other for Survivor = ‘No’ from the bitmap index of the Survivor attribute 
(Table 3). The frequency of each class in the Survivor attribute is obtained by counting 
the number of ‘1’ in the bitmap associated to Survivor = ‘Yes’ and in the bitmap 
associated to Survivor = ‘No’, respectively (Figure 10). 

Figure 10 Root node

The variation of entropy indicates that the splitting attribute is Gender. This attribute has 
two possible values ‘Female’ and ‘Male’. The population of the current node is then 
divided into two sub-nodes corresponding to the rules Gender = ‘Male’ and 
Gender = ‘Female’, respectively. Each sub-node is composed of two sub-populations that 
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survived or not. To obtain the sizes of these sub-populations, we apply the logical 
operator AND firstly between the Gender = ‘Male’ and the Survivor = ‘Yes’ bitmaps and 
secondly between the Gender = ‘Male’ and the Survivor = ‘No’ bitmaps, as shown in 
Table 6. 
Table 6 AND_bitmaps for the node Gender = ‘Male’

RowId 12 11 10 9 8 7 6 5 4 3 2 1 

Survivor = ‘Yes’ 0 0 0 1 0 1 0 1 1 1 1 1 
Gender = ‘Male’ 1 1 1 0 0 1 1 0 1 1 1 0 
AND 0 0 0 0 0 1 0 0 1 1 1 0 
Survivor = ‘No’ 1 1 1 0 1 0 1 0 0 0 0 0 
Gender = ‘Male’ 1 1 1 0 0 1 1 0 1 1 1 0 
AND 1 1 1 0 0 0 1 0 0 0 0 0 

To obtain the frequency of the sub-population associated to the rule “Survivor = ‘Yes’
AND Gender = ‘Male’ ” (respectively “Survivor = ‘No’ AND Gender = ‘Male’ ”), we 
simply count the total number of ‘1’ in the corresponding AND_bitmap (Table 6). The 
same process is applied for the node corresponding to the rule Gender = ‘Female’
(Figure 11). 

Figure 11 Splitting with the Gender attribute 

The variation of entropy now indicates that the next splitting attribute is Class. From the 
node Gender = ‘Male’, we obtain four sub-nodes since the Class attribute has four values 
(‘1st’, ‘2nd’, ‘3rd’ and ‘Crew’). For example, to obtain the frequencies of the  
sub-populations corresponding to the node Class = ‘1st’, we compute two AND_bitmaps,
namely (Gender = ‘Male’ AND Class = ‘1st’ AND Survivor = ‘Yes’) and 
(Gender = ‘Male’ AND Class = ‘1st’ AND Survivor = ‘No’) (Table 7). The  
sub-populations’ frequencies are then obtained by counting the total number of ‘1’ in 
each AND_bitmap obtained. 
Table 7 AND_bitmaps associated to the node corresponding to the rule Class = ‘1st’

RowId 12 11 10 9 8 7 6 5 4 3 2 1 

Survivor = ‘Yes’ AND Gender = ‘Male’ 0 0 0 0 0 1 0 0 1 1 1 0 
Class = ‘1st’ 0 0 0 0 0 1 0 1 0 0 0 1 
AND 0 0 0 0 0 1 0 0 0 0 0 0 
Survivor = ‘No’ AND Gender = ‘Male’ 1 1 1 0 0 0 1 0 0 0 0 0 
Class = ‘1st’ 0 0 0 0 0 1 0 1 0 0 0 1 
AND 0 0 0 0 0 0 0 0 0 0 0 0 
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6.5 Implementation 

The implementation of the ID3 method using bitmap indices takes the form of a PL/SQL 
stored procedure named Bitmap_ID3 under Oracle 10 g. This stored procedure allows us 
to create the necessary bitmap indices for a given training set and then to build the 
decision tree. Since Oracle uses B-Tree indices by default, we forced it to use bitmap 
indices. The nodes of the decision tree are built by using an SQL query that is based on 
an AND operation applied on its own bitmaps and its parent bitmaps. Then, the obtained 
AND_bitmaps are used to count the population frequency of each class in the node with 
simple COUNT queries. These counts are used to determine the criterion that helps either 
partitioning the current node into a set of disjoint sub-partitions based on the values of a 
specific attribute or concluding that the node is a leaf, i.e. a terminal node. Similarly, to 
compute the information gain for a predictive attribute, our implementation uses bitmap 
indices rather than the whole training set. 

6.6 Complexity study 

Our objective here is to confirm, from a theoretical point of view, the gain induced by 
considering the set of bitmap indices rather than the initial training set as the learning set 
(we denote them as bitmap index-based method and classical method, respectively). For 
this study we place ourselves in the worst case, i.e. the indices are too large to be loaded 
in main memory. 

Let N be the total number of tuples in the training set, K the number of attributes, L
the average length, in bits, of each attribute and A the average number of values of each 
attribute. 

First, we evaluate the size of training sets. The size of the initial training set is 
N L K bits. For our bitmap index-based method, this initial training set is replaced by 
the set of bitmap indices. Thus K bitmap indices are created with an average number of A
bitmaps for each index. Each bitmap has a size of N bits. In this case, the size of the 
training set is N A K bits. As regards to the size of the training set and thus the 
loading time, our method is preferable if A < L, which corresponds to a majority of cases. 

In terms of data reading time, we consider that a bit is read in one time unit. The total 
number of nodes on the ith depth level can be approximated by Ai – 1. Indeed we suppose 
that the obtained decision tree is complete and balanced. To reach level i + 1 from an 
unspecified level i of the tree, each training set must be read as many times as there are 
predictive attributes remaining at this level, i.e. (K – i).

In the classical method, as the size of the training set is N L K, the reading time 
for level i (in time units) is (K – i) N L K Ai – 1. Hence, to build the whole decision 

tree in the classical method, the reading time is : 1
1
( ) .

K i
i

K i N L K A

In our bitmap index-based method, the index size is approximated by N A bits. To 
reach level i + l from an unspecified level i of the tree for a given predictive attribute, the 
number of index to read is i + 1. Thus, at level i, the reading time is: (i + 1)(K – i)N Ai.
Hence, to build the whole decision tree with our bitmap index-based method, the reading 

time is: 
1
( 1)( ) .

K i
i

i K i N A
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To evaluate the gain in time, we build the following ratio: 

1

1

( )
time with classical method .

time with bitmap index-based method
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As we consider the polynomials of higher degree, G is of complexity K. Thus R–1 is of 
complexity A/L. Indeed R–1 = (A/KL)(1 + K) = (A/L)[1+(1/K)] and 1/K is insignificant. 
Our method is interesting if the ratio R–1 is lower than one, that means if A < L, which 
corresponds to a majority of cases. 

7 Performance 

In order to validate our integrated implementation of data mining methods and to 
compare its performance with an in-memory implementation, we carried out tests on 
different views from the CovType database1. The CovType database contains 581,012 
tuples defined by 54 predictive attributes and one class (with seven distinct values). We 
created five views, each one containing a part of the CovType database and defined by 
three predictive attributes (each one having five values) and the class. The predictive 
attributes we used and the size of each view are provided in Figure 12. These tests have 
been performed on a PC computer with l.50 GHz and 512 MB of RAM running the 
Personal Oracle DBMS version 10 g. 

Figure 12 Views used in CovType tests 
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Figure 13 shows the results achieved with our different implementations of ID3. The 
classical in-memory method using the Sipina software (Zighed and Rakotomalala, 1996), 
the view-based, the contingency table-based and the bitmap index-based implementations 
are, respectively, labelled as Sipina_ID3, View_ID3, CT_ID3 and Bitmap_ID3. For 
integrated approaches, we add the time required for building bitmap indices and the 
contingency table to processing time. In opposition, processing time with Sipina_ID3
includes loading time, since it is necessary to load the data from the database into the 
memory each time the algorithm is executed. 

Figure 13 Performance comparison of ID3 implementations 

First of all, we note that for databases larger than 2,270 MB, with the hardware 
configuration used for the tests, Sipina is unable to build the decision tree, whereas our 
integrated methods can. Sipina is indeed limited by the size of the memory. 

Moreover, our results clearly underline the gain induced by our integrated approach, 
compared with the classical in-memory, approach. The processing time for Sipina_ID3,
indeed, increases from about 16 to 80 sec when the view size is multiplied by 5. Thus, the 
processing time for Sipina_ID3 is multiplied by about 5, whereas it is multiplied by 3 for 
view-based and bitmap index-based methods, and by a little more than 1 for the 
contingency table-based method. 

Now, if we compare our different integrated methods, processing time increases more 
smoothly. The processing time increase is almost identical for View_ID3, and 
Bitmap_ID3 (from about 9 to 22 sec for View_ID3, and from about 5 to 16 sec for 
Bitmap_ID3). Processing time for CT_ID3 is almost constant (from about 2 to 3 sec). 

Our experimental results also demonstrate that the contingency table-based method is 
the best integrated method. For CT_ID3, the induced gain mainly depends on the size of 
the contingency table, which is generally considerably smaller than the size of the initial 
training set. Nevertheless, in extreme cases, the size of the contingency table may be so 
close to that of the whole training set so that the profit becomes negligible. However, this 
is very rare in real-life cases, and scanning the contingency table can never be worse than 
scanning the whole database. 

View_ID3 is the slowest integrated method. In this case, processing times remain 
quite long because of multiple accesses to the database, because it does not use any 
optimisation tool. The bitmap index-based method is about 30% faster than View_ID3 on 
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an average. This result was expected since using bitmap indices avoids many data 
accesses. 

Finally, we can say that our integrated methods are particularly interesting for large 
databases. Sipina is indeed very fast for computing and very slow for loading data, 
whereas our integrated methods bear the opposite behaviour; and loading time increases 
quicker than computing time when the database grows larger. The use of a contingency 
table as an optimisation tool improves processing times the most significantly. 

8 Conclusion and perspectives 

In order to apply data mining algorithms to large databases, two main approaches are 
proposed in the literature: the classical approach and the integrated approach. The 
classical approach is limited by the size of the processed databases, since it exploits 
separate data mining pieces of software that operate in main memory. The main objective 
in this approach is then to reduce the size of databases, either by using techniques for  
pre-processing data or by sampling. The integrated approach comprises processing of the 
data mining methods within DBMSs, using only the tools offered by these systems. By 
exploiting their management of persistent data, the database size limit is toppled. 

Following the integrated approach, we proposed in this paper a framework to offer to 
DBMS users the online data mining operators for mining large databases without size 
limit and in acceptable processing times. We proposed three integrated methods (a view-
based method, a contingency table-based method and a bitmap index-based method) for 
applying decision tree algorithms on large databases. Each method is based on a specific 
database tool, namely relational views, contingency table and bitmap indices, 
respectively. 

To validate our online data mining approach, we have implemented three decision 
tree building methods (ID3, C4.5, CART)2 under Oracle 10g, as a PL/SQL package 
named decision_tree that is available online3.

Moreover, we carried out tests on different data sets to compare our different 
integrated methods with the classical in-memory method. Our experimentation clearly 
underlined the efficiency of our integrated methods when the database is large. We 
showed that we could process very large databases without any size limit, while Sipina 
could not. In addition, we showed that our contingency table-based method presented the 
best processing time. This result could be expected since it is based on aggregated data 
that reduce the size of the initial training set. Note that in-memory data mining methods 
could also use contingency tables instead of original learning sets to improve their 
processing time. 

The perspectives opened by this study are numerous. First, we plan to add in the 
decision_tree package other procedures to supplement the offered data mining tools, such 
as sampling, missing values management, learning validation techniques and  
non-supervised learning methods. 

We also aim to adapt our integrated approach to mine data warehouses, since they can 
be stored as relational databases. For example, our contingency-table based method can 
be performed on relational data cubes by applying the SUM function. 

Finally, most of data mining research has concentrated on the single table case. We 
are currently extending our integrated approach to deal with multiple relational tables. 
Our first idea comprises using bitmap join indices. Then, we can talk about online 
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database mining, which incorporates the ability to directly access the data stored in a 
database (several related tables) rather than online data mining (one single table). 
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