
(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

Attribute Weighting with Adaptive NBTree for
Reducing False Positives in Intrusion Detection

Dewan Md. Farid, and Jerome Darmont
ERIC Laboratory, University Lumière Lyon 2

Bat L - 5 av. Pierre Mendes, France
69676 BRON Cedex, France

dewanfarid@gmail.com, jerome.darmont@univ-lyon2.fr

Mohammad Zahidur Rahman
Department of Computer Science and Engineering

Jahangirnagar University
Dhaka – 1342, Bangladesh

rmzahid@juniv.edu

Abstract—In this paper, we introduce new learning algorithms
for reducing false positives in intrusion detection. It is based on
decision tree-based attribute weighting with adaptive naïve
Bayesian tree, which not only reduce the false positives (FP) at
acceptable level, but also scale up the detection rates (DR) for
different types of network intrusions. Due to the tremendous
growth of network-based services, intrusion detection has
emerged as an important technique for network security.
Recently data mining algorithms are applied on network-based
traffic data and host-based program behaviors to detect
intrusions or misuse patterns, but there exist some issues in
current intrusion detection algorithms such as unbalanced
detection rates, large numbers of false positives, and redundant
attributes that will lead to the complexity of detection model and
degradation of detection accuracy. The purpose of this study is to
identify important input attributes for building an intrusion
detection system (IDS) that is computationally efficient and
effective. Experimental results performed using the KDD99
benchmark network intrusion detection dataset indicate that the
proposed approach can significantly reduce the number and
percentage of false positives and scale up the balance detection
rates for different types of network intrusions.

Keywords-attribute weighting; detection rates; false positives;
intrusion detection system; naïve Bayesian tree;

I. INTRODUCTION

With the popularization of network-based services,
intrusion detection systems (IDS) have become important tools
for ensuring network security that is the violation of
information security policy. IDS collect information from a
variety of network sources using intrusion detection sensors,
and analyze the information for signs of intrusions that attempt
to compromise the confidentiality and integrity of networks
[1]-[3]. Network-based intrusion detection systems (NIDS)
monitor and analyze network traffics in the network for
detecting intrusions from internal and external intruders [4]-[9].
Internal intruders are the inside users in the network with some
authority, but try to gain extra ability to take action without
legitimate authorization. External intruders are the outside
users without any authorized access to the network that they
attack. IDS notify network security administrator or automated
intrusion prevention systems (IPS) about the network attacks,
when an intruder try to break the network. Since the amount of
audit data that an IDS needs to examine is very large even for a

small network, several data mining algorithms, such as decision
tree, naïve Bayesian classifier, neural network, Support Vector
Machines, and fuzzy classification, etc [10]-[20] have been
widely used by the IDS community for detecting known and
unknown intrusions. Data mining based intrusion detection
algorithms aim to solve the problems of analyzing the huge
volumes of audit data and realizing performance optimization
of detection rules [21]. But there are still some drawbacks in
currently available commercial IDS, such as low detection
accuracy, large number of false positives, unbalanced detection
rates for different types of intrusions, long response time, and
redundant input attributes.

A conventional intrusion detection database is complex,
dynamic, and composed of many different attributes. The
problem is that not all attributes in intrusion detection database
may be needed to build efficient and effective IDS. In fact, the
use of redundant attributes may interfere with the correct
completion of mining task, because the information they added
is contained in other attributes. The use of all attributes may
simply increase the overall complexity of detection model,
increase computational time, and decrease the detection
accuracy of the intrusion detection algorithms. It has been
tested that effective attributes selection improves the detection
rates for different types of network intrusions in intrusion
detection. In this paper, we present new learning algorithms for
network intrusion detection using decision tree-based attribute
weighting with adaptive naïve Bayesian tree. In naïve Bayesian
tree (NBTree) nodes contain and split as regular decision-trees,
but the leaves contain naïve Bayesian classifier. The proposed
approach estimates the degree of attribute dependency by
constructing decision tree, and considers the depth at which
attributes are tested in the tree. The experimental results show
that the proposed approach not only improves the balance
detection for different types of network intrusions, but also
significantly reduce the number and percentage of false
positives in intrusion detection.

The rest of this paper is organized as follows. In Section II,
we outline the intrusion detection models, architecture of data
mining based IDS, and related works. In Section III, the basic
concepts of feature selection and naïve Bayesian tree are
introduced. In Section IV, we introduce the proposed
algorithms. In Section V, we apply the proposed algorithms to
the area of intrusion detection using KDD99 benchmark

19 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

mailto:dewanfarid@gmail.com
mailto:jerome.darmont@univ-lyon2.fr
mailto:rmzahid@juniv.edu

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

network intrusion detection dataset, and compare the results to
other related algorithms. Finally, Section VI contains the
conclusions with future works.

II. INTRUSION DETECTION SYSTEM: IDS

A. Misuse Vs. Anomaly Vs. Hybrid Detection Model
Intrusion detection techniques are broadly classified into

three categories: misuse, anomaly, and hybrid detection model.
Misuse or signature based IDS detect intrusions based on
known intrusions or attacks stored in database. It performs
pattern matching of incoming packets and/or command
sequences to the signatures of known attacks. Known attacks
can be detected reliably with a low false positive using misuse
detection techniques. Also it begins protecting the
computer/network immediately upon installation. But the major
drawback of misuse-based detection is that it requires
frequently signature updates to keep the signature database up-
to-date and cannot detect previously unknown attacks. Misuse
detection system use various techniques including rule-based
expert systems, model-based reasoning systems, state transition
analysis, genetic algorithms, fuzzy logic, and keystroke
monitoring [22]-[25].

Anomaly based IDS detect deviations from normal
behavior. It first creates a normal profile of system, network, or
program activity, and then any activity that deviated from the
normal profile is treated as a possible intrusion. Various data
mining algorithms have been using for anomaly detection
techniques including statistical analysis, sequence analysis,
neural networks, artificial intelligence, machine learning, and
artificial immune system [26]-[33]. Anomaly based IDS have
the ability to detect new or previously unknown attacks, and
insider attacks. But the major drawback of this system is large
number of false positives. A false positive occurs when an IDS
reports as an intrusion an event that is in fact legitimate
network/system activity.

A hybrid or compound detection system detect intrusions
by combining both misuse and anomaly detection techniques.
Hybrid IDS makes decision using a “hybrid model” that is
based on both the normal behavior of the system and the
intrusive behavior of the intruders. Table I shows the
comparisons of characteristics of misuse, anomaly, and hybrid
detection models.

TABLE I. COMPARISONS OF INTRUSION DETECTION MODELS

Characteristics Misuse Anomaly Hybrid
Detection Accuracy High (for

known attacks)
Low High

Detecting New Attacks No Yes Yes
False Positives Low Very high High
False Negatives High Low Low

Timely Notifications Fast Slow Rather Fast
Update Usage Patterns Frequent Not Frequent Not Frequent

B. Architecture of Data Mining Based IDS
An IDS monitors network traffic in a computer network

like a network sniffer and collects network logs. Then the
collected network logs are analyzed for rule violations by using
data mining algorithms. When any rule violation is detected,

the IDS alert the network security administrator or automated
intrusion prevention system (IPS). The generic architectural
model of data mining based IDS is shown in Fig 1.

Figure 1. Organization of a generalized data mining based IDS

• Audit data collection: IDS collect audit data and
analyzed them by the data mining algorithms to detect
suspicious activities or intrusions. The source of the
data can be host/network activity logs, command-based
logs, and application-based logs.

• Audit data storage: IDS store the audit data for future
reference. The volume of audit data is extremely large.
Currently adaptive intrusion detection aims to solve the
problems of analyzing the huge volumes of audit data
and realizing performance optimization of detection
rules.

• Processing component: The processing block is the
heart of IDS. It is the data mining algorithms that apply
for detecting suspicious activities. Algorithms for the
analysis and detection of intrusions have been
traditionally classified into two categories: misuse (or
signature) detection, and anomaly detection.

• Reference data: The reference data stores information
about known attacks or profiles of normal behaviors.

• Processing data: The processing element must
frequently store intermediate results such as

20 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

information about partially fulfilled intrusion
signatures.

• Alert: It is the output of IDS that notifies the network
security officer or automated intrusion prevention
system (IPS).

• System security officer or intrusion prevention system
(IPS) carries out the prescriptions controlled by the
IDS.

C. Related Work
The concept of intrusion detection began with Anderson’s

seminal paper in 1980 [34] by introducing a threat
classification model that develops a security monitoring
surveillance system based on detecting anomalies in user
behavior. In 1986, Dr. Denning proposed several models for
commercial IDS development based on statistics, Markov
chains, time-series, etc [35], [36]. In 2001, Lindqvist et al.
proposed a rule-based expert system called eXpert-BSM for
detecting misuse of host machine by analyzing activities inside
the host in forms of audit trails [37], which generates detail
reports and recommendations to the system administrators, and
produces low false positives. Rules are conditional statements
that derived by employing domain expert knowledge. In 2005,
Fan et al. proposed a method to generate artificial anomalies
into training dataset of IDS to handle both misuse and anomaly
detection [38]. This method injects artificial anomaly data into
the training data to help a baseline classifier distinguish
between normal and anomalous data. In 2006, Bouzida et al.
[39] introduced a supplementary condition to the baseline
decision tree (DT) for anomaly intrusion detection. The idea is
that instead of assigning a default class (normally based on
probability distribution) to the test instance that is not covered
by the tree, the instance is assigned to a new class. Then,
instances with the new class are examined for unknown attack
analysis. In 2009, Wu and Yen [21] applied DT and support
vector machine (SVM) algorithm to built two classifiers for
comparison by employing a sampling method of several
different normal data ratios. More specifically, KDD99 dataset
is split into several different proportions based on the normal
class label for both training set and testing set. The overall
evaluation of a classifier is based on the average value of
results. It is reported that in general DT is superior to SVM
classifier. In the same way, Peddabachigari et al. [40] applied
DT and SVM for intrusion detection, and proven that decision
tree is better than SVM in terms of overall accuracy.
Particularly, DT much better in detecting user to root (U2R)
and remote to local (R2L) network attacks, compared to SVM.

Naïve Bayesian (NB) classifier produces a surprising result
of classification accuracy in comparison with other classifiers
on KDD99 benchmark intrusion detection dataset. In 2001,
Barbara et al. [41] proposed a method based on the technique
called Pseudo-Bayes estimators to enhance the ability of
ADAM intrusion detection system [42] in detecting new
attacks and reducing false positives, which estimates the prior
and posterior probabilities for new attacks by using information
derived from normal instances and known attacks without
requiring prior knowledge about new attacks. This study
constructs a naïve Bayes Classifier to classify a given instance

into a normal instance, known attack, or new attack. In 2004,
Amor et al. [43] conducted an experimental study of the
performance comparison between NB classifier and DT on
KDD99 dataset. This experimental analysis reported that DT
outperforms in classifying normal, denial of service (DoS), and
R2L attacks, whereas NB classifier is superior in classifying
Probe and U2R attacks. With respect to running time, the
authors pointed out that NB classifier is 7 times faster than DT.
Another naïve Bayes method for detecting signatures of
specific attacks is motivated by Panda and Patra in 2007 [44].
From the experimental results implemented on KDD99 dataset,
the authors give a conclusion that NB classifier performs back
propagation neural network classifier in terms of detection rates
and false positives. It is also reported that NB classifier
produces a relatively high false positive. In a later work, the
same authors Panda and Patra [45] in 2009, compares NB
classifier with 5 other similar classifiers, i.e., JRip, Ridor,
NNge, Decision Table, and Hybrid Decision Table, and
experimental results shows that the NB classifier is better than
other classifiers.

III. FEATURE SELECTION AND ADAPTIVE NB TREE

A. Feature Selection
Feature selection becomes indispensable for high

performance intrusion detection using data mining algorithms,
because irrelevant and redundant features may lead to complex
intrusion detection model as well as poor detection accuracy.
Feature selection is the process of finding a subset of features
from total original features. The purpose of feature selection is
to remove the irrelevant input features from the dataset for
improving the classification accuracy. Feature selection in
particularly useful in the application domains that introduce a
large number of input dimensions like intrusion detection.
Many data mining methods have been used for selecting
important features from training dataset such as information
gain based, gain ratio based, principal component analysis
(PCA), genetic search, and classifier ensemble methods etc
[46]-[53]. In 2009, Yang et al. [54] introduced a wrapper-based
feature selection algorithm to find most important features from
the training dataset by using random mutation hill climbing
method, and then employs linear support vector machine
(SVM) to evaluate the selected subset-features. Chen et al. [55]
proposed a neural-tree based algorithm to identify important
input features for classification, based on an evolutionary
algorithm that the feature contributes more to the objective
function will consider as an important feature.

In this paper, to select the important input attributes from
training dataset, we construct a decision tree by applying ID3
algorithm in training dataset. The ID3 algorithm constructs
decision tree using information theory [56], which choose
splitting attributes from the training dataset with maximum
information gain. Information gain is the amount of
information associated with an attribute value that is related to
the probability of occurrence. Entropy is the quantify
information that is used to measure the amount of randomness
from a dataset. When all data in a set belong to a single class,
there is no uncertainty then the entropy is zero. The objective
of ID3 algorithm is to iteratively partition the given dataset into

21 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

sub-datasets, where all the instances in each final subset belong
to the same class. The value for entropy is between 0 and 1 and
reaches a maximum when the probabilities are all the same.
Given probabilities p1, p2,..,ps, where ∑i=1 pi=1;

 Entropy: H(p1,p2,…ps) = ∑
=

s

i 1

(pi log(1/pi)) (1)

Given a dataset, D, H(D) finds the amount of sub-datasets of
original dataset. When that sub-dataset is split into s new sub-
datasets S = {D1, D2,…,Ds}, we can again look at the entropy of
those sub-datasets. A subset is completely ordered if all
instances in it are the same class. The ID3 algorithm calculates
the gain by the equation “(2)”.

 Gain (D,S) = H(D)-∑
=

s

i 1

p(Di)H(Di) (2)

After constructing the decision tree from training dataset,
we weight the attributes of training dataset by the minimum
depth at which the attribute is tested in the decision tree. The
depth of root node of the decision tree is 1. The weight for an
attribute is set to d1 , where d is the minimum depth at which
the attribute is tested in the tree. The weights of attributes that
do not appear in the decision tree are assigned to zero.

B. Naïve Bayesian Tree
Naïve Bayesian tree (NBTree) is a hybrid learning

approach of decision tree and naïve Bayesian classifier. In
NBTree nodes contain and split as regular decision-trees, but
the leaves are replaced by naïve Bayesian classifier, the
advantage of both decision tree and naïve Bayes can be utilized
simultaneously [57]. Depending on the precise nature of the
probability model, NB classifier can be trained very efficiently
in a supervised learning. In many practical applications,
parameter estimation for naïve Bayesian models uses the
method of maximum likelihood. Suppose the training dataset,
D consists of predictive attributes {A1, A2,…,An}, where each
attribute Ai = {Ai1, Ai2,…,Aik} contains attribute values and a set
of classes C = {C1, C2,…,Cn}. The objective is to classify an
unseen example whose class value is unknown but values for
attributes A1 through Ak are known. The aim of decision tree
learning is to construct a tree model: {A1, A2,…,An}→C.
Correspondingly the Bayes theorem, if attribute Ai is discrete
or continuous, we will have:

 P(Cj | Aij) =
() ()

()ij

jjij

AP

CPCAP |
 (3)

Where P(Cj|Aij) denote the probability. The aim of
Bayesian classification is to decide and choose the class that
maximizes the posteriori probability. Since P(Aij) is a constant
independent of C, then:

 C* = ()ijj
Cc

ACP |maxarg
ε

 = () ()jjij
Cc

CPCAP |maxarg
ε

 (4)

Adaptive naïve Bayesian tree splits the dataset by applying
entropy based algorithm and then used standard naïve Bayesian
classifiers at the leaf node to handle attributes. It applies
strategy to construct decision tree and replaces leaf node with
naïve Bayesian classifier.

IV. PROPOSED LEARNING ALGORITHM

A. Proposed Attribute Weighting Algorithm
In a given training data, D = {A1, A2,…,An} of attributes,

where each attribute Ai = {Ai1, Ai2,…,Aik} contains attribute
values and a set of classes C = {C1, C2,…,Cn}, where each
class Cj = {Cj1, Cj2,…,Cjk} has some values. Each example in
the training data contains weight, w = {w1,w2…, wn}. Initially,
all the weights of examples in training data have equal unit
value that set to wi = 1/n. Where n is the total number of
training examples. Estimates the prior probability P(Cj) for
each class by summing the weights that how often each class
occurs in the training data. For each attribute, Ai, the number
of occurrences of each attribute value Aij can be counted by
summing the weights to determine P(Aij). Similarly, the
conditional probability P(Aij |Cj) can be estimated by summing
the weights that how often each attribute value occurs in the
class Cj in the training data. The conditional probabilities P(Aij
|Cj) are estimated for all values of attributes. The algorithm
then uses the prior and conditional probabilities to update the
weights. This is done by multiplying the probabilities of the
different attribute values from the examples. Suppose the
training example ei has independent attribute values {Ai1,
Ai2,…,Aip}. We already know the prior probabilities P(Cj) and
conditional probabilities P(Aik|Cj), for each class Cj and
attribute Aik. We then estimate P(ei |Cj) by

 P(ei | Cj) = P(Cj) ∏ P(Aij | Cj) (5)

To update the weight of training example ei, we can
estimate the likelihood of ei for each class. The probability that
ei is in a class is the product of the conditional probabilities for
each attribute value. The posterior probability P(Cj | ei) is then
found for each class. Then the weight of the example is
updated with the highest posterior probability for that example
and also the class value is updated according to the highest
posterior probability. Now, the algorithm calculates the
information gain by using updated weights and builds a tree.
After the tree construction, the algorithm initialized weights
for each attributes in training data D. If the attribute in the
training data is not tested in the tree then the weight of the
attribute is initialized to 0, else calculates the minimum depth,
d that the attribute is tested at and initialized the weight of
attribute to d1 . Finally, the algorithm removes all the
attributes with zero weight from the training data D. The main
procedure of proposed algorithm is described as follows.

Algorithm 1: Attribute Weighting
Input: Training Dataset, D
Output: Decision tree, T
Procedure:

1. Initialize all the weights for each example in D,
wi=1/n, where n is the total number of the examples.

22 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

2. Calculate the prior probabilities P(Cj) for each class

Cj in D. P(Cj) =

∑

∑

=

n

i
i

Ci
i

w

w

1

3. Calculate the conditional probabilities P(Aij | Cj) for

each attribute values in D. P(Aij | Cj) =
∑

iC
i

ij

w

AP)(

4. Calculate the posterior probabilities for each example
in D.

P(ei | Cj) = P(Cj) ∏ P(Aij | Cj)
5. Update the weights of examples in D with Maximum

Likelihood (ML) of posterior probability P(Cj|ei);
 wi= PML(Cj|ei)

6. Change the class value of examples associated with
maximum posterior probability, Cj = Ci→ PML(Cj|ei).

7. Find the splitting attribute with highest information
gain using the updated weights, wi in D.

 Information Gain =






























−



















− ∑ ∑∑

∑
∑

∑

∑

∑

∑

= =
=

=

=

=

=

=

=
n

i Ci
i

Ci
i

Ci
ik

j
n

i
i

Ci
i

n

i
i

Ci
i

ij

i

ijii w
w

w

w

w

w

w

11

11

loglog

8. T = Create the root node and label with splitting
attribute.

9. For each branch of the T, D = database created by
applying splitting predicate to D, and continue steps 1
to 8 until each final subset belong to the same class or
leaf node created.

10. When the decision tree construction is completed, for
each attribute in the training data D: If the attribute is
not tested in the tree then weight of the attribute is
initialized to 0. Else, let d be the minimum depth that
the attribute is tested in the tree, and weight of the
attribute is initialized to d1 .

11. Remove all the attributes with zero weight from the
training data D.

B. Proposed Adaptive NBTree Algorithm
Given training data, D where each attribute Ai and each

example ei have the weight value. Estimates the prior
probability P(Cj) and conditional probability P(Aij | Cj) from
the given training dataset using weights of the examples. Then
classify all the examples in the training dataset using these
prior and conditional probabilities with incorporating attribute
weights into the naïve Bayesian formula:

P(ei | Cj) = () ()∏
=

m

i

W
jijj

iCAPCP
1

| (6)

Where Wi is the weight of attribute Ai. If any example of
training dataset is misclassified, then for each attribute Ai,
evaluate the utility, u(Ai), of a spilt on attribute Ai. Let j =
argmaxi(ui), i.e., the attribute with the highest utility. If uj is
not significantly better than the utility of the current node,

create a NB classifier for the current node. Partition the
training data D according to the test on attribute Ai. If Ai is
continuous, a threshold split is used; if Ai is discrete, a multi-
way split is made for all possible values. For each child, call
the algorithm recursively on the portion of D that matches the
test leading to the child. The main procedure of algorithm is
described as follows.

Algorithm 2: Adaptive NBTree
Input: Training dataset D of labeled examples.
Output: A hybrid decision tree with naïve Bayesian
classifier at the leaves.
Procedure:

1. Calculate the prior probabilities P(Cj) for each class

Cj in D. P(Cj) =

∑

∑

=

n

i
i

Ci
i

w

w

1

2. Calculate the conditional probabilities P(Aij | Cj) for

each attribute values in D. P(Aij | Cj) =
∑

iC
i

ij

w

AP)(

3. Classify each example in D with maximum posterior

probability. P(ei | Cj) = () ()∏
=

m

i

W
jijj

iCAPCP
1

|

4. If any example in D is misclassified, then for each
attribute Ai, evaluate the utility, u(Ai), of a spilt on
attribute Ai.

5. Let j = argmaxi(ui), i.e., the attribute with the highest
utility.

6. If uj is not significantly better than the utility of the
current node, create a naïve Bayesian classifier for
the current node and return.

7. Partition the training data D according to the test on
attribute Ai. If Ai is continuous, a threshold split is
used; if Ai is discrete, a multi-way split is made for all
possible values.

8. For each child, call the algorithm recursively on the
portion of D that matches the test leading to the child.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset
Experiments have been carried out on KDD99 cup

benchmark network intrusion detection dataset, a predictive
model capable of distinguishing between intrusions and normal
connections [58]. In 1998, DARPA intrusion detection
evaluation program, a simulated environment was set up to
acquire raw TCP/IP dump data for a local-area network (LAN)
by the MIT Lincoln Lab to compare the performance of various
intrusion detection methods. It was operated like a real
environment, but being blasted with multiple intrusion attacks
and received much attention in the research community of
adaptive intrusion detection. The KDD99 dataset contest uses a
version of DARPA98 dataset. In KDD99 dataset each example
represents attribute values of a class in the network data flow,

23 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

and each class is labeled either normal or attack. Examples in
KDD99 dataset are represented with a 41 attributes and also
labeled as belonging to one of five classes as follows: (1)
Normal traffic; (2) DoS (denial of service); (3) Probe,
surveillance and probing; (4) R2L, unauthorized access from a
remote machine; (5) U2R, unauthorized access to local super
user privileges by a local unprivileged user. In KDD99 dataset
these four attack classes are divided into 22 different attack
classes that tabulated in Table II.

TABLE II. ATTACKS IN KDD99 DATASET

4 Main Attack Classes 22 Attack Classes
Denial of Service (DoS) back, land, neptune, pod, smurt, teardrop

Remote to User (R2L) ftp_write, guess_passwd, imap, multihop, phf,
spy, warezclient, warezmaster

User to Root (U2R) buffer_overflow, perl, loadmodule, rootkit
Probing ipsweep, nmap, portsweep, satan

The input attributes in KDD99 dataset are either discrete or
continuous values and divided into three groups. The first
group of attributes is the basic features of network connection,
which include the duration, prototype, service, number of bytes
from source IP addresses or from destination IP addresses, and
some flags in TCP connections. The second group of attributes
in KDD99 is composed of the content features of network
connections and the third group is composed of the statistical
features that are computed either by a time window or a
window of certain kind of connections. Table III shows the
number of examples of 10% training data and 10% testing data
in KDD99 dataset. There are some new attack examples in
testing data, which is no present in the training data.

TABLE III. NUMBER OF EXAMPLES IN TRAINING AND TESTING KDD99
DATA

Attack Types Training Examples Testing Examples
Normal 97277 60592

Denial of Service 391458 237594
Remote to User 1126 8606

User to Root 52 70
Probing 4107 4166

Total Examples 494020 311028

B. Performance Measures
In order to evaluate the performance of proposed learning

algorithm, we performed 5-class classification using KDD99
network intrusion detection benchmark dataset and consider
two major indicators of performance: detection rate (DR) and
false positives (FP). DR is defined as the number of intrusion
instances detected by the system divided by the total number of
intrusion instances present in the dataset.

 DR = 100*
_

det
attacksTotal

attacksectedTotal (7)

FP is defined as the total number of normal instances.

 FP = 100*
__

__
processnormalTotal

processiedmisclassifTotal (8)

 All experiments were performed using an Intel Core 2 Duo
Processor 2.0 GHz processor (2 MB Cache, 800 MHz FSB)
with 1 GB of RAM.

C. Experiment and analysis on Proposed Algorithm
Firstly, we use proposed algorithm 1 to perform attribute

selection from training dataset of KDD99 dataset and then we
use our proposed algorithm 2 for classifier construction. The
performance of our proposed algorithm on 12 attributes in
KDD99 dataset is listed in Table IV.

TABLE IV. PERFORMANCE OF PROPOSED ALGORITHM ON KDD99 DATASET

Classes Detection Rates (%) False Positives (%)
Normal 100 0.04
Probe 99.93 0.37
DoS 100 0.03
U2R 99,38 0.11
R2L 99.53 6.75

Table V and Table VI depict the performance of naïve
Bayesian (NB) classifier and C4.5 algorithm using the original
41 attributes of KDD99 dataset.

TABLE V. PERFORMANCE OF NB CLASSIFIER ON KDD99 DATASET

Classes Detection Rates (%) False Positives (%)
Normal 99.27 0.08
Probe 99.11 0.45
DoS 99.68 0.05
U2R 64.00 0.14
R2L 99.11 8.12

TABLE VI. PERFORMANCE OF C4.5 ALGORITHM USING KDD99 DATASET

Classes Detection Rates (%) False Positives (%)
Normal 98.73 0.10
Probe 97.85 0.55
DoS 97.51 0.07
U2R 49.21 0.14
R2L 91.65 11.03

Table VII and Table VIII depict the performance of NB
classifier and C4.5 using reduces 12 attributes.

TABLE VII. PERFORMANCE OF NB CLASSIFIER USING KDD99 DATASET

Classes Detection Rates (%) False Positives (%)
Normal 99.65 0.06
Probe 99.35 0.49
DoS 99.71 0.04
U2R 64.84 0.12
R2L 99.15 7.85

TABLE VIII. PERFORMANCE OF C4.5 ALGORITHM USING KDD99 DATASET

Classes Detection Rates (%) False Positives (%)
Normal 98.81 0.08
Probe 98.22 0.51
DoS 97.63 0.05
U2R 56.11 0.12
R2L 91.79 8.34

We also compare the intrusion detection performance
among Support Vector Machines (SVM), Neural Network
(NN), Genetic Algorithm (GA), and proposed algorithm on
KDD99 dataset that tabulated in Table IX [59], [60].

TABLE IX. COMPARISON OF SEVERAL ALGORITHMS

 SVM NN GA Proposed Algorithm
Normal 99.4 99.6 99.3 99.93
Probe 89.2 92.7 98.46 99.84
DoS 94.7 97.5 99.57 99.91
U2R 71.4 48 99.22 99.47
R2L 87.2 98 98.54 99.63

24 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a hybrid approach to intrusion detection
based on decision tree-based attribute weighting with naïve
Bayesian tree, which is suitable for analyzing large number of
network logs. The main propose of this paper is to improve the
performance of naïve Bayesian classifier for network intrusion
detection systems (NIDS). The experimental results manifest
that proposed approach can achieve high accuracy in both
detection rates and false positives, as well as balanced detection
performance on all four types of network intrusions in KDD99
dataset. The future works focus on applying the domain
knowledge of security to improve the detection rates for current
attacks in real time computer network, and ensemble with other
mining algorithms for improving the detection rates in intrusion
detection.

ACKNOWLEDGMENT

Support for this research received from ERIC Laboratory,
University Lumière Lyon 2 – France, and Department of
Computer Science and Engineering, Jahangirnagar University,
Bangladesh.

REFERENCES

[1] Xuan Dau Hoang, Jiankun Hu, and Peter Bertok, “A program-based

anomaly intrusion detection scheme using multiple detection engines
and fuzzy inference,” Journal of Network and Computer Applications,
Vol. 32, Issue 6, November 2009, pp. 1219-1228.

[2] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E.
Vazquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Computers & Security, Vol. 28, 2009, pp. 18-
28.

[3] Animesh Patch, and Jung-Min Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological trends,”
Computer Netwroks, Vol. 51, Issue 12, 22 August 2007, pp. 3448-3470.

[4] Lih-Chyau Wuu, Chi-Hsiang Hung, and Sout-Fong Chen, “Building
intrusion pattern miner for Snort network intrusion detection system,”
Journal of Systems and Software, Vol. 80, Issue 10, October 2007, pp.
1699-1715.

[5] Chia-Mei Chen, Ya-Lin Chen, and Hsiao-Chung Lin, “An efficient
network intrusion detection,” Computer Communications, Vol. 33, Issue
4, 1 March 2010, pp. 477-484.

[6] M. Ali Aydin, A. Halim Zaim, and K. Gokhan Ceylan, “A hybrid
intrusion detection system for computer netwrok security,” Computer &
Electrical Engineering, Vol. 35, Issue 3, May 2009, pp. 517-526.

[7] Franciszek Seredynski, and Pascal Bouvry, “Anomaly detection in
TCP/IP networks using immune systems paradigm,” Computer
Communications, Vol. 30, Issue 4, 26 February 2007, pp. 740-749.

[8] Jr, James C. Foster, Matt Jonkman, Raffael Marty, and Eric Seagren,
“Intrusion detection systems,” Snort Intrusion detection and Prevention
Toolkit, 2006, pp. 1-30.

[9] Ben Rexworthy, “Intrusion detections systems – an outmoded network
protection model,” Network Security, Vol. 2009, Issus 6, June 2009, pp.
17-19.

[10] Wei Wang, Xiaohong Guan, and Xiangliang Zhang, “Processing of
massive audit data streams for real-time anomaly intrusion detection,”
Computer Communications, Vol. 31, Issue 1, 15 January 2008, pp. 58-
72.

[11] Han-Ching Wu, and Shou-Hsuan Stephen Huand, “Neural network-
based detection of stepping-stone intrusion,” Expert Systems with
Applications, Vol. 37, Issuse 2, March 2010, pp. 1431-1437.

[12] Xiaojun Tong, Zhu Wang, and Haining Yu, “A research using hybrid
RBF/Elman neural netwroks for intrusion detection system secure

model,” Computer Physics Communications, Vol. 180, Issue 10,
October 2009, pp. 1795-1801.

[13] Chih-Forn, and Chia-Ying Lin, “A triangle area based nearset neighbors
approach to intrusion detection,” Pattern Recognition, Vol. 43, Issuse 1,
January 2010, pp. 222-229.

[14] Kamran Shafi, and Hussein A. Abbass, “An adaptive genetic-based
signature learning system for intrusion detection,” Expert System with
Applications, Vol. 36, Issue 10, December 2009, pp. 12036-12043.

[15] Zorana Bankovic, Dusan Stepanovic, Slobodan Bojanic, and Octavio
NietopTalasriz, “Improving network security using genetic algorithm
approach,” Computers & Electrical Engineering, Vol. 33. Issues 5-6,
2007, pp. 438-541.

[16] Yang Li, and Li guo, “An active learning based TCM-KNN algorithm
for supervised network intruison detection,” Computers & security, Vol.
26, Issues 7-8, December 2007, pp. 459-467.

[17] Wun-Hwa Chen, Sheng-Hsun Hsu, and Hwang-Pin Shen, “Application
of SVM and ANN for intrusion detection,” Computers & Operations
Research, Vol. 32, Issue 10, October 2005, pp. 2617-1634.

[18] Ming-Yang Su, Gwo-Jong Yu, and Chun-Yuen Lin, “A real-time
network intrusion detection system for large-scale attacks based on an
incremental mining approach,” Computer & Security, Vol. 28, Issue 5,
July 2009, pp. 301-309.

[19] Zeng Jinquan, Liu Xiaojie, Li Tao, Liu Caiming, Peng Lingxi, and Sun
Feixian, “A self-adaptive negative selection algorithm used for anomaly
detection,” Progress in Natural Science, Vol. 19, Issue 2, 10 February
2009, pp. 261-266.

[20] Zonghua Zhang, and Hong Shen, “Application of online-training SVMs
for real-time intrusion detection with different considerations,”
Computer Communications, Vol. 28, Issue 12, 18 July 2005, pp. 1428-
1442.

[21] Su-Yun Wu, and Ester Yen, “Data mining-based intrusion detectors,”
Expert Systems with Applications, Vol. 36, Issue 3, Part 1, April 2009,
pp. 5605-5612.

[22] S. R. Snapp, and S. E. Smaha, “Signature analysis model definition and
formalism,” In Proc. of the 4th Workshop on Computer Security Incident
Handling, Denver, CO. 1992.

[23] P. A. Poras, and A. Valdes, “Live traffic analysis of TCP/IP gateways,”
In Proc. of the Network and Distributed System Security Symposium,
San Diego, CA: Internet Society, 11-13 March, 1998.

[24] T. D. Garvey, and T. F. Lunt, “Model based intrusion detection,” In
Proc. of the 14th National Conference Security Conference, 1991, pp.
372-385.

[25] F. Carrettoni, S. Castano, G. Martella, and P. Samarati, “RETISS: A real
time security system for threat detection using fuzzy logic,” In Proc. of
the 25th IEEE International Carnahan Conference on Security
Technology, Taipei, Taiwai ROC, 1991.

[26] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, H. S.
Javitz, A. Valdes, and T. D. Garvey, “A real-time intrusion detection
expert system (IDES),” Technical Report, Computer Science
Laboratory, Menlo Park, CA: SRI International.

[27] S. A. Hofmeyr, S. Forrest, A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security, Vol. 6, 1998,
pp. 151-180.

[28] S. A. Hofmeyr, and S. Forrest, “Immunity by design: An artificial
immune system,” In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 99), Vol. 2, San Mateo, CA: Morgan Kaufmann,
1999, pp. 1289-1296.

[29] J. M. Jr. Bonifacio, A. M. Cansian, A. C. P. L. F. Carvalho, and E. S.
Moreira, “Neural networks applied in intrusion detection systems,” In
the Proc. of the International Conference on Computational Intelligence
and Multimedia Application, Gold Coast, Australia, 1997, pp. 276-280.

[30] H. Debar, M. Becker, and D. Siboni, “A neural network component for
an intrusion detection system,” In Proc. of the IEEE Symposium on
Research in Security and Privacy, Oakland, CA: IEEE Computer Society
Press, 1992, pp. 240-250.

[31] W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns from Unix
precess execution traces for intrusion detection,” AAAI Workshop: AI

25 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 8, No. 1, 2010

Approaches to Fraud Detection and Risk Management, Menlo Park, CA:
AAAI Press, 1999, pp. 50-56.

[32] W. Lee, S. J. Stolfo, and K. W. Mok, “Mining audit data to built
intrusion detection models,” In Proc. of the 4th International Conference
on Knowledge Discovery and Data Mining (KDD-98), Menlo Park, CA:
AAAI Press, 2000, pp. 66-72.

[33] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sence
of self for Unix Precesses,” In Proc. of the 1996 IEEE Symposium on
Security and Privacy, Oakland, CA: IEEE Computer Society Press,
1996, pp. 120-128.

[34] James P. Anderson, “Computer security threat monitoring and
surveillance,” Technical Report 98-17, James P. Anderson Co., Fort
Washington, Pennsylvania, USA, April 1980.

[35] Dorothy E. Denning, “An intrusion detection model,” IEEE Transaction
on Software Engineering, SE-13(2), 1987, pp. 222-232.

[36] Dorothy E. Denning, and P.G. Neumann “Requirement and model for
IDES- A real-time intrusion detection system,” Computer Science
Laboratory, SRI International, Menlo Park, CA 94025-3493, Technical
Report # 83F83-01-00, 1985.

[37] U. Lindqvist, and P. A. Porras, “eXpert-BSM: A host based intrusion
detection solution for Sun Solaris,” In Proc. of the 17th Annual Computer
Security Applications Conference, New Orleans, USA, 2001, pp. 240-
251.

[38] W. Fan, W. Lee, M. Miller, S. J. Stolfo, and P. K. Chan, “Using artificial
anomalies to detect unknown and known netwrok intrusions,”
Knowledge and Information Systems, 2005, pp. 507-527.

[39] Y. Bouzida, and F. Cuppens, “Detecting known and novel network
intrusions,” Security and Privacy in Dynamic Environments, 2006, pp.
258-270.

[40] S. Peddabachigari, A. Abraham, and J. Thomas, “Intrusion detection
systems using decision tress and support vector machines,” International
Journal of Applied Science and Computations, 2004.

[41] D. Barbara, N. Wu, and Suchil Jajodia, “Detecting novel network
intrusions using Bayes estimators,” In Proc. of the 1st SIAM Conference
on Data Mining, April 2001.

[42] D. Barbara, J. Couto, S. Jajodia, and N. Wu, “ADAM: A tested for
exploring the use of data mining in intrusion detection,” Special Interest
Group on Management of Data (SIGMOD), Vol. 30 (4), 2001.

[43] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naïve Bayes vs. decision
trees in intruison detection systems,” In Proc. of the 2004 ACM
Symposium on Applied Computing, New York, 2004, pp. 420-424.

[44] M. Panda, and M. R. Patra, “Network intrusion deteciton using naïve
Bayes,” International Journal of Computer Science and Network
Security (IJCSNS), Vol. 7, No. 12, December 2007, pp. 258-263.

[45] M. Panda, and M. R. Patra, “Semi-naïve Bayesian method for network
intrusion detection system,” In Proc. of the 16th International Conference
on Neural Information Processing, December 2009.

[46] P.V.W. Radtke, R. Sabourin, and T. Wong, “Intelligent feature
extraction for ensemble of classifiers,” In Proc. of 8th International
Conference on Document Analysis and Recognition (ICDAR 2005),
Seoul: IEEE Computer Society, 2005, pp. 866-870.

[47] R. Rifkin, A. Klautau, “In defense of one-vs-all classification,” Journal
of Machine Learning Research, 5, 2004, pp. 143-151.

[48] S. Chebrolu, A. Abraham, and J.P. Thomas, “Feature deduction and
ensemble design of intrusion detection systems,” Computer & Security,
24(4), 2004, pp. 295-307.

[49] A. Tsymbal, S. Puuronen, and D.W. Patterson, “Ensemble feature
selection with the simple Bayesian classification,” Information Fusion,
4(2), 2003, pp. 87-100.

[50] A.H. Sung, and S. Mukkamala, “Identifying important features for
intrusion detection using support vector machines and neural networks,”
In Proc. of International Symposium on Applications and the Internet
(SAINT 2003), 2003, pp. 209-217.

[51] L.S. Oliveira, R. Sabourin, R.F. Bortolozzi, and C.Y. Suen, “Feature
selection using multi-objective genetic algorithms for handwritten digit
recognition,” In Proc. of 16th International Conference on Pattern

Recognition (ICPR 2002), Quebec: IEEE Computer Society, 2002, pp.
568-571.

[52] S. Mukkamala, and A.H. Sung, “Identifying key features for intrusion
detection using neural networks,” In Proc. of the ICCC International
Conference on Computer Communications, 2002.

[53] W. Lee, and S. J. Stolfo, “A framework for constructing features and
models for intrusion detection systems,” ACM Transactions on
Information and System Security, 3(4), 2000, pp. 227-261.

[54] Y. Li, J.L. Wang, Z.H. Tian, T.B. Lu, and C. Young, “Building
lightweight intrusion detection system using wrapper-based feature
selection mechanisms,” Computer & Security, Vol. 28, Issue 6,
September 2009, pp. 466-475.

[55] Y. Chen, A. Abraham, and B. Yang, “Hybrid flexible neural-tree-based
intrusion detection systems,” International Journal of Intelligent
Systems, 22, pp. 337-352.

[56] J. R. Quinlan, “Induction of Decision Tree,” Machine Learning Vol. 1,
1986, pp. 81-106.

[57] R. Kohavi, “Scaling up the accuracy of naïve Bayes classifiers: A
Decision Tree Hybrid,” In Proc. of the 2nd International Conference on
Knowledge Discovery and Data Mining, Menlo Park, CA:AAAI
Press/MIT Press, 1996, pp. 202-207.

[58] The KDD Archive. KDD99 cup dataset, 1999.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[59] Mukkamala S, Sung AH, and Abraham A, “Intrusion dection using an
ensemble of intelligent paradigms,” Proceedings of Journal of Network
and Computer Applications, 2005, 2(8): pp. 167-182.

[60] Chebrolu S, Abraham A, and Thomas JP, “Feature deduction and
ensemble design of intrusion detection systems.” Computer & Security,
2004, 24(4), pp. 295-307.

AUTHORS PROFILE

Dewan Md. Farid was born in Dhaka, Bangladesh in 1979. He is currently a
research fellow at ERIC Laboratory, University Lumière Lyon 2 - France. He
obtained B.Sc. Engineering in Computer Science and Engineering from Asian
University of Bangladesh in 2003 and Master of Science in Computer Science
and Engineering from United International University, Bangladesh in 2004.
He is pursuing Ph.D. in the Department of Computer Science and
Engineering, Jahangirnagar University, Bangladesh. He is a faculty member in
the Department of Computer Science and Engineering, United International
University, Bangladesh. He is a member of IEEE and IEEE Computer
Society. He has published 10 international research papers including two
journals in the field of data mining, machine learning, and intrusion detection.

Jérôme Darmont received his Ph.D. in computer science from the University
of Clermont-Ferrand II, France in 1999. He joined the University of Lyon 2,
France in 1999 as an associate professor, and became full professor in 2008.
He was head of the Decision Support Databases research group within the
ERIC laboratory from 2000 to 2008, and has been director of the Computer
Science and Statistics Department of the School of Economics and
Management since 2003. His current research interests mainly relate to
handling so-called complex data in data warehouses (XML warehousing,
performance optimization, auto-administration, benchmarking...), but also
include data quality and security as well as medical or health-related
applications.

Mohammad Zahidur Rahma is currently a Professor at Department of
Computer Science and Engineering, Jahangirnager University, Banglasesh. He
obtained his B.Sc. Engineering in Electrical and Electronics from Bangladesh
University of Engineering and Technology in 1986 and his M.Sc. Engineering
in Computer Science and Engineering from the same institute in 1989. He
obtained his Ph.D. degree in Computer Science and Information Technology
from University of Malaya in 2001. He is a co-author of a book on E-
commerce published from Malaysia. His current research includes the
development of a secure distributed computing environment and e-commerce.

26 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	I. Introduction
	II. Intrusion Detection System: IDS
	A. Misuse Vs. Anomaly Vs. Hybrid Detection Model
	B. Architecture of Data Mining Based IDS
	C. Related Work

	III. Feature Selection and Adaptive NB Tree
	A. Feature Selection
	B. Naïve Bayesian Tree

	IV. Proposed Learning Algorithm
	A. Proposed Attribute Weighting Algorithm
	B. Proposed Adaptive NBTree Algorithm

	V. Experimental Results and Analysis
	A. Dataset
	B. Performance Measures
	C. Experiment and analysis on Proposed Algorithm

	VI. Conclusions and Future Works
	Acknowledgment
	References

