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In the current context of Big Data, a multitude of new NoSQL solutions for storing, managing, and 
extracting information and patterns from semi-structured data have been proposed and implemented. 
These solutions were developed to relieve the issue of rigid data structures present in relational 
databases, by introducing semi-structured and flexible schema design. As current data generated by 
different sources and devices, especially from IoT sensors and actuators, use either XML or JSON format, 
depending on the application, database technologies that store and query semi-structured data in XML 
format are needed. Thus, Native XML Databases, which were initially designed to manipulate XML data 
using standardized querying languages, i.e., XQuery and XPath, were rebranded as NoSQL Document-
Oriented Databases Systems. Currently, the majority of these solutions have been replaced with the 
more modern JSON based Database Management Systems. However, we believe that XML-based solutions 
can still deliver performance in executing complex queries on heterogeneous collections. Unfortunately 
nowadays, research lacks a clear comparison of the scalability and performance for database technologies 
that store and query documents in XML versus the more modern JSON format. Moreover, to the best 
of our knowledge, there are no Big Data-compliant benchmarks for such database technologies. In this 
paper, we present a comparison for selected Document-Oriented Database Systems that either use the 
XML format to encode documents, i.e., BaseX, eXist-db, and Sedna, or the JSON format, i.e., MongoDB, 
CouchDB, and Couchbase. To underline the performance differences we also propose a benchmark that 
uses a heterogeneous complex schema on a large DBLP corpus.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the emergence of Big Data and the Internet of Things 
(IoT) and the increasing amount of semi-structured information 
generated daily, new technologies have arisen for storing, man-
aging, and extracting information and patterns from such data. 
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The new technologies for storing data have been labeled with the 
name NoSQL and were initially developed to solve very specific 
problems. Currently, they provide different trade-offs and func-
tionality (e.g., choosing high-availability over consistency) to be 
as generic as their counterparts Relational Database Management 
Systems (RDBMSes). Due to the semi-structured nature of data, 
NoSQL Database Management Systems (DBMSes) have been classi-
fied based on the data model used for storing information [1], i.e., 
key-value, document-oriented, wide column, and graph databases.

In this paper, we particularly study NoSQL Document-Oriented 
Databases Systems (DODBMSes) that encode data using the XML or 
JSON formats. We further focus on two subcategories of DODBM-
Ses with respect to the data model used to encode documents: 
i) DODBMSes that encode data using the XML format are Native 
XML Database Management Systems (XDBMSes), and ii) DODBM-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Ses that encode data using the JSON format are JSON Database 
Management Systems (JDBMSes).

The NoSQL DBMSes became very popular with the increasing 
need for data storage, management, and analysis systems that scale 
with the volume. To address these needs, many NoSQL DBMSes 
compromise consistency to offer high-availability, partition toler-
ance, improved analytics, and high-throughput. These features are 
also a requirement for real-time web applications and Big Data 
processing and analysis and are available in JDBMSes as well.

XDBMSes have started to emerge after the eXtensible Markup 
Language (XML) has been standardized and became the common 
format for exchanging data between different applications run-
ning on the Web. Their primary use was to facilitate secure stor-
age and fast querying of XML documents. Besides their primary 
use, XDBMSes prove useful for OLAP (Online Analytical Process-
ing) style analysis and decision support systems that incorporate 
a time dimension and encode data in the XML format [2], and 
thus removing the need of using ETL (Extract Transform Load) pro-
cesses to transform XML documents into a relational model. XML 
query languages and technologies, including XDBMSes, had been 
around before the NoSQL trend, and have been forgotten during 
the Big Data hype. In the field of relational databases, XML format 
is used as a Data Type, e.g., Oracle, DB2, PostgreSQL, etc. Currently, 
with the rise of the NoSQL movement, XDBMSes have become a 
subcategory of DODBMSes. But, with the emergence of processing 
platforms that uses Big Data or IoT technologies, where the data 
are transferred over computer networks into formats such as XML 
and JSON, the XDBMSes can be seen as a viable solution for storing 
and manipulating computer-generated semi-structured data.

We hypothesize that the more classical XDBMSes may still be 
useful in the Big Data era. Thus, in this study we want to address 
and use as guidelines the following research questions:

Q1: Are XDBMSes absolute and should be replaced by JDBMSes?
Q2: Are XDBMSes a viable candidate for Big Date Management?
Q3: Do JDBMSes outperform XDBMSes when using complex fil-

tering and aggregation queries with different scale factors, on 
large and heterogeneous datasets?

To test our hypothesis and answer our research questions, we 
consider the following research objectives: i) discuss XDBMSes and 
compare their capabilities and features with several popular JDBM-
Ses solutions; ii) propose a benchmark that evaluates the current 
needs and workloads available in Big Data and compare perfor-
mance between the selected DODBMSes; iii) evaluate the per-
formance of the selected DODBMSes using complex filtering and 
aggregation queries with different scale factors, on large and het-
erogeneous datasets.

For testing and analyzing with our proposed benchmark, we 
utilize several XDBMSes and JDBMSes solutions, that are free to 
use, and their license does not forbid benchmarking. Thus, we 
chose BaseX, eXist-db, and Sedna as representatives XDBMSes sys-
tems and MongoDB, CouchDB, and Couchbase as JDBMSes solu-
tions.

As a result of our research and as a response to Q1, we claim 
that the more classical XML based DODBMSes may still be use-
ful in the Big Data era. To demonstrate this and answer Q2, we 
propose a new benchmark for comprehensive DODBMSes analysis 
using a large dataset. And thereby we present a qualitative and 
quantitative performance comparison between XDBMSes and the 
more modern JDBMSes to answer Q3.

This paper is structured as follows. Section 2 presents an 
overview of different NoSQL DBMSes models, surveys, and bench-
marks. Section 3 offers an in-depth overview and comparison of 
DODBMSes, focusing on the XDBMSes and JDBMSes subcategories. 
Section 4 introduces the proposed benchmark specification and 
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discusses the data and workload models, while Section 5 discusses 
the database physical implementation and presents the description 
of the benchmark’s queries. Section 6 thoroughly details the exper-
iments performed on the selected DODBMSes using our benchmark 
and discusses the results in detail. Finally, Section 7 concludes the 
paper, summarizes the results, and provides future research per-
spectives.

2. Related works

The NoSQL Database Management Systems (DBMSes) emerged 
as an alternative to Relational Database Management Systems 
(RDBMSes) in order to store and process huge amounts of het-
erogeneous data. However, NoSQL DBMSes did not appear as a 
replacement for RDBMSes, but as a solution to specific problems 
that require additional features (e.g., replication, high-availability, 
etc.) that are not handled well by traditional means [3]. The rea-
sons commonly given to develop and use NoSQL DBMSes are sum-
marized as follows [4]: avoidance of unneeded complexity, high 
throughput, horizontal scalability, running on commodity hard-
ware, avoidance of expensive object-relational mapping, lowering 
the complexity and the cost of setting up a cluster, compromis-
ing reliability for better performance, and adapting to the require-
ments of cloud computing.

The classifications used for NoSQL DBMSes usually are done by 
either taking into account the persistence model or the data and 
query model. Using the persistence model, NoSQL DBMSes are clas-
sified as follows [4]:

i) In-Memory Databases [5] are very fast because the most cur-
rent used data are stored in memory, with optional subsequent 
disk flushes triggered at given periods or when the in-memory 
data are not used. Evidently, the size of the currently in-use 
data that can be stored is limited to the amount of memory. 
This problem can be resolved using vertical scaling to some 
degree as there is a limit to the amount of memory a system 
can hold. Moreover, the durability may become a problem if 
data are lost between subsequent disk flushes or if data persis-
tence is disabled. A solution to this problem is data replication.

ii) Memtables and SSTables Databases [6] buffer operations in 
memory using a Memtable after they have been written to 
an append-only commit log to ensure durability. After a cer-
tain amount of writes the Memtable gets flushed to disk as a 
whole into a SSTable. These DBMSes have performance charac-
teristics comparable to those of In-Memory Database but solve 
the durability problem.

iii) B-trees Databases [7] use the B-tree self-balancing tree data 
structure that keeps data sorted and allows searches, sequen-
tial access, insertions, and deletions in logarithmic time [8].

NoSQL DBMSes are also classified by using the data and query 
model as follows [1,9]:

i) Wide Column Databases are used to store, retrieve, and man-
age data using column families. Each record can have different 
numbers of cells and columns, making a row sparse without 
storing NULLs.

ii) Graph Databases are used to store, retrieve, and manage in-
formation using a graph. Therefore, an object is modeled as a 
node and the edges between nodes become the relationships 
between the objects.

iii) Key-Value Databases (KVDBMSes) are data storage systems de-
signed for storing, retrieving, and managing associative arrays, 
i.e., dictionaries or hash tables.

iv) Document-Oriented Databases (DODBMSes) have evolved form 
KVDBMSes and are used to store, retrieve, and manage semi-
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structured data, i.e., documents, encoded using JSON, BSON, 
XML, or YAML formats.

There are multiple surveys on NoSQL DBMSes, in the follow-
ing phrases we present the most relevant ones for our analysis. 
Article [10] provides a comparison regarding the performance and 
flexibility of KVDBMSes and DODBMSes over RDBMSes. The NoSQL 
DBMSes prove to be a better choice for high throughput applica-
tions that require data modeling flexibility and horizontal scaling. 
The authors of [1] offer a classification by data models of NoSQL 
DBMSes, and also they present the current and most popular so-
lutions. In [11], the authors make a comparison and overview of 
NoSQL data models, query types, concurrency controls, partition-
ing, and replication. Article [12] presents a top-down overview of 
the NoSQL database field and propose a comparative classification 
model that relates functional and non-functional requirements to 
techniques and algorithms employed in these systems. The authors 
of [13] provide an overview of XML data manipulation techniques 
employed in conventional and temporal XDBMSes and study the 
support of such functionality in mainstream commercial DBMSes. 
Unfortunately, the paper presents only a general discussion about 
XDBMSes and other DBMSes with XML manipulation capabilities, 
and also no evaluation is provided. Thus, we can conclude that 
none of these surveys present an in-depth discussion and compar-
ison of different subcategories of DODBMSes.

In the literature there are many data-centric benchmarks for 
the Big Data distributed systems and NoSQL DBMSes that fo-
cus either on structured data or on specific applications, such as 
MapReduce-based applications, rather than on unstructured or va-
riety. In [14], the authors present a comprehensive survey and 
analysis of benchmarks for different types of Big Data systems in-
cluding NoSQL systems. The authors of [15] present a new bench-
mark for textual data for distributed systems including MongoDB. 
None of the current literature presents benchmarks for modern na-
tive XDBMSes.

XDBMSes benchmarks are application-oriented and domain-
specific, e.g., OpenEHR XML medical records [16], XMark which 
contains documents extracted from electronic commerce sites 
and content providers [17] or Transaction Processing over XML 
(TPoX) [18] which simulates a financial multi-user workload with 
XML data conforming to the FIXML standard. These benchmarks 
are used for testing the performance of DBMSes that are ca-
pable of storing, searching, modifying and retrieving XML data. 
Unfortunately, the majority of these benchmarks use rather small 
collections. And even for the benchmarks where the XML or JSON 
document size is up to the order of Gigabytes (GBs), the contained 
information is mostly homogeneous. Our proposed benchmark so-
lution uses large heterogeneous collections with over 6 million 
records to test the scalability, filtering, and aggregation perfor-
mance of complex queries for the current native XDBMSes.

Based on the lack of current literature regarding XDBMS, in this 
paper, we analyze the performance and functionality of DODBMSes 
solutions, while focusing on two distinct subclasses that use JSON 
or XML formats to encode data.

3. Document-Oriented Databases

Document-Oriented Databases Management Systems (DODBM-
Ses) have evolved from Key-Value Databases [1]. DODBMSes are 
used for storing, retrieving, and managing semi-structured data. 
They have a schema-less flexible data representation, thus pro-
viding more flexibility for data modeling [19]. DODBMSes use 
documents for storing data such as XML or JSON. The flexibility 
provided by XML and JSON makes it easier to manipulate the in-
formation than it is for tables in Relational Database Management 
Systems (RDBMSes). Usually, documents are stored in collections. A 
3

Native XML Database Management System (XDBMS) uses the XML 
(eXtensible Markup Language) data structure to encode documents 
and defines a hierarchical logical model based on the elements of 
this markup language [20,21]. A JSON Database Management Sys-
tem (JDBMS) uses the JSON structure for modeling documents and 
storing them in collections.

In DODBMSes, labels are used in storing the information. These 
labels describe the data and values in a record. New information 
can be added directly to a record without the need to modify the 
entire schema, as is the case for RDBMSes.

One of the benefits of using a DODBMS solution is the flexibility 
of modeling the data [22]. Data from the web, mobile, social, and 
IoT devices change the nature of the application’s data model. In 
an RDBMS, these changes impose the modification of the schema 
by altering tables and adding or removing columns. Whereas, the 
flexibility of DODBMSes eliminates the need to force-fit the data 
into predefined attributes and tables.

Another benefit of a DODBMS is the fast write performance. 
Some DODBMSes prioritize high availability over strict data consis-
tency. This ensures that both read and write operations will always 
be executed even if there is a hardware or network failure. In case 
of failure, the replication and eventual consistency mechanisms en-
sure that the environment will function.

Fast query performance is another benefit of a DODBMS. Most 
DODBMSes provide powerful query engines for CRUD (Create, 
Read, Update and Delete) operations and use indices and sec-
ondary indices to improve data retrieval. Additionally, the major-
ity of DODBMS solutions support aggregation frameworks, either 
native or using MapReduce, for Data Analysis and Business Intelli-
gence.

3.1. XDBMSes

In this subsection, we present several examples of XDBMSes 
that use standardized XPath and XQuery. Although there are mul-
tiple solutions of DBMSes that incorporate XML as data type (e.g., 
Oracle, PostgreSQL, DB2, MS SQL, etc. just to name a few), the ma-
jority of them fall out of the NoSQL movement. Furthermore, some 
have licenses that explicitly forbids benchmarking, e.g., commercial 
XDBMSes such as MarkLogic Server and Oracle Berkeley DB XML. 
Thus, for our comparison and benchmark, we chose the following 
three XDBMSes: BaseX, eXist-db, and Sedna.

BaseX
BaseX is an XDBMS written in Java that stores the data using 

a schema-free hierarchical model. Transactions in BaseX respect 
the ACID (Atomicity, Consistency, Isolation, and Durability) proper-
ties, enabling the concurrent access of multiple readers and writ-
ers [23]. Documents are stored either persistently on disk or in the 
main memory. BaseX uses a single instance environment, replica-
tion and data partitioning are not available.

BaseX provides CRUD operations and ad-hoc queries, includ-
ing aggregation using XQuery 3.1 and XPath 3.1 [24]. Although, it 
works with various APIs such as XML DB or JAX-RX, it was not 
designed to work with a MapReduce framework.

BaseX supports multiple structural and value indices [23]. 
Structural indices are automatically created and include: i) name 
indices to reference the names of all elements and attributes, 
ii) path indices to store distinct paths of the documents in the 
database, and iii) document indices to reference all document 
nodes. Value indices are user-defined. They include: i) text indices 
for documents’ text nodes to improve the performance of exact 
and range queries, ii) attribute indices to speed up comparisons on 
attribute values, iii) token indices to improve the multi-token at-
tribute values, and iv) full-text indices to normalized tokens of text 
nodes and speed up queries which contain text expressions.
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eXist-db
eXist-db [25] is a XDBMS implemented in Java that stores doc-

uments in the XML format. It stores data in-memory using Docu-
ment Object Model (DOM) trees.

Although eXist-db does not have support for database-level 
transaction control, it has transactions internally, transparent to 
the user, and also has a persistent journal that is used to ensures 
the durability and consistency of the stored data. The database 
consistency is done automatically or using a sanity checker to de-
tect the inconsistencies or damages in the core database files [26].

eXist-db supports data primary-secondary replication, thus al-
lowing applications to be distributed over multiple servers through 
the use of Java Message Service (JMS) API. Although replication 
is available, data partitioning or sharding and distributing queries 
across multiple servers are not.

eXist-db provides CRUD operations and ad-hoc queries for fil-
tering and aggregation using XQuery 3.1 and XPath 3.1 [24]. Un-
fortunately, it does not have the MapReduce functionality, which 
would offer more flexibility to the aggregation queries.

eXist-db supports four types of indices [27]: i) range indices 
that provide range and field-based searches, ii) text indices for 
full-text search, iii) n-gram indices for improving the performance 
of n-gram search, and iv) spatial indices for querying data using 
geometric characteristics, although this feature is currently experi-
mental.

Sedna
Sedna is an XDBMS written in C that stores documents in 

the XML format [28]. Sedna provides ACID transactions, indexing, 
and persistent storage [29]. In uses the main memory to improve 
query performance [30]. Replication and partitioning are not im-
plemented in Sedna.

Like the other XDBMSes, Sedna provides CRUD operations and 
ad-hoc queries for filtering and aggregation using XQuery 1.1 and 
XPath 2.0. However, it does not provide MapReduce functionality 
in working with these queries.

Value indices are used to index elements’ content and at-
tributes. Full-text indices can be created in Sedna to facilitate full-
text search using XQuery.

3.2. JDBMSes

DODBMSes are designed for storing, retrieving, managing, and 
processing semi-structured data in the form of document. With the 
rise of the NoSQL movement, multiple DODBMS solutions, both 
proprietary and open-source, have been implemented. An impor-
tant subcategory of these systems is JDBMS, which consists of 
systems that use the JSON format for document encoding. For our 
comparison, we choose three of the more popular and open source 
JDBMSes3: MongoDB, CouchDB, and Couchbase.

MongoDB
MongoDB is a DODBMS developed in C++ that focuses on com-

bining the critical capabilities of RDBMSes with the innovations 
of NoSQL DBMSes. MongoDB uses a flexible, dynamic schema to 
store data. A record is stored in a document and multiple doc-
uments are stored in a collection. Documents in a collection do 
not necessarily have the same structure and so the number of at-
tributes and their data type can differ from one record to another. 
In practice documents usually model objects from a high-level pro-
gramming language. Although the database allows documents with 
a different number of attributes and different data types for the 

3 DB-Engines ranking https://db -engines .com /en /ranking /document +store.
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same attributes, records have almost the same structure in a col-
lection [31].

MongoDB stores the data in BSON documents. A BSON is a 
binary-encoded serialization of JSON-like documents. This format 
is easily parsed and lightweight with respect to the overhead 
needed to store data.

Transactions in MongoDB respect the BASE (Basically Avail-
able, Soft state, Eventual consistency) transaction model which en-
sures that all the modification operations will propagate on all the 
nodes in an asynchronous way. MongoDB uses Causal Consistency 
that enables operations to logically depend on preceding oper-
ations [32] and in-memory functionalities to improve the query 
execution time. Furthermore, this JDBMS supports multi-document 
transactions with ACID data integrity guarantees.

To achieve redundancy and data availability, MongoDB uses 
Replica Sets for primary-secondary replication. A replica set is a 
group of MongoDB instances that store the same dataset. To parti-
tion the data and distribute it across multiple machines, MongoDB 
uses Sharding. Sharding is a horizontal scaling mechanism that 
partitions and balances the data on multiple nodes or replica sets.

MongoDB supports CRUD operations and ad-hoc querying 
through the use of a JavaScript API available in the MongoDB 
client. The Aggregation Pipeline framework is a multi-stage pipe-
line that transforms documents into aggregated results using the 
concepts of data processing pipelines. Aggregation can also be 
achieved using the MapReduce framework.

MongoDB supports primary and secondary indexing. These 
indices can be a single field, compound (multikey), geospatial, 
hashed, and text. Text indices enable full-text search.

CouchDB
CouchDB is an open-source DODBMS developed in Erlang that 

provides a schema-free model for storing self-contained data using 
the JSON format [33].

Transactions in CouchDB respect document-level ACID prop-
erties with Multi-Versioning Concurrency Control (MVCC) [34]. 
CouchDB relies on Eventual Consistency together with incremen-
tal replication to maintain the data consistency. CouchDB does 
not provide in-memory capabilities. CouchDB provides primary-
primary and primary-secondary asynchronous replication. Shard-
ing is used to distribute horizontally in a cluster the copies of each 
replica [35]. To resolve inconsistencies, CouchDB uses a conflict-
flagging mechanism.

CouchDB supports CRUD operations and ad-hoc querying using 
a JavaScript API called Mango. For aggregation, CouchDB provides 
Views and MapReduce functionalities [36]. Indexing in CouchDB is 
achieved through the use of views. CouchDB provides two types of 
indices: JSON and text for full-text search support.

Couchbase
Couchbase is a highly-scalable DODBMS that stores documents 

using the JSON encoding. It offers high availability, horizontal scal-
ing, and high transaction throughput [37].

Transactions in Couchbase respect the ACID properties and rely 
on Eventual Consistency and Immediate Consistency. Couchbase 
has in-memory capabilities and keeps records into buckets. The 
buckets are of the following type i) Couchbase buckets used to 
store data persistently and in-memory, ii) Ephemeral buckets used 
when persistence is not required, and iii) Memcached buckets used 
to cache frequently-used data and minimize the number of queries 
a database-server must perform.

Couchbase uses a shared-nothing architecture and provides 
primary-primary and primary-secondary as well as partitioning 
through the use of sharding. Couchbase scales horizontally in a 
cluster.

https://db-engines.com/en/ranking/document+store
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Table 1
DODBMS comparison.

BaseX eXist-db Sedna MongoDB CouchDB Couchbase

DBMS type XDBMS XDBMS XDBMS JDBMS JDBMS JDBMS

Data format XML XML XML BSON (Binary JSON) JSON JSON

Implementation Java Java C C++ Erlang C/C++, Go, Erlang

Transaction ACID Isolation safe ACID
BASE
Multi-document isolation

Document-level ACID
with MVCC

ACID

Consistency Transaction Consistency
Automatic consistency
Sanity checker

Transaction Consistency Causal Consistency Eventual Consistency
Eventual Consistency
Immediate Consistency

In-memory Yes Yes Yes Yes No Yes

Replication No Primary-Secondary No Primary-Secondary
Primary-Primary
Primary-Secondary

Primary-Primary
Primary-Secondary

Partitioning No No No Sharding Sharding Sharding

Ad-hoc queries
XQuery 3.1
XPath 3.1

XQuery 3.1
XPath 3.1

XQuery 1.0
XPath 2.0

JavaScript Mango
N1QL
JavaScript

MapReduce No No No Yes Yes Yes

Secondary indices Yes Yes Yes Yes Yes Yes

Geospatial indices No No Yes Yes Yes Yes

Text indices Yes Yes Yes Yes Yes Yes
Ad-hoc data querying is achieved using a JavaScript API or 
a SQL-like language, i.e., N1QL (Non-1NF Query Language) [38]. 
These languages enable Couchbase to have OLTP (Online Transac-
tion Processing) CRUD operations and ETL (Extract Transform Load) 
capabilities [39].

JavaScript MapReduce Views can be developed and stored 
on the server-side to specify complex indexing and aggregation 
queries [40].

Couchbase provides multiple types of indices: [40] i) composite 
indices to index multiple attributes, ii) covering indices to index 
the information needed for querying without accessing the data, 
iii) filtered (partial) indices to index a subset of the data used 
by the WHERE clause, iv) function-based indices that compute 
the value of an expression over a range of documents, v) sub-
document indices to index embedded structures, vi) incremental 
MapReduce views to index the results of complex queries that per-
form sorting and aggregation to support real-time analytics over 
very large datasets, vii) spatial views using Spatial MapReduce to 
index multi-dimensional numeric data, and viii) full-text indices 
used for full-text search capabilities.

3.3. DODBMSes Comparison

Table 1 summarizes the main features of the presented data-
bases. BaseX, Sedna and Couchbase offer ACID compliant trans-
actions in comparison with MongoDB that offers BASE compli-
ant multi-document isolation transactions and CouchDB that offers 
document-level ACID with MVCC transactions. XDBMSes support 
transaction consistency while MongoDB and CouchDB support ca-
sual consistency and eventual consistency, respectively. Couchbase 
supports both eventual and immediate consistency. A disadvantage 
of XDBMSes is that they do not have replication or partitioning 
mechanisms, except for eXist-db which offers primary-secondary 
replication. An advantage of XDBMSes is the use of XQuery and 
XPath for querying the data which makes ad-hoc querying an easy 
task. Although XDBMSes support aggregation queries, they do not 
provide MapReduce frameworks as a result of the lack of distribu-
tion capabilities. Another advantage of XDBMSes is that they offer 
different types of indices, including text indices for full-text search. 
As can be seen from Table 1, the chosen JDBMS solutions also offer 
different types of indices, but in addition to JDBMS, the one used 
5

in XDBMS systems can also be added on properties and paths, not 
only on keys and values.

4. Benchmark specifications

4.1. Data model

For our benchmark, we proposed a heterogeneous entity-
relationship schema that can be easily expanded with more com-
plex relationships and new entities. Fig. 1 presents the proposed 
schema. The model’s entities are described below.

• Authors is the entity that stores information about authors. 
Besides the unique identifier for each author AuthorID, the at-
tribute Name is used for storing the name of each author.

• Records contains information about the published work of one 
or more authors. It stores the Title, the URL for quick access 
on the web, and the publishing Year. The many-to-may rela-
tionship WrittenBy correlates each record with the authors. A 
record can be either published as a book (or book chapter) 
or as an article (conference or journal). The relationship IsA is 
used for denoting the sub-type of a record.

• Books is the first sub-type of a record. This entity stores the 
following information: i) the unique book identifier ISBN, ii) 
the pages of a record using the attribute Pages, iii) the book 
editors using the multi-variate attribute Editors, and iv) the 
type of a record of this sub-type, i.e., book or book chapter, 
using the attribute Type. The one-to-many relationship Pub-
lishedBy is used to correlate each record of sub-type Book to a 
Publisher.

• Articles is the second sub-type of a record. Besides the unique 
identifier of a record in this sub-type, the entity Articles stored 
information about i) the pages of a record using the attribute 
Pages, and ii) the type of a record of this sub-type, i.e., con-
ference or journal article, using the attribute Type. The one-to-
many relationship PublishedIn is used to correlate each article 
to a journal.

• Journals entity stores information about an article publication 
venue. The attributes are: i) ISSN used as the unique identi-
fier, ii) Type used to determine if the publication is a journal, 
proceedings, or special issue, iii) Title used for keeping the ti-
tle of the journal or the conference name, iv) Volume used to 



C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205

Fig. 1. Database entity-relational diagram.
store the number of years since the first publication, and v) 
Issue used to store how many times the journal has been pub-
lished during a year. The one-to-many relationship PublishedBy
is used to correlate each record of sub-type Journal to a Pub-
lisher.

• Publishers is the entity that stores a unique identifier and the 
Name of a publishing house.

4.2. Workload model

The workload model follows two analysis directions: i) selec-
tion queries for filtering the corpus and extract subsamples, and ii) 
aggregation queries for creating reports.

For the selection queries, a constraint ci
1 = contains(Records.

T itle, ti) is used to extract the most relevant records that are con-
tained in the title of a given set of terms. The constraint ci

1 uti-
lizes the contains(·, ·) function, which verifies if a substring ti ∈
{t|t ∈ vocabulary} belongs to a string. In this case, the vocabulary
is the set of terms extracted from each title using Tokeniza-
tion.

Aggregation queries are used to create reports about the pub-
lishing activity of each author. These reports are created by count-
ing the number of published records using attributes for group-
ing. To achieve this, we apply the aggregation operator γL with 
L = (F , G), where F is the list of aggregation functions, and G
is the list of attributes in the GROUP BY clause. We use the Au-
thors.Name attribute in the GROUP BY clause to create an overview 
report of the publication activity for each author over his/her en-
tire academic life. To determine the publishing patterns by year of 
each author, we use the Records.Year attribute that adds a time di-
mension to the previous report. For a more in-depth analysis of 
each published topic by author, we also use the ci

1 constraint to 
filter the dataset by keywords before counting the number of arti-
cles.
6

5. Benchmark implementation

5.1. Database design

The conceptual entity-relational diagram described in Section 4
must be translated into the XML and JSON formats (Fig. 2). For the 
XML representation (Fig. 2a), the attributes of entities are directly 
encoded in the elements’ names, e.g., the Article.Type is directly 
encoded into the journal label. In the case of the Authors entity, 
the records associated with the article are presented as multiple 
tags with the same name, i.e., author. For the JSON representa-
tion, the Authors entity becomes a list of values, i.e., the label 
authors. The information regarding an article is stored directly in 
the document using labels, e.g., type, publication year, etc. Using 
this representation, both schemes are greatly simplified and the 
need of relationships between entities disappears.

5.2. Query description

The proposed benchmark features nine queries with different 
complexity and selectivity, i.e., Q 1 to Q 9. The first five queries are 
used to filter the dataset based on different constraints. Whereas, 
the last four queries are used to filter and group the data in order 
to obtain aggregated results.

5.2.1. Selection queries
The first set of queries selects the records that respect a given 

constraint.
The first query (Q i

1) uses the constraint ci
1 to extract the 

documents which contain in their title a certain given term ti

(Equation (1)). The projection for the query, which specifies the 
set of selected attributes following the query execution, is �1 =
{Records.T itle}.

Q i
1 = π�1(σ i (Records)) (1)
c1
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Fig. 2. Document representation in XML and JSON.
The second query (Q ij
2 ) extracts the records that contain in 

their title two terms (Equation (2)). It uses the constraint cs
1, 

s ∈ {i, j} with i �= j. The query is written using the INTERSECTION 
operator between the results returned by Q i

1 for term ti and Q j
1

for term t j . Due to the nature of the filtering condition, we can 
concatenate the separate conditions to create a single conditional 
expression using the and logical operator (∧), i.e., ci

1 ∧ c j
1. As in the 

case of the first query, the projection remains �1.

Q ij
2 = Q i

1 ∩ Q j
1

= π�1(σci
1
(Records)) ∩ π�1(σc j

1
(Records))

= π�1(σci
1∧c j

1
(Records))

(2)

Q ij
3 extracts the records that contain in their title at least one 

of the terms given through the ci
1 or c j

1 constraints, with i �= j
(Equation (3)). The query is written using the UNION operator be-
tween the results returned by Q i

1 for term ti and Q j
1 for term t j . 

The projection remains �1. As for query Q ij
2 , the conditions can 

be concatenated to create a single conditional expression using the 
or logical operator (∨), i.e., ci

1 ∨ c j
1.

Q ij
3 = Q i

1 ∪ Q j
1

= π�1(σci
1
(Records)) ∪ π�1(σc j

1
(Records))

= π�1(σci
1∨c j

1
(Records))

(3)

The fourth query (Q 4) filters the Records entity and extracts the 
documents that contain in their title the terms ti , t j , and tk (Equa-
tion (4)). As for the previous queries, the projection attributes are 
given using �1. The query is written using the INTERSECTION op-
erator between the results obtained by Q i

1, Q j
1 , and Q k

1 for terms 
ti , t j , and tk respectively. Due to the nature of the filtering condi-

tions, they can be concatenated into one constraint ci
1 ∧ c j

1 ∧ ck
1.

Q ijk
4 = Q i

1 ∩ Q j
1 ∩ Q k

1

= π�1(σci
1
(Records)) ∩ π�1(σc j

1
(Records))

∩ π�1(σck
1
(Records))

= π�1(σci
1
(Records) ∩ σ

c j
1
(Records) ∩ σck

1
(Records))

= π�1(σci
1∧c j

1∧ck
1
(Records))

(4)

The last selection query (Q 5) extracts the documents that con-
tain in their title one or more of the searched terms ts , s ∈ {i, j, k}
7

with i �= j ∧ i �= k ∧ j �= k. The query is written using the UNION op-
erator between the results obtained by each Q s

1 for ts terms. The 
nature of the filtering constraints permit the query to be written 
using one constraint ci

1 ∨ c j
1 ∨ ck

1 and the projection �1 (Equa-
tion (5)).

Q ijk
5 = Q i

1 ∪ Q j
1 ∪ Q k

1

= π�1(σci
1
(Records)) ∪ π�1(σc j

1
(Records))

∪ π�1(σck
1
(Records))

= π�1(σci
1
(Records) ∪ σ

c j
1
(Records) ∪ σck

1
(Records))

= π�1(σci
1∨c j

1∨ck
1
(Records))

(5)

5.2.2. Aggregation queries
The last four queries use aggregation to count the number of 

articles using different filtering constraints and attributes in the 
GROUP BY clause.

The sixth query (Q 6) uses aggregation to determine the num-
ber of articles written by each author (Equation (6)). It uses a 
JOIN operation between the Records and Authors entities. Because 
there is a many-to-many relationship between the two entities, 
the JOIN also traverses WrittenBy. The projection attributes are 
�6 = {Author.Name, count}. To determine the number of articles 
for each author, we use the aggregation operator γL6 , where L6 =
(F6, G6). The list of aggregation functions is given by F6, while 
the set of attributes in the GROUP BY clause is given by G6. The 
list of aggregation functions is F6 = {count(Records.RecordI D)}, 
where the count is the counting aggregation function. The set of 
attributes in the GROUP BY clause is G6 = {Authors.Name}.

Q 6 = π�6(γL6(Authors 	
 Records)) (6)

The seventh query (Q 7) counts the number of articles pub-
lished by an author for each year (Equation (7)). The query makes 
use of a JOIN operation between the Records and Authors enti-
ties, as in the case of query Q 6. The projection uses the following 
attributes �7 = {Author.Name, Record.Y ear, count}. To determine 
the number of articles written in a year by each author, we use 
the aggregation operator γL7 , where L7 = (F7, G7). For query Q 7, 
the list of aggregation functions is given by F7, while the set of 
attributes in the GROUP BY clause is given by G7. The list of ag-
gregation functions is F7 = {count(Records.RecordI D)}, where the 
count is the counting function used for determining the number of 
articles written in a year by each author. The set of attributes in 
the GROUP BY clause is G7 = {Authors.Name, Records.Y ear}.



C.O. Truică, E.S. Apostol, J. Darmont et al. Big Data Research 25 (2021) 100205
Q 7 = π�7(γL7(Authors 	
 Records)) (7)

The eighth query (Q 8) extracts the documents that contain in 
their title all of the searched terms, and then it counts the num-
ber of articles grouped by author and year. As in the case of Q 6, 
the JOIN operation is between the Records and Authors entities. The 
query is written using the INTERSECTION operator. The filtering is 
done using the constraints ci

1, c j
1, ck

1 which ensures that the title 
contains all terms ti , t j , and tk with i �= j ∧ i �= k ∧ j �= k. The pro-
jection attributes and the aggregation operator remains the same 
as in the case of Q 7, i.e., �7 and γL7 . Due to the nature of the 
filtering conditions, the query can be rewritten using only one con-
straint ci

1 ∧ c j
1 ∧ ck

1.

Q 8 = π�7(γL7(σci
1
(Records 	
 Authors)

∩ σ
c j

1
(Records 	
 Authors) ∩ σck

1
(Records 	
 Authors)))

= π�7(γL7(σci
1∧c j

1∧ck
1
(Records 	
 Authors)))

(8)

The last query (Q 9) extracts the documents that contain in 
their title one or more of the searched terms ts , s ∈ {i, j, k} and 
i �= j ∧ i �= k ∧ j �= k, by filtering through the use of constraint cs

1. 
The JOIN operator is used once again between the Records and Au-
thors entities, as in the case of Q 6. The projection attributes and 
the aggregation operator remain the same as in the case of Q 7, i.e., 
�7 and γL7 . The filtering constraints ci

1, c j
1, ck

1 are applied on the 
Records entity. The query uses the UNION operator between the 
relationship obtained after filtering. Due to the nature of the filter-
ing, the query can be rewritten using one constraint ci

1 ∨ c j
1 ∨ ck

1.

Q 9 = π�7(γL7(σci
1
(Records 	
 Authors)

∪ σ
c j

1
(Records 	
 Authors) ∪ σck

1
(Records 	
 Authors)))

= π�7(γL7(σci
1∨c j

1∨ck
1
(Records 	
 Authors)))

(9)

6. Experiments

6.1. Experimental conditions

All tests were run on an IBM System x3550 M4 with 64 GB of 
RAM, and an Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50 GHz. The 
XDBMSes used for benchmarking are BaseX, eXist-db, and Sedna. 
For comparison reasons we also use three JDBMSes: MongoDB, 
CouchDB, and Couchbase. We chose these DODBMSes because they 
are free to uses and because their licenses do not forbid bench-
marking.

The versions of the deployed DODBMSes are listed in Table 2. 
The proposed benchmark, the results, and the used dataset are 
publicly available on-line.4

As the chosen XDBMS solutions do not have partitioning, we 
could not distribute them. Therefore, we deployed and tested them 
on a single instance environment. Moreover, for comparison rea-
sons, we also used a single instance environment for MongoDB, 
CouchDB, and Couchbase.

The query parameterization is presented in Table 3. Each term 
ti (i = 1,3) is used for filtering the records through the constraint 
c(i)

1 . Thus for the first set of queries, i.e., Q i
1, Q ij

2 , and Q ijk
3 , the i, 

j, and k indices (i �= j ∧ i �= k ∧ j �= k) represent the i′ ∈ 1,3 index 
of the ti′ used for filtering.

4 GitHub Sources https://github .com /cipriantruica /The -Forgotten -DODBMSes.
8

Table 2
Benchmarked DODBMSes.

DODBMS Version

BaseX 9.3.3
eXist-db 5.2.0
Sedna 3.5
MongoDB 4.2.7
CouchDB 3.1.0
Couchbase 6.5.1

Table 3
Query parameter values.

Parameter Value

t1 database
t2 text
t3 mining

6.2. Dataset

The experiments are performed on 6 150 738 records extracted 
from DBLP.5 The initial dataset is split into 4 different subsets to 
test the scalability of each DODBMS w.r.t. the number of records. 
These subsets contain 768 842, 1 537 685, 3 075 369, and 6 150 738 
records, respectively. Each subset allows scaling experiments and 
are associated with a scale factor S F parameter, where S F =
{0.125, 0.25, 0.5, 1}. Table 4 presents the size of the 4 subsets, both 
as raw data and the resulting DODBMS collection dimension.

For all the XDBMSes as well as for CouchDB and Couchbase, 
we can observe that database size is larger than the raw dataset. 
This increase is a direct result of the overhead required by the 
DODBMSes to manage and store the data. MongoDB uses compres-
sion mechanisms, which in turn manage to decrease the database 
size by minimizing the overhead.

6.3. Query implementation

Data are stored within each DODBMS using a denormalized 
schema; thus, one-to-many and many-to-many relationships are 
encapsulated inside the same document. To achieve denormaliza-
tion, JDBMSes employ nested documents, lists, and lists of nested 
documents, while XDBMSes use the hierarchical structure of the 
XML format. To normalize the information and apply filtering and 
aggregation operations and functions, we use the native syntax, 
operators, query language clauses, and frameworks provided by 
each DODBMS. Table 5 presents the implementation language and 
operators.

For the XDBMSes, we implemented the queries using XQuery. 
The aggregation queries for BaseX and eXist-db use the XQuery 3.1 
syntax for sorting and grouping, i.e., FOR... WHERE... GROUP 
BY... ORDER BY.... For Sedna, we use the XQuery 1.1 syntax 
for sorting and grouping, i.e., FOR... WHERE... LET... OR-
DER BY.... We used the native Command Line Interfaces to run 
these queries.

The aggregation queries in MongoDB are implemented using 
its Aggregation Pipeline framework. To deal with nested docu-
ments, the unwind operator is used to flatten an array field of 
nested documents. This operator is useful when trying normalize 
the one-to-many and many-to-many which trough denormaliza-
tion are stored in the JSON format as nested documents or lists of 
nested documents. We used the native Command Line Interfaces 
to run these queries.

CouchDB uses Materialized Views for aggregation and to deal 
with nested and list of nested documents. These views are im-

5 DBLP http://dblp .org/.

https://github.com/cipriantruica/The-Forgotten-DODBMSes
http://dblp.org/
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Table 4
Dataset.

SF
No.

Records
Raw
XML

Raw
JSON

BaseX
DB size

eXist-db
DB size

Sedna
DB size

MongoDB
DB size

CouchDB
DB size

Couchbase
DB size

0.125 768 842 0.38GB 0.34GB 0.53GB 0.44GB 1.78GB 0.17GB 0.43GB 0.44GB
0.25 1 537 685 0.75GB 0.67GB 1.05GB 0.86GB 3.36GB 0.33GB 0.85GB 0.92GB
0.5 3 075 369 1.51GB 1.36GB 2.09GB 1.74GB 6.71GB 0.67GB 1.69GB 1.78GB
1 6 150 738 2.25GB 2.06GB 3.14GB 2.59GB 10.17GB 1.02GB 2.81GB 3.02GB

Table 5
Filtering and aggregation queries.

Database Filtering Query Aggregation Queries

BaseX XQuery 3.1 XQuery 3.1 syntax for sorting and grouping
eXist-db XQuery 3.1 XQuery 3.1 syntax for sorting and grouping
sedna XQuery 1.0 XQuery 1.1 syntax for sorting and grouping
MongoDB JavaScript JavaScript Aggregation Pipeline with unwind operator
CouchDB JavaScript/Mango JavaScript/Mango Materialized Views
Couchbase N1QL N1QL with UNNEST clause

Table 6
Filter queries selectivity.

S F Q 1
1 Q 2

1 Q 3
1 Q 12

2 Q 13
2 Q 23

2 Q 12
3 Q 13

3 Q 23
3 Q 4 Q 5

0.125 0.992 0.987 0.993 0.999 0.999 0.999 0.980 0.986 0.980 0.999 0.974
0.25 0.991 0.986 0.992 0.999 0.999 0.999 0.978 0.984 0.979 0.999 0.971
0.5 0.990 0.982 0.991 0.999 0.999 0.999 0.973 0.982 0.975 0.999 0.966
1 0.993 0.987 0.994 0.999 0.999 0.999 0.981 0.988 0.982 0.999 0.976
plemented using CouchDB’s MapReduce framework. The mapper 
function is used to flatten nested documents and filter the field. 
The reducer function is used for applying an aggregation function 
and returning the final result. We used cURL to run these queries.

To manipulate nested array in Couchbase, N1QL offers develop-
ers the UNNEST clause. This clause is used to flatten the arrays 
in the parent document. Thus, the UNNEST clause conceptually 
performs a JOIN operation between nested arrays and the parent 
document. As data are stored using the JSON format, the JOIN op-
eration increases the runtime and decreases the overall retrieval 
performance. For Couchbase, we used the native Command Line 
Interfaces to run these queries.

6.4. Query selectivity

Selectivity, i.e., the amount of retrieved data (n(Q )) w.r.t. the 
total amount of available data (N), depends on the number of 
attributes in the WHERE and GROUP BY clauses. The selectivity 
formula used for a query Q is S(Q ) = 1 − n(Q )

N . For the selection 
queries, we set N equal to the cardinality of the Records entity, i.e., 
N = ||Records||. Table 6 presents the filtering queries’ selectivity 
w.r.t. the S F . The queries with more restrictive conditions return 
a smaller number of records and the selectivity is higher, e.g., Q ij

2 . 
The queries with more inclusive restrictions return a higher num-
ber of records and the selectivity is lower, e.g., Q ij

3 .
For the aggregation queries, we set N equal to the number of 

queries returned by joining the entities Records with Authors, i.e., 
N = ||Authors 	
 Records||. Table 7 shows the aggregation queries’ 
selectivity w.r.t. the S F factor. Query Q 8 is the most restrictive 
query. Because of the filtering and grouping conditions, Q 8 returns 
a small number of records, and its selectivity is almost equal to 1. 
The most inclusive query is Q 7, and it has a low selectivity w.r.t. 
S F . Because of the less restrictive filtering and grouping conditions, 
the selectivity of this query is less than 0.45. The selectivity of Q 6

increases w.r.t. S F , meaning that the number of records returned 
by the query increases more gradually than the size of the corpus.
9

Table 7
Aggregation queries selectivity.

S F Q 6 Q 7 Q 8 Q 9

0.125 0.651 0.256 0.999 0.974
0.25 0.728 0.345 0.999 0.970
0.5 0.797 0.448 0.999 0.969
1 0.848 0.424 0.999 0.974

6.5. Performance metrics and execution protocol

We use the query response time as the only metric for the 
benchmark. It is symbolized for each query by t(Q ∗

i )∀i ∈ [1, 9]. All 
queries are executed 10 times, which is sufficient according to the 
central limit theorem. Additionally, all executions are warm runs, 
i.e., either caching mechanisms must be deactivated, or a cold run 
where each query must be executed once (but not taken into ac-
count in the benchmark’s results) to fill in the cache. Queries must 
be written in the native scripting language of the target DODBMS 
and executed directly inside the specified system using the com-
mand line interpreter. Lastly, the average response time and stan-
dard deviation are computed for each t(Q ∗

i ).

6.6. Results

Fig. 3 presents the results of Q i
1 where i = 1,3 is used to de-

note the keyword ti . MongoDB and BaseX offer the fastest time 
performance among the DODBMSes that encode documents using 
JSON and XML, respectively, regardless of the keyword w.r.t. S F . 
For Q 2

1 query which has the lowest selectivity of the three Q i
1

queries, the time performance of CouchDB is with a factor of ∼ 2x 
faster than eXist-db w.r.t. S F . The time performance of CouchDB 
and eXist-db for Q 1

1 and Q 3
1 tend to become the same w.r.t. S F , 

i.e., the performance difference factor between CouchDB and eXist-
db at S F = 0.125 is ∼ 0.8x which increases to ∼ 0.9x for S F = 1. 
CouchDB time performance is with a factor of ∼ 1.1x faster than 
Couchbase for all the Q i

1 queries regardless of S F . Couchbase and 
eXist-db have similar performance for query Q 3 and S F = 1. Sedna 
1
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Fig. 3. Response time for Q i
1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
performance is almost constant regardless of query selectivity w.r.t. 
S F . The overall best performance is achieved by MongoDB.

Fig. 4 presents the results of Q ij
2 and Q ij

3 queries where i and 
j indicate the ti and t j keywords used for filtering (Table 3) with 
i = 1,3, j = 1,3, and i �= j. For this set of queries, MongoDB has 
the best overall time performance regardless of the S F factor. Ba-
seX achieves the second overall best performance and the best 
performance among the tested XDBMSes, regardless of the S F . For 
the Q ij

2 set of queries, the time performance of MongoDB has a 
factor between ∼ 3.2x and ∼ 3.6x faster then BaseX w.r.t. S F . For 
the Q ij

3 set of queries, the time performance of MongoDB has a 
factor between ∼ 1.8x and ∼ 2.2x faster then BaseX w.r.t. S F .

Couchbase presents the highest execution time for the Q ij
2

queries regardless of S F , followed by the execution time of 
CouchDB. CouchDB time performance is with a factor of ∼ 1.2x 
and ∼ 1.1x faster than Couchbase for the Q ij

2 , respectively Q ij
3

queries regardless of S F . The eXist-db XDBMS has the worst per-
formance for the Q ij

3 set of queries regardless of the S F . For the 
Q ij

2 set of queries, Sedna time performance has a factor of ∼ 2x 
better than CouchDB and a factor of 2x worse than eXist-db. For 
the Q ij

3 set of queries, Sedna’s query execution time is with a fac-
tor of ∼ 1.5x better than CouchDB and with a factor of ∼ 5x worst 
than BaseX.

Fig. 5 presents the time performance of Q 4 and Q 5 queries 
for each DODBMS w.r.t. S F . The time performance trend for Q 4

and Q 5 remains similar to the ones for Q ij
2 and Q ij

3 , respectively. 
CouchDB time performance is with a factor of ∼ 1.3x and ∼ 1.2x 
faster than Couchbase for the Q ij

2 , respectively Q ij
3 queries regard-

less of S F . MongoDB achieves the overall best time performance 
10
for both queries. BaseX has the second-best time performance 
among the tested DODBMSes and the best performance among the 
XDBMSes.

Fig. 6 shows the results for the aggregation queries, i.e., Q 6

to Q 9. For the queries Q 6, Q 7, and Q 9, BaseX has the best time 
performance and significantly outperforms MongoDB and CouchDB 
with a factor of ∼ 2x, regardless of the S F . For the Q 8 query, 
CouchDB achieved the best query execution time, while Couch-
base the worst. MongoDB has the second best query response time 
among the studied DODBMSes for Q 6, Q 7, and Q 9. MongoDB’s re-
sponse time for these queries is almost on parity with the response 
time of CouchDB w.r.t. S F , although MongoDB executes the aggre-
gation functions at runtime.

For Q 7, Couchbase has a large standard deviation. During test-
ing, this query finished with the error “Index scan timed out”. 
The tests that finished with the status “success” returned fluctuat-
ing time performance for each run. This abnormal behavior of the 
Couchbase system can be sometimes observed for complex queries 
on large collections.

For Q 8 which has the highest selectivity, CouchDB holds the 
best time performance. We attribute this result to the mecha-
nism used by CouchDB to store aggregation functions. Aggregation 
functions are stored in materialized views also named indices in 
CouchDB. Using this technique, CouchDB manages to outperform 
BaseX and MongoDB, which execute aggregation functions at run-
time, for queries with high selectivity. With Couchbase, the com-
plexity and selectivity together with the UNNEST clause required 
to extract the nested documents in order to filter and group the in-
formation, increases the runtime significantly while decreasing the 
overall query performance.
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Fig. 4. Response time for Q ij
2 and Q ij

3 . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
The aggregation queries did not work on Sedna. When exe-
cuting these queries, the XDBMS remained unresponsive for days, 
and we had to manually stop the system, the related services, and 
the background processes. We note that Sedna also executes ag-
gregation functions at runtime. We suspect that one reason for 
Sedna’s failure to execute the aggregation queries is also the out-
dated XQuery 1.0 query language.

The eXist-db XDBMS has the highest query time for Q 6, Q 7, 
and Q 9 queries. The execution is done at runtime. For this XDBMS, 
query Q 7 worked only for S F = 0.125. For other S F values, 
the query returned memory errors, although we have tuned this 
XDBMS to work with the same parameters as the other DODBM-
Ses. Thus, eXist-db is highly dependent on the JVM (Java Virtual 
Machine) memory allocation mechanism.
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6.7. Discussions on the experimental design choices

In this study, we present our findings regarding the perfor-
mance of filtering and aggregation queries on a large dataset for 
XDBMSes and JDBMSes w.r.t. different scale factors. We observe 
that the XDBMSes perform as well as JDBMSes for specific use 
cases, with BaseX even outperforming the more popular JDBMSes 
on three out of the four aggregation queries. Among the JDBMSes, 
MongoDB has the overall best performance.

For our comparison, we do not take into account horizontal 
scalability through sharding and replication, as not all of the an-
alyzed DBMSes have such a functionality. Furthermore, it is essen-
tial first to understand single-node performance before considering 
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Fig. 5. Response time for Q 4 and Q 5. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Response time for aggregation queries. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
horizontal scaling. Thus, the aim of the paper is to examine single 
instance deployments.

There are many real-world scenarios where such single-instance 
deployment is preferred. As a first example, XDBMSes can be used 
for fast application development, analyzing and querying log data, 
or storing and retrieving IoT sensor data. XDBMSes are good can-
didates for storing large documents, managing long-running trans-
actions, and querying hierarchical data structures in environments 
that require rapidly evolving schemes. Furthermore, these DBMSes 
are lightweight and do not require dedicated hardware, software, 
or a lot of resources. Thus, managing to lower resource costs at 
the data center site and enabling on-site data analysis and decision 
12
making. Therefore, they can be utilized in Edge and Fog Computing 
with ease.

The creation of network islands due to faulty nodes is very 
common in the Edge/Fog environment. Even in the presence of 
well-defined recovery mechanisms, the formation of temporal net-
work islands is unfavorable for sharding, as the overall latency in-
creases if nodes go down and then up again. Hence, single-instance 
deployments are favored in these environments.

Another real-world scenario where such single-instance deploy-
ment can be used is for small to medium scale document manage-
ment systems. These management systems are useful to smaller 
enterprises, where data is kept in the company due to GDPR (Eu-
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ropean Union Legislation on General Data Protection Regulation). 
Moreover, as in many cases most of the data is in semi-structured 
formats, such as XML and JSON, single instance DODBMSes are a 
good candidate for storing and managing such documents. Thus, 
removing from the company’s costs the maintenance of a data cen-
ter.

It is also important to mention that the focus of our bench-
mark is on data retrieval and not on write operations because, in 
real-world applications, multiple techniques can be put in check 
to balance the write operations and minimize the workload. More-
over, data persistence can be achieved much later within a DBMS, 
depending on the workload and the systems write and logging 
mechanisms.

Furthermore, we loaded the data into the database using differ-
ent methods. Because not all of the tested DODBMSes have their 
own data load tools, we developed our own data loading pro-
grams. By utilizing our data load programs and not native load 
DBMS functionalities, we added a new layer of complexity which 
decreases write performance. This makes the loading process to 
be dependent on external DBC (database connectors) implementa-
tions, and not on the DODBMS internal functionalities.

7. Conclusion

In this paper, we present an overview and comparison of 
DODBMSes that encode information using XML and JSON formats 
and propose a benchmark using filtering and aggregation queries 
on a heterogeneous dataset. For our experiments we chose three 
XDBMSes, i.e., BaseX, eXist-db, Sedna, and three JDBMSes, i.e., 
MongoDB, CouchDB, and Couchbase. These DODBMSes are open-
source and free to use systems, whose license does not forbid 
benchmarking.

Our comparison focuses on key functionalities required by Big 
Data and IoT systems for storing and extracting information from 
large volumes of data. For this comparison, we also consider the 
transactions’ properties of each DODBMSes, their in-memory capa-
bilities, and how these systems deal with atomicity, consistency, 
isolation, durability with regards to operations such as access-
ing, modifying, and saving documents. We also present for each 
DODBMS its support for replication and partitioning of data and 
how it manages these Big Data requirements. Furthermore, we 
present the querying languages used for extracting information as 
well as the different types of indices provided by each DODBMS to 
improve retrieval response time.

The proposed benchmark uses different queries to emphasize 
the time performance of DODBMSes and highlights the capabili-
ties of XDBMSes and JDBMSes. Furthermore, our solution proves its 
portability, scalability, and relevance by its design. The benchmark 
is portable, as it works on multiple systems. For this purpose, we 
compare the performance of several DODBMSes, i.e., BaseX, eXist-
db, Sedna, MongoDB, CouchDB, and Couchbase. To demonstrate the 
scalability of our solution, we introduced S F , the scaling factor 
that generates an incremental growth in the data volume for our 
experiments. By increasing the queries’ complexity together with 
the S F factor, we analyze the behavior of the systems from the 
scaling perspective. We observe that all the DODBMSes have a lin-
ear increase at runtime. Furthermore, BaseX proves to be a good 
choice when dealing with aggregations. Finally, our experimental 
results show that our benchmark is indeed relevant in comparing 
the runtime performance of different DODBMSes.

The performance tests provide some interesting and unexpected 
results. Among the XDBMSes, BaseX has the best overall perfor-
mance. BaseX even outperforms the JDBMSes selected for this 
benchmark, i.e., MongoDB, CouchDB, and Couchbase, for three out 
of the four aggregation queries proposed. We observe that Couch-
base has the overall worst performance among the JDBMSes. Sedna 
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outperforms CouchDB and Couchbase when dealing with filtering 
queries, but does not work for the aggregation queries. MongoDB 
has the overall best time performance for the filtering queries and 
it outperforms BaseX only for the aggregation query Q 8. eXist-db 
has some strange behavior when dealing with both filtering and 
aggregation queries. Also, it is highly dependent on the JVM, which 
needs to be tuned for each query, making this XDBMS hard to 
work with. However, we can assume that eXist-db works well on 
a query to query basis.

Following the results obtained by the benchmark, we can an-
swer the three research questions and conclude that XDBMSes 
are still useful: their performance is as good as JDBMSes and 
they are good candidates for Big Data Management. Furthermore, 
XDBMSes are well-suited for several current real-world scenar-
ios. Firstly, XDBMSes are reliable systems for storing large docu-
ments, managing long-running transactions, and querying hierar-
chical data structures in Edge/Fog environments (e.g., smart agri-
culture, healthcare wearables, etc.), as these types of DODBMSes 
are lightweight and do not require dedicated hardware, software, 
or a lot of resources. Secondly, XDBMSes can be used as small to 
medium scale document management systems in smaller enter-
prises, where data are kept in the company due to GDPR. Thirdly, 
in the case of Big Data analysis, they prove to be well-suited when 
the documents are in XML format, by removing the ETL (Extract, 
Transform, Load) processes from the storing, managing, and analy-
sis pipeline.

As future work, we plan to add support for OLAP queries [41]
on XML data and XML data in combination with other data [42,43]
both in terms of performance and functionality. This will involve 
designing new sampling strategies and supporting more aggrega-
tion queries [42]. The sampling methods will include constraints 
on other labels and values contained in the records. Also, we aim 
to add more dimension for grouping [42], to boost the performance 
by lowering the query selectivity and performing query rewrit-
ing [43], and to add further grouping functionality [42].
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