
Big Data Research 25 (2021) 100205

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

The Forgotten Document-Oriented Database Management Systems: An

Overview and Benchmark of Native XML DODBMSes in Comparison

with JSON DODBMSes

Ciprian-Octavian Truică a,∗,1,2, Elena-Simona Apostol a,∗,2, Jérôme Darmont b,
Torben Bach Pedersen c

a Computer Science and Engineering Department, Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Bucharest, Romania
b Université de Lyon, Lyon 2, ERIC UR 3083, Lyon, France
c Center for Data Intensive Systems, Aalborg University, Aalborg, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 June 2020
Received in revised form 3 October 2020
Accepted 15 January 2021
Available online 26 January 2021

Keywords:
XML Database Management Systems
JSON Database Management Systems
Document-Oriented Database Management
Systems
Benchmark

In the current context of Big Data, a multitude of new NoSQL solutions for storing, managing, and
extracting information and patterns from semi-structured data have been proposed and implemented.
These solutions were developed to relieve the issue of rigid data structures present in relational
databases, by introducing semi-structured and flexible schema design. As current data generated by
different sources and devices, especially from IoT sensors and actuators, use either XML or JSON format,
depending on the application, database technologies that store and query semi-structured data in XML
format are needed. Thus, Native XML Databases, which were initially designed to manipulate XML data
using standardized querying languages, i.e., XQuery and XPath, were rebranded as NoSQL Document-
Oriented Databases Systems. Currently, the majority of these solutions have been replaced with the
more modern JSON based Database Management Systems. However, we believe that XML-based solutions
can still deliver performance in executing complex queries on heterogeneous collections. Unfortunately
nowadays, research lacks a clear comparison of the scalability and performance for database technologies
that store and query documents in XML versus the more modern JSON format. Moreover, to the best
of our knowledge, there are no Big Data-compliant benchmarks for such database technologies. In this
paper, we present a comparison for selected Document-Oriented Database Systems that either use the
XML format to encode documents, i.e., BaseX, eXist-db, and Sedna, or the JSON format, i.e., MongoDB,
CouchDB, and Couchbase. To underline the performance differences we also propose a benchmark that
uses a heterogeneous complex schema on a large DBLP corpus.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the emergence of Big Data and the Internet of Things
(IoT) and the increasing amount of semi-structured information
generated daily, new technologies have arisen for storing, man-
aging, and extracting information and patterns from such data.

* Corresponding authors at: Computer Science and Engineering Department, Fac-
ulty of Automatic Control and Computers, University Politehnica of Bucharest, Ro-
mania.

E-mail addresses: ciprian.truica@upb.ro (C.O. Truică), elena.apostol@upb.ro
(E.S. Apostol), jerome.darmont@univ-lyon2.fr (J. Darmont), tbp@cs.aau.dk
(T.B. Pedersen).

1 These authors contributed equally to this article.
2 Part of this work was done at the Department of Computer Science, Aarhus

University, Aarhus, Denmark.
https://doi.org/10.1016/j.bdr.2021.100205
2214-5796/© 2021 The Authors. Published by Elsevier Inc. This is an open access article
The new technologies for storing data have been labeled with the
name NoSQL and were initially developed to solve very specific
problems. Currently, they provide different trade-offs and func-
tionality (e.g., choosing high-availability over consistency) to be
as generic as their counterparts Relational Database Management
Systems (RDBMSes). Due to the semi-structured nature of data,
NoSQL Database Management Systems (DBMSes) have been classi-
fied based on the data model used for storing information [1], i.e.,
key-value, document-oriented, wide column, and graph databases.

In this paper, we particularly study NoSQL Document-Oriented
Databases Systems (DODBMSes) that encode data using the XML or
JSON formats. We further focus on two subcategories of DODBM-
Ses with respect to the data model used to encode documents:
i) DODBMSes that encode data using the XML format are Native
XML Database Management Systems (XDBMSes), and ii) DODBM-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.bdr.2021.100205
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100205&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ciprian.truica@upb.ro
mailto:elena.apostol@upb.ro
mailto:jerome.darmont@univ-lyon2.fr
mailto:tbp@cs.aau.dk
https://doi.org/10.1016/j.bdr.2021.100205
http://creativecommons.org/licenses/by/4.0/

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
Ses that encode data using the JSON format are JSON Database
Management Systems (JDBMSes).

The NoSQL DBMSes became very popular with the increasing
need for data storage, management, and analysis systems that scale
with the volume. To address these needs, many NoSQL DBMSes
compromise consistency to offer high-availability, partition toler-
ance, improved analytics, and high-throughput. These features are
also a requirement for real-time web applications and Big Data
processing and analysis and are available in JDBMSes as well.

XDBMSes have started to emerge after the eXtensible Markup
Language (XML) has been standardized and became the common
format for exchanging data between different applications run-
ning on the Web. Their primary use was to facilitate secure stor-
age and fast querying of XML documents. Besides their primary
use, XDBMSes prove useful for OLAP (Online Analytical Process-
ing) style analysis and decision support systems that incorporate
a time dimension and encode data in the XML format [2], and
thus removing the need of using ETL (Extract Transform Load) pro-
cesses to transform XML documents into a relational model. XML
query languages and technologies, including XDBMSes, had been
around before the NoSQL trend, and have been forgotten during
the Big Data hype. In the field of relational databases, XML format
is used as a Data Type, e.g., Oracle, DB2, PostgreSQL, etc. Currently,
with the rise of the NoSQL movement, XDBMSes have become a
subcategory of DODBMSes. But, with the emergence of processing
platforms that uses Big Data or IoT technologies, where the data
are transferred over computer networks into formats such as XML
and JSON, the XDBMSes can be seen as a viable solution for storing
and manipulating computer-generated semi-structured data.

We hypothesize that the more classical XDBMSes may still be
useful in the Big Data era. Thus, in this study we want to address
and use as guidelines the following research questions:

Q1: Are XDBMSes absolute and should be replaced by JDBMSes?
Q2: Are XDBMSes a viable candidate for Big Date Management?
Q3: Do JDBMSes outperform XDBMSes when using complex fil-

tering and aggregation queries with different scale factors, on
large and heterogeneous datasets?

To test our hypothesis and answer our research questions, we
consider the following research objectives: i) discuss XDBMSes and
compare their capabilities and features with several popular JDBM-
Ses solutions; ii) propose a benchmark that evaluates the current
needs and workloads available in Big Data and compare perfor-
mance between the selected DODBMSes; iii) evaluate the per-
formance of the selected DODBMSes using complex filtering and
aggregation queries with different scale factors, on large and het-
erogeneous datasets.

For testing and analyzing with our proposed benchmark, we
utilize several XDBMSes and JDBMSes solutions, that are free to
use, and their license does not forbid benchmarking. Thus, we
chose BaseX, eXist-db, and Sedna as representatives XDBMSes sys-
tems and MongoDB, CouchDB, and Couchbase as JDBMSes solu-
tions.

As a result of our research and as a response to Q1, we claim
that the more classical XML based DODBMSes may still be use-
ful in the Big Data era. To demonstrate this and answer Q2, we
propose a new benchmark for comprehensive DODBMSes analysis
using a large dataset. And thereby we present a qualitative and
quantitative performance comparison between XDBMSes and the
more modern JDBMSes to answer Q3.

This paper is structured as follows. Section 2 presents an
overview of different NoSQL DBMSes models, surveys, and bench-
marks. Section 3 offers an in-depth overview and comparison of
DODBMSes, focusing on the XDBMSes and JDBMSes subcategories.
Section 4 introduces the proposed benchmark specification and
2

discusses the data and workload models, while Section 5 discusses
the database physical implementation and presents the description
of the benchmark’s queries. Section 6 thoroughly details the exper-
iments performed on the selected DODBMSes using our benchmark
and discusses the results in detail. Finally, Section 7 concludes the
paper, summarizes the results, and provides future research per-
spectives.

2. Related works

The NoSQL Database Management Systems (DBMSes) emerged
as an alternative to Relational Database Management Systems
(RDBMSes) in order to store and process huge amounts of het-
erogeneous data. However, NoSQL DBMSes did not appear as a
replacement for RDBMSes, but as a solution to specific problems
that require additional features (e.g., replication, high-availability,
etc.) that are not handled well by traditional means [3]. The rea-
sons commonly given to develop and use NoSQL DBMSes are sum-
marized as follows [4]: avoidance of unneeded complexity, high
throughput, horizontal scalability, running on commodity hard-
ware, avoidance of expensive object-relational mapping, lowering
the complexity and the cost of setting up a cluster, compromis-
ing reliability for better performance, and adapting to the require-
ments of cloud computing.

The classifications used for NoSQL DBMSes usually are done by
either taking into account the persistence model or the data and
query model. Using the persistence model, NoSQL DBMSes are clas-
sified as follows [4]:

i) In-Memory Databases [5] are very fast because the most cur-
rent used data are stored in memory, with optional subsequent
disk flushes triggered at given periods or when the in-memory
data are not used. Evidently, the size of the currently in-use
data that can be stored is limited to the amount of memory.
This problem can be resolved using vertical scaling to some
degree as there is a limit to the amount of memory a system
can hold. Moreover, the durability may become a problem if
data are lost between subsequent disk flushes or if data persis-
tence is disabled. A solution to this problem is data replication.

ii) Memtables and SSTables Databases [6] buffer operations in
memory using a Memtable after they have been written to
an append-only commit log to ensure durability. After a cer-
tain amount of writes the Memtable gets flushed to disk as a
whole into a SSTable. These DBMSes have performance charac-
teristics comparable to those of In-Memory Database but solve
the durability problem.

iii) B-trees Databases [7] use the B-tree self-balancing tree data
structure that keeps data sorted and allows searches, sequen-
tial access, insertions, and deletions in logarithmic time [8].

NoSQL DBMSes are also classified by using the data and query
model as follows [1,9]:

i) Wide Column Databases are used to store, retrieve, and man-
age data using column families. Each record can have different
numbers of cells and columns, making a row sparse without
storing NULLs.

ii) Graph Databases are used to store, retrieve, and manage in-
formation using a graph. Therefore, an object is modeled as a
node and the edges between nodes become the relationships
between the objects.

iii) Key-Value Databases (KVDBMSes) are data storage systems de-
signed for storing, retrieving, and managing associative arrays,
i.e., dictionaries or hash tables.

iv) Document-Oriented Databases (DODBMSes) have evolved form
KVDBMSes and are used to store, retrieve, and manage semi-

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
structured data, i.e., documents, encoded using JSON, BSON,
XML, or YAML formats.

There are multiple surveys on NoSQL DBMSes, in the follow-
ing phrases we present the most relevant ones for our analysis.
Article [10] provides a comparison regarding the performance and
flexibility of KVDBMSes and DODBMSes over RDBMSes. The NoSQL
DBMSes prove to be a better choice for high throughput applica-
tions that require data modeling flexibility and horizontal scaling.
The authors of [1] offer a classification by data models of NoSQL
DBMSes, and also they present the current and most popular so-
lutions. In [11], the authors make a comparison and overview of
NoSQL data models, query types, concurrency controls, partition-
ing, and replication. Article [12] presents a top-down overview of
the NoSQL database field and propose a comparative classification
model that relates functional and non-functional requirements to
techniques and algorithms employed in these systems. The authors
of [13] provide an overview of XML data manipulation techniques
employed in conventional and temporal XDBMSes and study the
support of such functionality in mainstream commercial DBMSes.
Unfortunately, the paper presents only a general discussion about
XDBMSes and other DBMSes with XML manipulation capabilities,
and also no evaluation is provided. Thus, we can conclude that
none of these surveys present an in-depth discussion and compar-
ison of different subcategories of DODBMSes.

In the literature there are many data-centric benchmarks for
the Big Data distributed systems and NoSQL DBMSes that fo-
cus either on structured data or on specific applications, such as
MapReduce-based applications, rather than on unstructured or va-
riety. In [14], the authors present a comprehensive survey and
analysis of benchmarks for different types of Big Data systems in-
cluding NoSQL systems. The authors of [15] present a new bench-
mark for textual data for distributed systems including MongoDB.
None of the current literature presents benchmarks for modern na-
tive XDBMSes.

XDBMSes benchmarks are application-oriented and domain-
specific, e.g., OpenEHR XML medical records [16], XMark which
contains documents extracted from electronic commerce sites
and content providers [17] or Transaction Processing over XML
(TPoX) [18] which simulates a financial multi-user workload with
XML data conforming to the FIXML standard. These benchmarks
are used for testing the performance of DBMSes that are ca-
pable of storing, searching, modifying and retrieving XML data.
Unfortunately, the majority of these benchmarks use rather small
collections. And even for the benchmarks where the XML or JSON
document size is up to the order of Gigabytes (GBs), the contained
information is mostly homogeneous. Our proposed benchmark so-
lution uses large heterogeneous collections with over 6 million
records to test the scalability, filtering, and aggregation perfor-
mance of complex queries for the current native XDBMSes.

Based on the lack of current literature regarding XDBMS, in this
paper, we analyze the performance and functionality of DODBMSes
solutions, while focusing on two distinct subclasses that use JSON
or XML formats to encode data.

3. Document-Oriented Databases

Document-Oriented Databases Management Systems (DODBM-
Ses) have evolved from Key-Value Databases [1]. DODBMSes are
used for storing, retrieving, and managing semi-structured data.
They have a schema-less flexible data representation, thus pro-
viding more flexibility for data modeling [19]. DODBMSes use
documents for storing data such as XML or JSON. The flexibility
provided by XML and JSON makes it easier to manipulate the in-
formation than it is for tables in Relational Database Management
Systems (RDBMSes). Usually, documents are stored in collections. A
3

Native XML Database Management System (XDBMS) uses the XML
(eXtensible Markup Language) data structure to encode documents
and defines a hierarchical logical model based on the elements of
this markup language [20,21]. A JSON Database Management Sys-
tem (JDBMS) uses the JSON structure for modeling documents and
storing them in collections.

In DODBMSes, labels are used in storing the information. These
labels describe the data and values in a record. New information
can be added directly to a record without the need to modify the
entire schema, as is the case for RDBMSes.

One of the benefits of using a DODBMS solution is the flexibility
of modeling the data [22]. Data from the web, mobile, social, and
IoT devices change the nature of the application’s data model. In
an RDBMS, these changes impose the modification of the schema
by altering tables and adding or removing columns. Whereas, the
flexibility of DODBMSes eliminates the need to force-fit the data
into predefined attributes and tables.

Another benefit of a DODBMS is the fast write performance.
Some DODBMSes prioritize high availability over strict data consis-
tency. This ensures that both read and write operations will always
be executed even if there is a hardware or network failure. In case
of failure, the replication and eventual consistency mechanisms en-
sure that the environment will function.

Fast query performance is another benefit of a DODBMS. Most
DODBMSes provide powerful query engines for CRUD (Create,
Read, Update and Delete) operations and use indices and sec-
ondary indices to improve data retrieval. Additionally, the major-
ity of DODBMS solutions support aggregation frameworks, either
native or using MapReduce, for Data Analysis and Business Intelli-
gence.

3.1. XDBMSes

In this subsection, we present several examples of XDBMSes
that use standardized XPath and XQuery. Although there are mul-
tiple solutions of DBMSes that incorporate XML as data type (e.g.,
Oracle, PostgreSQL, DB2, MS SQL, etc. just to name a few), the ma-
jority of them fall out of the NoSQL movement. Furthermore, some
have licenses that explicitly forbids benchmarking, e.g., commercial
XDBMSes such as MarkLogic Server and Oracle Berkeley DB XML.
Thus, for our comparison and benchmark, we chose the following
three XDBMSes: BaseX, eXist-db, and Sedna.

BaseX
BaseX is an XDBMS written in Java that stores the data using

a schema-free hierarchical model. Transactions in BaseX respect
the ACID (Atomicity, Consistency, Isolation, and Durability) proper-
ties, enabling the concurrent access of multiple readers and writ-
ers [23]. Documents are stored either persistently on disk or in the
main memory. BaseX uses a single instance environment, replica-
tion and data partitioning are not available.

BaseX provides CRUD operations and ad-hoc queries, includ-
ing aggregation using XQuery 3.1 and XPath 3.1 [24]. Although, it
works with various APIs such as XML DB or JAX-RX, it was not
designed to work with a MapReduce framework.

BaseX supports multiple structural and value indices [23].
Structural indices are automatically created and include: i) name
indices to reference the names of all elements and attributes,
ii) path indices to store distinct paths of the documents in the
database, and iii) document indices to reference all document
nodes. Value indices are user-defined. They include: i) text indices
for documents’ text nodes to improve the performance of exact
and range queries, ii) attribute indices to speed up comparisons on
attribute values, iii) token indices to improve the multi-token at-
tribute values, and iv) full-text indices to normalized tokens of text
nodes and speed up queries which contain text expressions.

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
eXist-db
eXist-db [25] is a XDBMS implemented in Java that stores doc-

uments in the XML format. It stores data in-memory using Docu-
ment Object Model (DOM) trees.

Although eXist-db does not have support for database-level
transaction control, it has transactions internally, transparent to
the user, and also has a persistent journal that is used to ensures
the durability and consistency of the stored data. The database
consistency is done automatically or using a sanity checker to de-
tect the inconsistencies or damages in the core database files [26].

eXist-db supports data primary-secondary replication, thus al-
lowing applications to be distributed over multiple servers through
the use of Java Message Service (JMS) API. Although replication
is available, data partitioning or sharding and distributing queries
across multiple servers are not.

eXist-db provides CRUD operations and ad-hoc queries for fil-
tering and aggregation using XQuery 3.1 and XPath 3.1 [24]. Un-
fortunately, it does not have the MapReduce functionality, which
would offer more flexibility to the aggregation queries.

eXist-db supports four types of indices [27]: i) range indices
that provide range and field-based searches, ii) text indices for
full-text search, iii) n-gram indices for improving the performance
of n-gram search, and iv) spatial indices for querying data using
geometric characteristics, although this feature is currently experi-
mental.

Sedna
Sedna is an XDBMS written in C that stores documents in

the XML format [28]. Sedna provides ACID transactions, indexing,
and persistent storage [29]. In uses the main memory to improve
query performance [30]. Replication and partitioning are not im-
plemented in Sedna.

Like the other XDBMSes, Sedna provides CRUD operations and
ad-hoc queries for filtering and aggregation using XQuery 1.1 and
XPath 2.0. However, it does not provide MapReduce functionality
in working with these queries.

Value indices are used to index elements’ content and at-
tributes. Full-text indices can be created in Sedna to facilitate full-
text search using XQuery.

3.2. JDBMSes

DODBMSes are designed for storing, retrieving, managing, and
processing semi-structured data in the form of document. With the
rise of the NoSQL movement, multiple DODBMS solutions, both
proprietary and open-source, have been implemented. An impor-
tant subcategory of these systems is JDBMS, which consists of
systems that use the JSON format for document encoding. For our
comparison, we choose three of the more popular and open source
JDBMSes3: MongoDB, CouchDB, and Couchbase.

MongoDB
MongoDB is a DODBMS developed in C++ that focuses on com-

bining the critical capabilities of RDBMSes with the innovations
of NoSQL DBMSes. MongoDB uses a flexible, dynamic schema to
store data. A record is stored in a document and multiple doc-
uments are stored in a collection. Documents in a collection do
not necessarily have the same structure and so the number of at-
tributes and their data type can differ from one record to another.
In practice documents usually model objects from a high-level pro-
gramming language. Although the database allows documents with
a different number of attributes and different data types for the

3 DB-Engines ranking https://db -engines .com /en /ranking /document +store.
4

same attributes, records have almost the same structure in a col-
lection [31].

MongoDB stores the data in BSON documents. A BSON is a
binary-encoded serialization of JSON-like documents. This format
is easily parsed and lightweight with respect to the overhead
needed to store data.

Transactions in MongoDB respect the BASE (Basically Avail-
able, Soft state, Eventual consistency) transaction model which en-
sures that all the modification operations will propagate on all the
nodes in an asynchronous way. MongoDB uses Causal Consistency
that enables operations to logically depend on preceding oper-
ations [32] and in-memory functionalities to improve the query
execution time. Furthermore, this JDBMS supports multi-document
transactions with ACID data integrity guarantees.

To achieve redundancy and data availability, MongoDB uses
Replica Sets for primary-secondary replication. A replica set is a
group of MongoDB instances that store the same dataset. To parti-
tion the data and distribute it across multiple machines, MongoDB
uses Sharding. Sharding is a horizontal scaling mechanism that
partitions and balances the data on multiple nodes or replica sets.

MongoDB supports CRUD operations and ad-hoc querying
through the use of a JavaScript API available in the MongoDB
client. The Aggregation Pipeline framework is a multi-stage pipe-
line that transforms documents into aggregated results using the
concepts of data processing pipelines. Aggregation can also be
achieved using the MapReduce framework.

MongoDB supports primary and secondary indexing. These
indices can be a single field, compound (multikey), geospatial,
hashed, and text. Text indices enable full-text search.

CouchDB
CouchDB is an open-source DODBMS developed in Erlang that

provides a schema-free model for storing self-contained data using
the JSON format [33].

Transactions in CouchDB respect document-level ACID prop-
erties with Multi-Versioning Concurrency Control (MVCC) [34].
CouchDB relies on Eventual Consistency together with incremen-
tal replication to maintain the data consistency. CouchDB does
not provide in-memory capabilities. CouchDB provides primary-
primary and primary-secondary asynchronous replication. Shard-
ing is used to distribute horizontally in a cluster the copies of each
replica [35]. To resolve inconsistencies, CouchDB uses a conflict-
flagging mechanism.

CouchDB supports CRUD operations and ad-hoc querying using
a JavaScript API called Mango. For aggregation, CouchDB provides
Views and MapReduce functionalities [36]. Indexing in CouchDB is
achieved through the use of views. CouchDB provides two types of
indices: JSON and text for full-text search support.

Couchbase
Couchbase is a highly-scalable DODBMS that stores documents

using the JSON encoding. It offers high availability, horizontal scal-
ing, and high transaction throughput [37].

Transactions in Couchbase respect the ACID properties and rely
on Eventual Consistency and Immediate Consistency. Couchbase
has in-memory capabilities and keeps records into buckets. The
buckets are of the following type i) Couchbase buckets used to
store data persistently and in-memory, ii) Ephemeral buckets used
when persistence is not required, and iii) Memcached buckets used
to cache frequently-used data and minimize the number of queries
a database-server must perform.

Couchbase uses a shared-nothing architecture and provides
primary-primary and primary-secondary as well as partitioning
through the use of sharding. Couchbase scales horizontally in a
cluster.

https://db-engines.com/en/ranking/document+store

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Table 1
DODBMS comparison.

BaseX eXist-db Sedna MongoDB CouchDB Couchbase

DBMS type XDBMS XDBMS XDBMS JDBMS JDBMS JDBMS

Data format XML XML XML BSON (Binary JSON) JSON JSON

Implementation Java Java C C++ Erlang C/C++, Go, Erlang

Transaction ACID Isolation safe ACID
BASE
Multi-document isolation

Document-level ACID
with MVCC

ACID

Consistency Transaction Consistency
Automatic consistency
Sanity checker

Transaction Consistency Causal Consistency Eventual Consistency
Eventual Consistency
Immediate Consistency

In-memory Yes Yes Yes Yes No Yes

Replication No Primary-Secondary No Primary-Secondary
Primary-Primary
Primary-Secondary

Primary-Primary
Primary-Secondary

Partitioning No No No Sharding Sharding Sharding

Ad-hoc queries
XQuery 3.1
XPath 3.1

XQuery 3.1
XPath 3.1

XQuery 1.0
XPath 2.0

JavaScript Mango
N1QL
JavaScript

MapReduce No No No Yes Yes Yes

Secondary indices Yes Yes Yes Yes Yes Yes

Geospatial indices No No Yes Yes Yes Yes

Text indices Yes Yes Yes Yes Yes Yes
Ad-hoc data querying is achieved using a JavaScript API or
a SQL-like language, i.e., N1QL (Non-1NF Query Language) [38].
These languages enable Couchbase to have OLTP (Online Transac-
tion Processing) CRUD operations and ETL (Extract Transform Load)
capabilities [39].

JavaScript MapReduce Views can be developed and stored
on the server-side to specify complex indexing and aggregation
queries [40].

Couchbase provides multiple types of indices: [40] i) composite
indices to index multiple attributes, ii) covering indices to index
the information needed for querying without accessing the data,
iii) filtered (partial) indices to index a subset of the data used
by the WHERE clause, iv) function-based indices that compute
the value of an expression over a range of documents, v) sub-
document indices to index embedded structures, vi) incremental
MapReduce views to index the results of complex queries that per-
form sorting and aggregation to support real-time analytics over
very large datasets, vii) spatial views using Spatial MapReduce to
index multi-dimensional numeric data, and viii) full-text indices
used for full-text search capabilities.

3.3. DODBMSes Comparison

Table 1 summarizes the main features of the presented data-
bases. BaseX, Sedna and Couchbase offer ACID compliant trans-
actions in comparison with MongoDB that offers BASE compli-
ant multi-document isolation transactions and CouchDB that offers
document-level ACID with MVCC transactions. XDBMSes support
transaction consistency while MongoDB and CouchDB support ca-
sual consistency and eventual consistency, respectively. Couchbase
supports both eventual and immediate consistency. A disadvantage
of XDBMSes is that they do not have replication or partitioning
mechanisms, except for eXist-db which offers primary-secondary
replication. An advantage of XDBMSes is the use of XQuery and
XPath for querying the data which makes ad-hoc querying an easy
task. Although XDBMSes support aggregation queries, they do not
provide MapReduce frameworks as a result of the lack of distribu-
tion capabilities. Another advantage of XDBMSes is that they offer
different types of indices, including text indices for full-text search.
As can be seen from Table 1, the chosen JDBMS solutions also offer
different types of indices, but in addition to JDBMS, the one used
5

in XDBMS systems can also be added on properties and paths, not
only on keys and values.

4. Benchmark specifications

4.1. Data model

For our benchmark, we proposed a heterogeneous entity-
relationship schema that can be easily expanded with more com-
plex relationships and new entities. Fig. 1 presents the proposed
schema. The model’s entities are described below.

• Authors is the entity that stores information about authors.
Besides the unique identifier for each author AuthorID, the at-
tribute Name is used for storing the name of each author.

• Records contains information about the published work of one
or more authors. It stores the Title, the URL for quick access
on the web, and the publishing Year. The many-to-may rela-
tionship WrittenBy correlates each record with the authors. A
record can be either published as a book (or book chapter)
or as an article (conference or journal). The relationship IsA is
used for denoting the sub-type of a record.

• Books is the first sub-type of a record. This entity stores the
following information: i) the unique book identifier ISBN, ii)
the pages of a record using the attribute Pages, iii) the book
editors using the multi-variate attribute Editors, and iv) the
type of a record of this sub-type, i.e., book or book chapter,
using the attribute Type. The one-to-many relationship Pub-
lishedBy is used to correlate each record of sub-type Book to a
Publisher.

• Articles is the second sub-type of a record. Besides the unique
identifier of a record in this sub-type, the entity Articles stored
information about i) the pages of a record using the attribute
Pages, and ii) the type of a record of this sub-type, i.e., con-
ference or journal article, using the attribute Type. The one-to-
many relationship PublishedIn is used to correlate each article
to a journal.

• Journals entity stores information about an article publication
venue. The attributes are: i) ISSN used as the unique identi-
fier, ii) Type used to determine if the publication is a journal,
proceedings, or special issue, iii) Title used for keeping the ti-
tle of the journal or the conference name, iv) Volume used to

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Fig. 1. Database entity-relational diagram.
store the number of years since the first publication, and v)
Issue used to store how many times the journal has been pub-
lished during a year. The one-to-many relationship PublishedBy
is used to correlate each record of sub-type Journal to a Pub-
lisher.

• Publishers is the entity that stores a unique identifier and the
Name of a publishing house.

4.2. Workload model

The workload model follows two analysis directions: i) selec-
tion queries for filtering the corpus and extract subsamples, and ii)
aggregation queries for creating reports.

For the selection queries, a constraint ci
1 = contains(Records.

T itle, ti) is used to extract the most relevant records that are con-
tained in the title of a given set of terms. The constraint ci

1 uti-
lizes the contains(·, ·) function, which verifies if a substring ti ∈
{t|t ∈ vocabulary} belongs to a string. In this case, the vocabulary
is the set of terms extracted from each title using Tokeniza-
tion.

Aggregation queries are used to create reports about the pub-
lishing activity of each author. These reports are created by count-
ing the number of published records using attributes for group-
ing. To achieve this, we apply the aggregation operator γL with
L = (F , G), where F is the list of aggregation functions, and G
is the list of attributes in the GROUP BY clause. We use the Au-
thors.Name attribute in the GROUP BY clause to create an overview
report of the publication activity for each author over his/her en-
tire academic life. To determine the publishing patterns by year of
each author, we use the Records.Year attribute that adds a time di-
mension to the previous report. For a more in-depth analysis of
each published topic by author, we also use the ci

1 constraint to
filter the dataset by keywords before counting the number of arti-
cles.
6

5. Benchmark implementation

5.1. Database design

The conceptual entity-relational diagram described in Section 4
must be translated into the XML and JSON formats (Fig. 2). For the
XML representation (Fig. 2a), the attributes of entities are directly
encoded in the elements’ names, e.g., the Article.Type is directly
encoded into the journal label. In the case of the Authors entity,
the records associated with the article are presented as multiple
tags with the same name, i.e., author. For the JSON representa-
tion, the Authors entity becomes a list of values, i.e., the label
authors. The information regarding an article is stored directly in
the document using labels, e.g., type, publication year, etc. Using
this representation, both schemes are greatly simplified and the
need of relationships between entities disappears.

5.2. Query description

The proposed benchmark features nine queries with different
complexity and selectivity, i.e., Q 1 to Q 9. The first five queries are
used to filter the dataset based on different constraints. Whereas,
the last four queries are used to filter and group the data in order
to obtain aggregated results.

5.2.1. Selection queries
The first set of queries selects the records that respect a given

constraint.
The first query (Q i

1) uses the constraint ci
1 to extract the

documents which contain in their title a certain given term ti

(Equation (1)). The projection for the query, which specifies the
set of selected attributes following the query execution, is �1 =
{Records.T itle}.

Q i
1 = π�1(σ i (Records)) (1)
c1

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Fig. 2. Document representation in XML and JSON.
The second query (Q ij
2) extracts the records that contain in

their title two terms (Equation (2)). It uses the constraint cs
1,

s ∈ {i, j} with i �= j. The query is written using the INTERSECTION
operator between the results returned by Q i

1 for term ti and Q j
1

for term t j . Due to the nature of the filtering condition, we can
concatenate the separate conditions to create a single conditional
expression using the and logical operator (∧), i.e., ci

1 ∧ c j
1. As in the

case of the first query, the projection remains �1.

Q ij
2 = Q i

1 ∩ Q j
1

= π�1(σci
1
(Records)) ∩ π�1(σc j

1
(Records))

= π�1(σci
1∧c j

1
(Records))

(2)

Q ij
3 extracts the records that contain in their title at least one

of the terms given through the ci
1 or c j

1 constraints, with i �= j
(Equation (3)). The query is written using the UNION operator be-
tween the results returned by Q i

1 for term ti and Q j
1 for term t j .

The projection remains �1. As for query Q ij
2 , the conditions can

be concatenated to create a single conditional expression using the
or logical operator (∨), i.e., ci

1 ∨ c j
1.

Q ij
3 = Q i

1 ∪ Q j
1

= π�1(σci
1
(Records)) ∪ π�1(σc j

1
(Records))

= π�1(σci
1∨c j

1
(Records))

(3)

The fourth query (Q 4) filters the Records entity and extracts the
documents that contain in their title the terms ti , t j , and tk (Equa-
tion (4)). As for the previous queries, the projection attributes are
given using �1. The query is written using the INTERSECTION op-
erator between the results obtained by Q i

1, Q j
1 , and Q k

1 for terms
ti , t j , and tk respectively. Due to the nature of the filtering condi-

tions, they can be concatenated into one constraint ci
1 ∧ c j

1 ∧ ck
1.

Q ijk
4 = Q i

1 ∩ Q j
1 ∩ Q k

1

= π�1(σci
1
(Records)) ∩ π�1(σc j

1
(Records))

∩ π�1(σck
1
(Records))

= π�1(σci
1
(Records) ∩ σ

c j
1
(Records) ∩ σck

1
(Records))

= π�1(σci
1∧c j

1∧ck
1
(Records))

(4)

The last selection query (Q 5) extracts the documents that con-
tain in their title one or more of the searched terms ts , s ∈ {i, j, k}
7

with i �= j ∧ i �= k ∧ j �= k. The query is written using the UNION op-
erator between the results obtained by each Q s

1 for ts terms. The
nature of the filtering constraints permit the query to be written
using one constraint ci

1 ∨ c j
1 ∨ ck

1 and the projection �1 (Equa-
tion (5)).

Q ijk
5 = Q i

1 ∪ Q j
1 ∪ Q k

1

= π�1(σci
1
(Records)) ∪ π�1(σc j

1
(Records))

∪ π�1(σck
1
(Records))

= π�1(σci
1
(Records) ∪ σ

c j
1
(Records) ∪ σck

1
(Records))

= π�1(σci
1∨c j

1∨ck
1
(Records))

(5)

5.2.2. Aggregation queries
The last four queries use aggregation to count the number of

articles using different filtering constraints and attributes in the
GROUP BY clause.

The sixth query (Q 6) uses aggregation to determine the num-
ber of articles written by each author (Equation (6)). It uses a
JOIN operation between the Records and Authors entities. Because
there is a many-to-many relationship between the two entities,
the JOIN also traverses WrittenBy. The projection attributes are
�6 = {Author.Name, count}. To determine the number of articles
for each author, we use the aggregation operator γL6 , where L6 =
(F6, G6). The list of aggregation functions is given by F6, while
the set of attributes in the GROUP BY clause is given by G6. The
list of aggregation functions is F6 = {count(Records.RecordI D)},
where the count is the counting aggregation function. The set of
attributes in the GROUP BY clause is G6 = {Authors.Name}.

Q 6 = π�6(γL6(Authors 	
 Records)) (6)

The seventh query (Q 7) counts the number of articles pub-
lished by an author for each year (Equation (7)). The query makes
use of a JOIN operation between the Records and Authors enti-
ties, as in the case of query Q 6. The projection uses the following
attributes �7 = {Author.Name, Record.Y ear, count}. To determine
the number of articles written in a year by each author, we use
the aggregation operator γL7 , where L7 = (F7, G7). For query Q 7,
the list of aggregation functions is given by F7, while the set of
attributes in the GROUP BY clause is given by G7. The list of ag-
gregation functions is F7 = {count(Records.RecordI D)}, where the
count is the counting function used for determining the number of
articles written in a year by each author. The set of attributes in
the GROUP BY clause is G7 = {Authors.Name, Records.Y ear}.

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
Q 7 = π�7(γL7(Authors 	
 Records)) (7)

The eighth query (Q 8) extracts the documents that contain in
their title all of the searched terms, and then it counts the num-
ber of articles grouped by author and year. As in the case of Q 6,
the JOIN operation is between the Records and Authors entities. The
query is written using the INTERSECTION operator. The filtering is
done using the constraints ci

1, c j
1, ck

1 which ensures that the title
contains all terms ti , t j , and tk with i �= j ∧ i �= k ∧ j �= k. The pro-
jection attributes and the aggregation operator remains the same
as in the case of Q 7, i.e., �7 and γL7 . Due to the nature of the
filtering conditions, the query can be rewritten using only one con-
straint ci

1 ∧ c j
1 ∧ ck

1.

Q 8 = π�7(γL7(σci
1
(Records 	
 Authors)

∩ σ
c j

1
(Records 	
 Authors) ∩ σck

1
(Records 	
 Authors)))

= π�7(γL7(σci
1∧c j

1∧ck
1
(Records 	
 Authors)))

(8)

The last query (Q 9) extracts the documents that contain in
their title one or more of the searched terms ts , s ∈ {i, j, k} and
i �= j ∧ i �= k ∧ j �= k, by filtering through the use of constraint cs

1.
The JOIN operator is used once again between the Records and Au-
thors entities, as in the case of Q 6. The projection attributes and
the aggregation operator remain the same as in the case of Q 7, i.e.,
�7 and γL7 . The filtering constraints ci

1, c j
1, ck

1 are applied on the
Records entity. The query uses the UNION operator between the
relationship obtained after filtering. Due to the nature of the filter-
ing, the query can be rewritten using one constraint ci

1 ∨ c j
1 ∨ ck

1.

Q 9 = π�7(γL7(σci
1
(Records 	
 Authors)

∪ σ
c j

1
(Records 	
 Authors) ∪ σck

1
(Records 	
 Authors)))

= π�7(γL7(σci
1∨c j

1∨ck
1
(Records 	
 Authors)))

(9)

6. Experiments

6.1. Experimental conditions

All tests were run on an IBM System x3550 M4 with 64 GB of
RAM, and an Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50 GHz. The
XDBMSes used for benchmarking are BaseX, eXist-db, and Sedna.
For comparison reasons we also use three JDBMSes: MongoDB,
CouchDB, and Couchbase. We chose these DODBMSes because they
are free to uses and because their licenses do not forbid bench-
marking.

The versions of the deployed DODBMSes are listed in Table 2.
The proposed benchmark, the results, and the used dataset are
publicly available on-line.4

As the chosen XDBMS solutions do not have partitioning, we
could not distribute them. Therefore, we deployed and tested them
on a single instance environment. Moreover, for comparison rea-
sons, we also used a single instance environment for MongoDB,
CouchDB, and Couchbase.

The query parameterization is presented in Table 3. Each term
ti (i = 1,3) is used for filtering the records through the constraint
c(i)

1 . Thus for the first set of queries, i.e., Q i
1, Q ij

2 , and Q ijk
3 , the i,

j, and k indices (i �= j ∧ i �= k ∧ j �= k) represent the i′ ∈ 1,3 index
of the ti′ used for filtering.

4 GitHub Sources https://github .com /cipriantruica /The -Forgotten -DODBMSes.
8

Table 2
Benchmarked DODBMSes.

DODBMS Version

BaseX 9.3.3
eXist-db 5.2.0
Sedna 3.5
MongoDB 4.2.7
CouchDB 3.1.0
Couchbase 6.5.1

Table 3
Query parameter values.

Parameter Value

t1 database
t2 text
t3 mining

6.2. Dataset

The experiments are performed on 6 150 738 records extracted
from DBLP.5 The initial dataset is split into 4 different subsets to
test the scalability of each DODBMS w.r.t. the number of records.
These subsets contain 768 842, 1 537 685, 3 075 369, and 6 150 738
records, respectively. Each subset allows scaling experiments and
are associated with a scale factor S F parameter, where S F =
{0.125, 0.25, 0.5, 1}. Table 4 presents the size of the 4 subsets, both
as raw data and the resulting DODBMS collection dimension.

For all the XDBMSes as well as for CouchDB and Couchbase,
we can observe that database size is larger than the raw dataset.
This increase is a direct result of the overhead required by the
DODBMSes to manage and store the data. MongoDB uses compres-
sion mechanisms, which in turn manage to decrease the database
size by minimizing the overhead.

6.3. Query implementation

Data are stored within each DODBMS using a denormalized
schema; thus, one-to-many and many-to-many relationships are
encapsulated inside the same document. To achieve denormaliza-
tion, JDBMSes employ nested documents, lists, and lists of nested
documents, while XDBMSes use the hierarchical structure of the
XML format. To normalize the information and apply filtering and
aggregation operations and functions, we use the native syntax,
operators, query language clauses, and frameworks provided by
each DODBMS. Table 5 presents the implementation language and
operators.

For the XDBMSes, we implemented the queries using XQuery.
The aggregation queries for BaseX and eXist-db use the XQuery 3.1
syntax for sorting and grouping, i.e., FOR... WHERE... GROUP
BY... ORDER BY.... For Sedna, we use the XQuery 1.1 syntax
for sorting and grouping, i.e., FOR... WHERE... LET... OR-
DER BY.... We used the native Command Line Interfaces to run
these queries.

The aggregation queries in MongoDB are implemented using
its Aggregation Pipeline framework. To deal with nested docu-
ments, the unwind operator is used to flatten an array field of
nested documents. This operator is useful when trying normalize
the one-to-many and many-to-many which trough denormaliza-
tion are stored in the JSON format as nested documents or lists of
nested documents. We used the native Command Line Interfaces
to run these queries.

CouchDB uses Materialized Views for aggregation and to deal
with nested and list of nested documents. These views are im-

5 DBLP http://dblp .org/.

https://github.com/cipriantruica/The-Forgotten-DODBMSes
http://dblp.org/

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Table 4
Dataset.

SF
No.

Records
Raw
XML

Raw
JSON

BaseX
DB size

eXist-db
DB size

Sedna
DB size

MongoDB
DB size

CouchDB
DB size

Couchbase
DB size

0.125 768 842 0.38GB 0.34GB 0.53GB 0.44GB 1.78GB 0.17GB 0.43GB 0.44GB
0.25 1 537 685 0.75GB 0.67GB 1.05GB 0.86GB 3.36GB 0.33GB 0.85GB 0.92GB
0.5 3 075 369 1.51GB 1.36GB 2.09GB 1.74GB 6.71GB 0.67GB 1.69GB 1.78GB
1 6 150 738 2.25GB 2.06GB 3.14GB 2.59GB 10.17GB 1.02GB 2.81GB 3.02GB

Table 5
Filtering and aggregation queries.

Database Filtering Query Aggregation Queries

BaseX XQuery 3.1 XQuery 3.1 syntax for sorting and grouping
eXist-db XQuery 3.1 XQuery 3.1 syntax for sorting and grouping
sedna XQuery 1.0 XQuery 1.1 syntax for sorting and grouping
MongoDB JavaScript JavaScript Aggregation Pipeline with unwind operator
CouchDB JavaScript/Mango JavaScript/Mango Materialized Views
Couchbase N1QL N1QL with UNNEST clause

Table 6
Filter queries selectivity.

S F Q 1
1 Q 2

1 Q 3
1 Q 12

2 Q 13
2 Q 23

2 Q 12
3 Q 13

3 Q 23
3 Q 4 Q 5

0.125 0.992 0.987 0.993 0.999 0.999 0.999 0.980 0.986 0.980 0.999 0.974
0.25 0.991 0.986 0.992 0.999 0.999 0.999 0.978 0.984 0.979 0.999 0.971
0.5 0.990 0.982 0.991 0.999 0.999 0.999 0.973 0.982 0.975 0.999 0.966
1 0.993 0.987 0.994 0.999 0.999 0.999 0.981 0.988 0.982 0.999 0.976
plemented using CouchDB’s MapReduce framework. The mapper
function is used to flatten nested documents and filter the field.
The reducer function is used for applying an aggregation function
and returning the final result. We used cURL to run these queries.

To manipulate nested array in Couchbase, N1QL offers develop-
ers the UNNEST clause. This clause is used to flatten the arrays
in the parent document. Thus, the UNNEST clause conceptually
performs a JOIN operation between nested arrays and the parent
document. As data are stored using the JSON format, the JOIN op-
eration increases the runtime and decreases the overall retrieval
performance. For Couchbase, we used the native Command Line
Interfaces to run these queries.

6.4. Query selectivity

Selectivity, i.e., the amount of retrieved data (n(Q)) w.r.t. the
total amount of available data (N), depends on the number of
attributes in the WHERE and GROUP BY clauses. The selectivity
formula used for a query Q is S(Q) = 1 − n(Q)

N . For the selection
queries, we set N equal to the cardinality of the Records entity, i.e.,
N = ||Records||. Table 6 presents the filtering queries’ selectivity
w.r.t. the S F . The queries with more restrictive conditions return
a smaller number of records and the selectivity is higher, e.g., Q ij

2 .
The queries with more inclusive restrictions return a higher num-
ber of records and the selectivity is lower, e.g., Q ij

3 .
For the aggregation queries, we set N equal to the number of

queries returned by joining the entities Records with Authors, i.e.,
N = ||Authors 	
 Records||. Table 7 shows the aggregation queries’
selectivity w.r.t. the S F factor. Query Q 8 is the most restrictive
query. Because of the filtering and grouping conditions, Q 8 returns
a small number of records, and its selectivity is almost equal to 1.
The most inclusive query is Q 7, and it has a low selectivity w.r.t.
S F . Because of the less restrictive filtering and grouping conditions,
the selectivity of this query is less than 0.45. The selectivity of Q 6

increases w.r.t. S F , meaning that the number of records returned
by the query increases more gradually than the size of the corpus.
9

Table 7
Aggregation queries selectivity.

S F Q 6 Q 7 Q 8 Q 9

0.125 0.651 0.256 0.999 0.974
0.25 0.728 0.345 0.999 0.970
0.5 0.797 0.448 0.999 0.969
1 0.848 0.424 0.999 0.974

6.5. Performance metrics and execution protocol

We use the query response time as the only metric for the
benchmark. It is symbolized for each query by t(Q ∗

i)∀i ∈ [1, 9]. All
queries are executed 10 times, which is sufficient according to the
central limit theorem. Additionally, all executions are warm runs,
i.e., either caching mechanisms must be deactivated, or a cold run
where each query must be executed once (but not taken into ac-
count in the benchmark’s results) to fill in the cache. Queries must
be written in the native scripting language of the target DODBMS
and executed directly inside the specified system using the com-
mand line interpreter. Lastly, the average response time and stan-
dard deviation are computed for each t(Q ∗

i).

6.6. Results

Fig. 3 presents the results of Q i
1 where i = 1,3 is used to de-

note the keyword ti . MongoDB and BaseX offer the fastest time
performance among the DODBMSes that encode documents using
JSON and XML, respectively, regardless of the keyword w.r.t. S F .
For Q 2

1 query which has the lowest selectivity of the three Q i
1

queries, the time performance of CouchDB is with a factor of ∼ 2x
faster than eXist-db w.r.t. S F . The time performance of CouchDB
and eXist-db for Q 1

1 and Q 3
1 tend to become the same w.r.t. S F ,

i.e., the performance difference factor between CouchDB and eXist-
db at S F = 0.125 is ∼ 0.8x which increases to ∼ 0.9x for S F = 1.
CouchDB time performance is with a factor of ∼ 1.1x faster than
Couchbase for all the Q i

1 queries regardless of S F . Couchbase and
eXist-db have similar performance for query Q 3 and S F = 1. Sedna
1

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Fig. 3. Response time for Q i
1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
performance is almost constant regardless of query selectivity w.r.t.
S F . The overall best performance is achieved by MongoDB.

Fig. 4 presents the results of Q ij
2 and Q ij

3 queries where i and
j indicate the ti and t j keywords used for filtering (Table 3) with
i = 1,3, j = 1,3, and i �= j. For this set of queries, MongoDB has
the best overall time performance regardless of the S F factor. Ba-
seX achieves the second overall best performance and the best
performance among the tested XDBMSes, regardless of the S F . For
the Q ij

2 set of queries, the time performance of MongoDB has a
factor between ∼ 3.2x and ∼ 3.6x faster then BaseX w.r.t. S F . For
the Q ij

3 set of queries, the time performance of MongoDB has a
factor between ∼ 1.8x and ∼ 2.2x faster then BaseX w.r.t. S F .

Couchbase presents the highest execution time for the Q ij
2

queries regardless of S F , followed by the execution time of
CouchDB. CouchDB time performance is with a factor of ∼ 1.2x
and ∼ 1.1x faster than Couchbase for the Q ij

2 , respectively Q ij
3

queries regardless of S F . The eXist-db XDBMS has the worst per-
formance for the Q ij

3 set of queries regardless of the S F . For the
Q ij

2 set of queries, Sedna time performance has a factor of ∼ 2x
better than CouchDB and a factor of 2x worse than eXist-db. For
the Q ij

3 set of queries, Sedna’s query execution time is with a fac-
tor of ∼ 1.5x better than CouchDB and with a factor of ∼ 5x worst
than BaseX.

Fig. 5 presents the time performance of Q 4 and Q 5 queries
for each DODBMS w.r.t. S F . The time performance trend for Q 4

and Q 5 remains similar to the ones for Q ij
2 and Q ij

3 , respectively.
CouchDB time performance is with a factor of ∼ 1.3x and ∼ 1.2x
faster than Couchbase for the Q ij

2 , respectively Q ij
3 queries regard-

less of S F . MongoDB achieves the overall best time performance
10
for both queries. BaseX has the second-best time performance
among the tested DODBMSes and the best performance among the
XDBMSes.

Fig. 6 shows the results for the aggregation queries, i.e., Q 6

to Q 9. For the queries Q 6, Q 7, and Q 9, BaseX has the best time
performance and significantly outperforms MongoDB and CouchDB
with a factor of ∼ 2x, regardless of the S F . For the Q 8 query,
CouchDB achieved the best query execution time, while Couch-
base the worst. MongoDB has the second best query response time
among the studied DODBMSes for Q 6, Q 7, and Q 9. MongoDB’s re-
sponse time for these queries is almost on parity with the response
time of CouchDB w.r.t. S F , although MongoDB executes the aggre-
gation functions at runtime.

For Q 7, Couchbase has a large standard deviation. During test-
ing, this query finished with the error “Index scan timed out”.
The tests that finished with the status “success” returned fluctuat-
ing time performance for each run. This abnormal behavior of the
Couchbase system can be sometimes observed for complex queries
on large collections.

For Q 8 which has the highest selectivity, CouchDB holds the
best time performance. We attribute this result to the mecha-
nism used by CouchDB to store aggregation functions. Aggregation
functions are stored in materialized views also named indices in
CouchDB. Using this technique, CouchDB manages to outperform
BaseX and MongoDB, which execute aggregation functions at run-
time, for queries with high selectivity. With Couchbase, the com-
plexity and selectivity together with the UNNEST clause required
to extract the nested documents in order to filter and group the in-
formation, increases the runtime significantly while decreasing the
overall query performance.

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Fig. 4. Response time for Q ij
2 and Q ij

3 . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
The aggregation queries did not work on Sedna. When exe-
cuting these queries, the XDBMS remained unresponsive for days,
and we had to manually stop the system, the related services, and
the background processes. We note that Sedna also executes ag-
gregation functions at runtime. We suspect that one reason for
Sedna’s failure to execute the aggregation queries is also the out-
dated XQuery 1.0 query language.

The eXist-db XDBMS has the highest query time for Q 6, Q 7,
and Q 9 queries. The execution is done at runtime. For this XDBMS,
query Q 7 worked only for S F = 0.125. For other S F values,
the query returned memory errors, although we have tuned this
XDBMS to work with the same parameters as the other DODBM-
Ses. Thus, eXist-db is highly dependent on the JVM (Java Virtual
Machine) memory allocation mechanism.
11
6.7. Discussions on the experimental design choices

In this study, we present our findings regarding the perfor-
mance of filtering and aggregation queries on a large dataset for
XDBMSes and JDBMSes w.r.t. different scale factors. We observe
that the XDBMSes perform as well as JDBMSes for specific use
cases, with BaseX even outperforming the more popular JDBMSes
on three out of the four aggregation queries. Among the JDBMSes,
MongoDB has the overall best performance.

For our comparison, we do not take into account horizontal
scalability through sharding and replication, as not all of the an-
alyzed DBMSes have such a functionality. Furthermore, it is essen-
tial first to understand single-node performance before considering

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Fig. 5. Response time for Q 4 and Q 5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Response time for aggregation queries. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
horizontal scaling. Thus, the aim of the paper is to examine single
instance deployments.

There are many real-world scenarios where such single-instance
deployment is preferred. As a first example, XDBMSes can be used
for fast application development, analyzing and querying log data,
or storing and retrieving IoT sensor data. XDBMSes are good can-
didates for storing large documents, managing long-running trans-
actions, and querying hierarchical data structures in environments
that require rapidly evolving schemes. Furthermore, these DBMSes
are lightweight and do not require dedicated hardware, software,
or a lot of resources. Thus, managing to lower resource costs at
the data center site and enabling on-site data analysis and decision
12
making. Therefore, they can be utilized in Edge and Fog Computing
with ease.

The creation of network islands due to faulty nodes is very
common in the Edge/Fog environment. Even in the presence of
well-defined recovery mechanisms, the formation of temporal net-
work islands is unfavorable for sharding, as the overall latency in-
creases if nodes go down and then up again. Hence, single-instance
deployments are favored in these environments.

Another real-world scenario where such single-instance deploy-
ment can be used is for small to medium scale document manage-
ment systems. These management systems are useful to smaller
enterprises, where data is kept in the company due to GDPR (Eu-

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
ropean Union Legislation on General Data Protection Regulation).
Moreover, as in many cases most of the data is in semi-structured
formats, such as XML and JSON, single instance DODBMSes are a
good candidate for storing and managing such documents. Thus,
removing from the company’s costs the maintenance of a data cen-
ter.

It is also important to mention that the focus of our bench-
mark is on data retrieval and not on write operations because, in
real-world applications, multiple techniques can be put in check
to balance the write operations and minimize the workload. More-
over, data persistence can be achieved much later within a DBMS,
depending on the workload and the systems write and logging
mechanisms.

Furthermore, we loaded the data into the database using differ-
ent methods. Because not all of the tested DODBMSes have their
own data load tools, we developed our own data loading pro-
grams. By utilizing our data load programs and not native load
DBMS functionalities, we added a new layer of complexity which
decreases write performance. This makes the loading process to
be dependent on external DBC (database connectors) implementa-
tions, and not on the DODBMS internal functionalities.

7. Conclusion

In this paper, we present an overview and comparison of
DODBMSes that encode information using XML and JSON formats
and propose a benchmark using filtering and aggregation queries
on a heterogeneous dataset. For our experiments we chose three
XDBMSes, i.e., BaseX, eXist-db, Sedna, and three JDBMSes, i.e.,
MongoDB, CouchDB, and Couchbase. These DODBMSes are open-
source and free to use systems, whose license does not forbid
benchmarking.

Our comparison focuses on key functionalities required by Big
Data and IoT systems for storing and extracting information from
large volumes of data. For this comparison, we also consider the
transactions’ properties of each DODBMSes, their in-memory capa-
bilities, and how these systems deal with atomicity, consistency,
isolation, durability with regards to operations such as access-
ing, modifying, and saving documents. We also present for each
DODBMS its support for replication and partitioning of data and
how it manages these Big Data requirements. Furthermore, we
present the querying languages used for extracting information as
well as the different types of indices provided by each DODBMS to
improve retrieval response time.

The proposed benchmark uses different queries to emphasize
the time performance of DODBMSes and highlights the capabili-
ties of XDBMSes and JDBMSes. Furthermore, our solution proves its
portability, scalability, and relevance by its design. The benchmark
is portable, as it works on multiple systems. For this purpose, we
compare the performance of several DODBMSes, i.e., BaseX, eXist-
db, Sedna, MongoDB, CouchDB, and Couchbase. To demonstrate the
scalability of our solution, we introduced S F , the scaling factor
that generates an incremental growth in the data volume for our
experiments. By increasing the queries’ complexity together with
the S F factor, we analyze the behavior of the systems from the
scaling perspective. We observe that all the DODBMSes have a lin-
ear increase at runtime. Furthermore, BaseX proves to be a good
choice when dealing with aggregations. Finally, our experimental
results show that our benchmark is indeed relevant in comparing
the runtime performance of different DODBMSes.

The performance tests provide some interesting and unexpected
results. Among the XDBMSes, BaseX has the best overall perfor-
mance. BaseX even outperforms the JDBMSes selected for this
benchmark, i.e., MongoDB, CouchDB, and Couchbase, for three out
of the four aggregation queries proposed. We observe that Couch-
base has the overall worst performance among the JDBMSes. Sedna
13
outperforms CouchDB and Couchbase when dealing with filtering
queries, but does not work for the aggregation queries. MongoDB
has the overall best time performance for the filtering queries and
it outperforms BaseX only for the aggregation query Q 8. eXist-db
has some strange behavior when dealing with both filtering and
aggregation queries. Also, it is highly dependent on the JVM, which
needs to be tuned for each query, making this XDBMS hard to
work with. However, we can assume that eXist-db works well on
a query to query basis.

Following the results obtained by the benchmark, we can an-
swer the three research questions and conclude that XDBMSes
are still useful: their performance is as good as JDBMSes and
they are good candidates for Big Data Management. Furthermore,
XDBMSes are well-suited for several current real-world scenar-
ios. Firstly, XDBMSes are reliable systems for storing large docu-
ments, managing long-running transactions, and querying hierar-
chical data structures in Edge/Fog environments (e.g., smart agri-
culture, healthcare wearables, etc.), as these types of DODBMSes
are lightweight and do not require dedicated hardware, software,
or a lot of resources. Secondly, XDBMSes can be used as small to
medium scale document management systems in smaller enter-
prises, where data are kept in the company due to GDPR. Thirdly,
in the case of Big Data analysis, they prove to be well-suited when
the documents are in XML format, by removing the ETL (Extract,
Transform, Load) processes from the storing, managing, and analy-
sis pipeline.

As future work, we plan to add support for OLAP queries [41]
on XML data and XML data in combination with other data [42,43]
both in terms of performance and functionality. This will involve
designing new sampling strategies and supporting more aggrega-
tion queries [42]. The sampling methods will include constraints
on other labels and values contained in the records. Also, we aim
to add more dimension for grouping [42], to boost the performance
by lowering the query selectivity and performing query rewrit-
ing [43], and to add further grouping functionality [42].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

The research presented in this paper was supported in part by
the Danish Independent Research Council, through the SEMIOTIC
project, and the Robots and Society: Cognitive Systems for Personal
Robots and Autonomous Vehicles (ROBIN) project CCCDI-UEFISCDI
grant No. PN-III-P1-1.2-PCCDI-2017-0734.

References

[1] J. Han, H. E, G. Le, J. Du, Survey on NoSQL database, in: International Confer-
ence on Pervasive Computing and Applications, IEEE, 2011, pp. 363–366.

[2] B.-K. Park, H. Han, I.-Y. Song, XML-OLAP: a multidimensional analysis frame-
work for XML warehouses, in: Data Warehousing and Knowledge Discovery,
Springer, 2005, pp. 32–42.

[3] M. Stonebraker, U. Çetintemel, “One size fits all”: an idea whose time has
come and gone, in: International Conference on Data Engineering, IEEE, 2005,
pp. 1–10.

[4] C. Strauch, Nosql databases, Tech. rep., Stuttgart Media University, 2011.
[5] T. Zhu, D. Wang, H. Hu, W. Qian, X. Wang, A. Zhou, Interactive transaction pro-

cessing for in-memory database system, in: Database Systems for Advanced
Applications, Springer, Cham, 2018, pp. 228–246.

[6] M.A. Qader, S. Cheng, V. Hristidis, A comparative study of secondary index-
ing techniques in lsm-based NoSQL databases, in: International Conference on
Management of Data, SIGMOD2018, ACM, 2018, pp. 551–566.

[7] A. Petrov, Algorithms behind modern storage systems, Queue 16 (2) (2018)
30:31–30:51, https://doi .org /10 .1145 /3212477.3220266.

http://refhub.elsevier.com/S2214-5796(21)00022-8/bib153BBA7D82ABD97996F0B76B1EE1E2E4s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib153BBA7D82ABD97996F0B76B1EE1E2E4s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibC449D534CE3F421EF519F0CA417ABA2Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibC449D534CE3F421EF519F0CA417ABA2Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibC449D534CE3F421EF519F0CA417ABA2Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib50AFC31045D5C921DE51F94DA3C443F9s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib50AFC31045D5C921DE51F94DA3C443F9s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib50AFC31045D5C921DE51F94DA3C443F9s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib918D67569FEB046A8E5B20F5189164C4s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibEC4FC4E515B5D55CA6BF372ED8232F8Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibEC4FC4E515B5D55CA6BF372ED8232F8Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibEC4FC4E515B5D55CA6BF372ED8232F8Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib67C94E9D859AAE7357FE1107C711D66Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib67C94E9D859AAE7357FE1107C711D66Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib67C94E9D859AAE7357FE1107C711D66Cs1
https://doi.org/10.1145/3212477.3220266

C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
[8] D. Comer, Ubiquitous b-tree, ACM Comput. Surv. 11 (2) (1979) 121–137,
https://doi .org /10 .1145 /356770 .356776.

[9] R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Rec. 39 (4) (2011) 12,
https://doi .org /10 .1145 /1978915 .1978919.

[10] M. Stonebraker, SQL databases v. NoSQL databases, Commun. ACM 53 (4)
(2010) 10, https://doi .org /10 .1145 /1721654 .1721659.

[11] R. Hecht, S. Jablonski, NoSQL evaluation: a use case oriented survey, in: Inter-
national Conference on Cloud and Service Computing, IEEE, 2011, pp. 336–341.

[12] F. Gessert, W. Wingerath, S. Friedrich, N. Ritter, NoSQL database systems: a sur-
vey and decision guidance, Comput. Sci. Res. Dev. 32 (3–4) (2016) 353–365,
https://doi .org /10 .1007 /s00450 -016 -0334 -3.

[13] Z. Brahmia, H. Hamrouni, R. Bouaziz, XML data manipulation in conventional
and temporal XML databases: a survey, Comput. Sci. Rev. 36 (2020) 100231,
https://doi .org /10 .1016 /j .cosrev.2020 .100231.

[14] F. Bajaber, S. Sakr, O. Batarfi, A. Altalhi, A. Barnawi, Benchmarking big data
systems: a survey, Comput. Commun. 149 (2020) 241–251, https://doi .org /10 .
1016 /j .comcom .2019 .10 .002.

[15] C.-O. Truică, E.-S. Apostol, J. Darmont, I. Assent, TextBenDS: a generic textual
data benchmark for distributed systems, Inf. Syst. Front. (mar 2020), https://
doi .org /10 .1007 /s10796 -020 -09999 -y.

[16] S.M. Freire, E. Sundvall, D. Karlsson, P. Lambrix, Performance of xml databases
for epidemiological queries in archetype-based ehrs, in: Scandinavian Con-
ference on Health Informatics, Linköping University Electronic Press, 2012,
pp. 51–57.

[17] A. Schmidt, F. Waas, M. Kersten, M.J. Carey, I. Manolescu, R. Busse, XMark: a
benchmark for xml data management, in: International Conference on Very
Large Databases VLDB, Elsevier, 2002, pp. 974–985.

[18] M. Nicola, I. Kogan, B. Schiefer, An XML transaction processing benchmark, in:
ACM SIGMOD International Conference on Management of Data, ACM Press,
2007, pp. 937–948.

[19] P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling in the NoSQL world,
Comput. Stand. Interfaces 67 (2020) 103149, https://doi .org /10 .1016 /j .csi .2016 .
10 .003.

[20] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, T. West-
mann, Anatomy of a native XML base management system, VLDB J. 11 (4)
(2002) 292–314, https://doi .org /10 .1007 /s00778 -002 -0080 -y.

[21] G. Pavlović-Lažetić, Native xml databases vs. relational databases in dealing
with XML documents, Kragujev. J. Math. 30 (2007) 181–199.

[22] E. Gallinucci, M. Golfarelli, S. Rizzi, Schema profiling of document-oriented
databases, Inf. Sci. 75 (2018) 13–25, https://doi .org /10 .1016 /j .is .2018 .02 .007.

[23] BaseX, BaseX documentation, http://docs .basex .org /wiki /Main _Page, 2020.
[24] C. Grün, S. Gath, A. Holupirek, M.H. Scholl, XQuery full text implementation in

BaseX, in: Database and XML Technologies, 2009, pp. 114–128.

[25] W. Meier, eXist: An open source native xml database, in: Web, Web-Services,
and Database Systems, Springer, 2003, pp. 169–183.

[26] E. Siegel, A. Retter, eXist: A NoSQL Document Database and Application Plat-
form, O’Reilly Media, Inc., 2014.

[27] eXIstdb, eXist-db documentation, https://exist -db .org /exist /apps /doc /
documentation, 2020.

[28] A. Fomichev, M. Grinev, S. Kuznetsov, Sedna: a native XML DBMS, in: SOFSEM
2006: Theory and Practice of Computer Science, Springer, 2006, pp. 272–281.

[29] Sedna, Sedna documentation, https://www.sedna .org /documentation .html,
2020.

[30] I. Taranov, I. Shcheklein, A. Kalinin, L. Novak, S. Kuznetsov, R. Pastukhov, A.
Boldakov, D. Turdakov, K. Antipin, A. Fomichev, P. Pleshachkov, P. Velikhov,
N. Zavaritski, M. Grinev, M. Grineva, D. Lizorkin, Sedna: native XML database
management system (internals overview), in: ACM SIGMOD International Con-
ference on Management of Data, SIGMOD’10, ACM, 2010, pp. 1037–1046.

[31] K. Banker, P. Bakkum, S. Verch, D. Garrett, T. Hawkins, MongoDB in Action, 2nd
edition, Manning Publications Co., 2011.

[32] MongoDB, Inc., Mongodb documentation, https://docs .mongodb .com/, 2020.
[33] Apache CouchDB, CouchDB documentation, https://docs .couchdb .org /en /stable/,

2020.
[34] J.C. Anderson, J. Lehnardt, N. Slater, CouchDB: Definitive Guide, O’Reilly Media,

Inc., 2010.
[35] B. Holt, Scaling CouchDB: Replication, Clustering, and Administration, O’Reilly

Media, Inc., 2011.
[36] G. Manyam, M.A. Payton, J.A. Roth, L.V. Abruzzo, K.R. Coombes, Relax with

CouchDB — into the non-relational DBMS era of bioinformatics, Genomics
100 (1) (2012) 1–7, https://doi .org /10 .1016 /j .ygeno .2012 .05 .006.

[37] M. Brown, Getting Started with Couchbase Server, Oreilly, 2012.
[38] D. Vohra, Pro Couchbase Development, Apress, 2015.
[39] M.A. Hubail, A. Alsuliman, M. Blow, M. Carey, D. Lychagin, I. Maxon, T. West-

mann, Couchbase analytics, VLDB Endow. 12 (12) (2019) 2275–2286, https://
doi .org /10 .14778 /3352063 .3352143.

[40] Apache Couchbase, Couchbase documentation, https://docs .couchbase .com /
home /index .html, 2020.

[41] D. Pedersen, K. Riis, T.B. Pedersen, A powerful and SQL-compatible data model
and query language for OLAP, Australasian Database Conference 12 (2019).

[42] T.B. Pedersen, D. Pedersen, J. Pedersen, Integrating XML data in the TARGIT
OLAP system, Int. J. Web Eng. Technol. 4 (4) (2008) 495–533, https://doi .org /
10 .1504 /IJWET.2008 .019945.

[43] T.B. Pedersen, X. Yin, Evaluating XML-extended OLAP queries based on physical
algebra, J. Database Manag. 17 (2) (2006) 85–116, https://doi .org /10 .4018 /jdm .
2006040105.
14

https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1721654.1721659
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib8E156C7EF820EE69A6EAF78976D903E4s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib8E156C7EF820EE69A6EAF78976D903E4s1
https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.1016/j.cosrev.2020.100231
https://doi.org/10.1016/j.comcom.2019.10.002
https://doi.org/10.1016/j.comcom.2019.10.002
https://doi.org/10.1007/s10796-020-09999-y
https://doi.org/10.1007/s10796-020-09999-y
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib7D6D8C20FE997A54DACBEC1FEC13FDD8s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib7D6D8C20FE997A54DACBEC1FEC13FDD8s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib7D6D8C20FE997A54DACBEC1FEC13FDD8s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib7D6D8C20FE997A54DACBEC1FEC13FDD8s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib69F87EA1A3C595594EAEB3250AE70373s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib69F87EA1A3C595594EAEB3250AE70373s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib69F87EA1A3C595594EAEB3250AE70373s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib2E691B30BEE491B68752C6B7EAD612F3s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib2E691B30BEE491B68752C6B7EAD612F3s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib2E691B30BEE491B68752C6B7EAD612F3s1
https://doi.org/10.1016/j.csi.2016.10.003
https://doi.org/10.1016/j.csi.2016.10.003
https://doi.org/10.1007/s00778-002-0080-y
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibCDDC81EE9CC70353F95731182BCF0290s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibCDDC81EE9CC70353F95731182BCF0290s1
https://doi.org/10.1016/j.is.2018.02.007
http://docs.basex.org/wiki/Main_Page
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib3CCEB7B537FAEB99BCF0C66110702E11s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib3CCEB7B537FAEB99BCF0C66110702E11s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib74E1172E6B798B5108670600731BFF52s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib74E1172E6B798B5108670600731BFF52s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibD593547714EF365071BAA0C7B3CEA7C5s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibD593547714EF365071BAA0C7B3CEA7C5s1
https://exist-db.org/exist/apps/doc/documentation
https://exist-db.org/exist/apps/doc/documentation
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib154C82D9954F1E3F67FF4FE6EAF4B7CBs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib154C82D9954F1E3F67FF4FE6EAF4B7CBs1
https://www.sedna.org/documentation.html
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib9284B6B58A72281F1B0073871D0001BDs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib9284B6B58A72281F1B0073871D0001BDs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib9284B6B58A72281F1B0073871D0001BDs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib9284B6B58A72281F1B0073871D0001BDs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib9284B6B58A72281F1B0073871D0001BDs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibA5A840063F5DB45A7F3FA0E166AF293Ds1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibA5A840063F5DB45A7F3FA0E166AF293Ds1
https://docs.mongodb.com/
https://docs.couchdb.org/en/stable/
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib5AD05BC77F6B8A2D4CCB894DAE3E095Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib5AD05BC77F6B8A2D4CCB894DAE3E095Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibB2A990742F403A9213F6CFFEBF60EAA8s1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibB2A990742F403A9213F6CFFEBF60EAA8s1
https://doi.org/10.1016/j.ygeno.2012.05.006
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibBC97F7CBFA9CC7AECBF292E1914436BFs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bib73D58AB87AD0FDAE2939D38317A2EBA9s1
https://doi.org/10.14778/3352063.3352143
https://doi.org/10.14778/3352063.3352143
https://docs.couchbase.com/home/index.html
https://docs.couchbase.com/home/index.html
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibBB7F5AE6220C9828E5EC91FAF054197Cs1
http://refhub.elsevier.com/S2214-5796(21)00022-8/bibBB7F5AE6220C9828E5EC91FAF054197Cs1
https://doi.org/10.1504/IJWET.2008.019945
https://doi.org/10.1504/IJWET.2008.019945
https://doi.org/10.4018/jdm.2006040105
https://doi.org/10.4018/jdm.2006040105

	The Forgotten Document-Oriented Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in Comparison...
	1 Introduction
	2 Related works
	3 Document-Oriented Databases
	3.1 XDBMSes
	BaseX
	eXist-db
	Sedna

	3.2 JDBMSes
	MongoDB
	CouchDB
	Couchbase

	3.3 DODBMSes Comparison

	4 Benchmark specifications
	4.1 Data model
	4.2 Workload model

	5 Benchmark implementation
	5.1 Database design
	5.2 Query description
	5.2.1 Selection queries
	5.2.2 Aggregation queries

	6 Experiments
	6.1 Experimental conditions
	6.2 Dataset
	6.3 Query implementation
	6.4 Query selectivity
	6.5 Performance metrics and execution protocol
	6.6 Results
	6.7 Discussions on the experimental design choices

	7 Conclusion
	Declaration of competing interest
	Acknowledgement
	References

