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Abstract—In this paper, we introduce new learning algorithms 
for reducing false positives in intrusion detection. It is based on 
decision tree-based attribute weighting with adaptive naïve 
Bayesian tree, which not only reduce the false positives (FP) at 
acceptable level, but also scale up the detection rates (DR) for 
different types of network intrusions. Due to the tremendous 
growth of network-based services, intrusion detection has 
emerged as an important technique for network security. 
Recently data mining algorithms are applied on network-based 
traffic data and host-based program behaviors to detect 
intrusions or misuse patterns, but there exist some issues in 
current intrusion detection algorithms such as unbalanced 
detection rates, large numbers of false positives, and redundant 
attributes that will lead to the complexity of detection model and 
degradation of detection accuracy. The purpose of this study is to 
identify important input attributes for building an intrusion 
detection system (IDS) that is computationally efficient and 
effective. Experimental results performed using the KDD99 
benchmark network intrusion detection dataset indicate that the 
proposed approach can significantly reduce the number and 
percentage of false positives and scale up the balance detection 
rates for different types of network intrusions.       
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I.  INTRODUCTION 

With the popularization of network-based services, 
intrusion detection systems (IDS) have become important tools 
for ensuring network security that is the violation of 
information security policy. IDS collect information from a 
variety of network sources using intrusion detection sensors, 
and analyze the information for signs of intrusions that attempt 
to compromise the confidentiality and integrity of networks 
[1]-[3]. Network-based intrusion detection systems (NIDS) 
monitor and analyze network traffics in the network for 
detecting intrusions from internal and external intruders [4]-[9]. 
Internal intruders are the inside users in the network with some 
authority, but try to gain extra ability to take action without 
legitimate authorization. External intruders are the outside 
users without any authorized access to the network that they 
attack. IDS notify network security administrator or automated 
intrusion prevention systems (IPS) about the network attacks, 
when an intruder try to break the network. Since the amount of 
audit data that an IDS needs to examine is very large even for a 

small network, several data mining algorithms, such as decision 
tree, naïve Bayesian classifier, neural network, Support Vector 
Machines, and fuzzy classification, etc [10]-[20] have been 
widely used by the IDS community for detecting known and 
unknown intrusions. Data mining based intrusion detection 
algorithms aim to solve the problems of analyzing the huge 
volumes of audit data and realizing performance optimization 
of detection rules [21]. But there are still some drawbacks in 
currently available commercial IDS, such as low detection 
accuracy, large number of false positives, unbalanced detection 
rates for different types of intrusions, long response time, and 
redundant input attributes. 

A conventional intrusion detection database is complex, 
dynamic, and composed of many different attributes. The 
problem is that not all attributes in intrusion detection database 
may be needed to build efficient and effective IDS. In fact, the 
use of redundant attributes may interfere with the correct 
completion of mining task, because the information they added 
is contained in other attributes. The use of all attributes may 
simply increase the overall complexity of detection model, 
increase computational time, and decrease the detection 
accuracy of the intrusion detection algorithms. It has been 
tested that effective attributes selection improves the detection 
rates for different types of network intrusions in intrusion 
detection. In this paper, we present new learning algorithms for 
network intrusion detection using decision tree-based attribute 
weighting with adaptive naïve Bayesian tree. In naïve Bayesian 
tree (NBTree) nodes contain and split as regular decision-trees, 
but the leaves contain naïve Bayesian classifier. The proposed 
approach estimates the degree of attribute dependency by 
constructing decision tree, and considers the depth at which 
attributes are tested in the tree. The experimental results show 
that the proposed approach not only improves the balance 
detection for different types of network intrusions, but also 
significantly reduce the number and percentage of false 
positives in intrusion detection.   

The rest of this paper is organized as follows. In Section II, 
we outline the intrusion detection models, architecture of data 
mining based IDS, and related works. In Section III, the basic 
concepts of feature selection and naïve Bayesian tree are 
introduced.  In Section IV, we introduce the proposed 
algorithms. In Section V, we apply the proposed algorithms to 
the area of intrusion detection using KDD99 benchmark 
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network intrusion detection dataset, and compare the results to 
other related algorithms. Finally, Section VI contains the 
conclusions with future works. 

II. INTRUSION DETECTION SYSTEM: IDS 

A. Misuse Vs. Anomaly Vs. Hybrid Detection Model 
Intrusion detection techniques are broadly classified into 

three categories: misuse, anomaly, and hybrid detection model. 
Misuse or signature based IDS detect intrusions based on 
known intrusions or attacks stored in database. It performs 
pattern matching of incoming packets and/or command 
sequences to the signatures of known attacks. Known attacks 
can be detected reliably with a low false positive using misuse 
detection techniques. Also it begins protecting the 
computer/network immediately upon installation. But the major 
drawback of misuse-based detection is that it requires 
frequently signature updates to keep the signature database up-
to-date and cannot detect previously unknown attacks. Misuse 
detection system use various techniques including rule-based 
expert systems, model-based reasoning systems, state transition 
analysis, genetic algorithms, fuzzy logic, and keystroke 
monitoring [22]-[25].       

Anomaly based IDS detect deviations from normal 
behavior. It first creates a normal profile of system, network, or 
program activity, and then any activity that deviated from the 
normal profile is treated as a possible intrusion. Various data 
mining algorithms have been using for anomaly detection 
techniques including statistical analysis, sequence analysis, 
neural networks, artificial intelligence, machine learning, and 
artificial immune system [26]-[33]. Anomaly based IDS have 
the ability to detect new or previously unknown attacks, and 
insider attacks. But the major drawback of this system is large 
number of false positives. A false positive occurs when an IDS 
reports as an intrusion an event that is in fact legitimate 
network/system activity.  

A hybrid or compound detection system detect intrusions 
by combining both misuse and anomaly detection techniques. 
Hybrid IDS makes decision using a “hybrid model” that is 
based on both the normal behavior of the system and the 
intrusive behavior of the intruders. Table I shows the 
comparisons of characteristics of misuse, anomaly, and hybrid 
detection models. 

TABLE I.  COMPARISONS OF INTRUSION DETECTION MODELS 

Characteristics Misuse Anomaly Hybrid 
Detection Accuracy High (for 

known attacks) 
Low High 

Detecting New Attacks No Yes Yes 
False Positives Low Very high High 
False Negatives High Low Low 

Timely Notifications Fast Slow Rather Fast 
Update Usage Patterns Frequent Not Frequent Not Frequent 

B. Architecture of Data Mining Based IDS 
An IDS monitors network traffic in a computer network 

like a network sniffer and collects network logs. Then the 
collected network logs are analyzed for rule violations by using 
data mining algorithms. When any rule violation is detected, 

the IDS alert the network security administrator or automated 
intrusion prevention system (IPS). The generic architectural 
model of data mining based IDS is shown in Fig 1.  

 

Figure 1.  Organization of a generalized data mining based IDS 

• Audit data collection: IDS collect audit data and 
analyzed them by the data mining algorithms to detect 
suspicious activities or intrusions. The source of the 
data can be host/network activity logs, command-based 
logs, and application-based logs. 

• Audit data storage: IDS store the audit data for future 
reference. The volume of audit data is extremely large. 
Currently adaptive intrusion detection aims to solve the 
problems of analyzing the huge volumes of audit data 
and realizing performance optimization of detection 
rules. 

• Processing component: The processing block is the 
heart of IDS. It is the data mining algorithms that apply 
for detecting suspicious activities. Algorithms for the 
analysis and detection of intrusions have been 
traditionally classified into two categories: misuse (or 
signature) detection, and anomaly detection.  

• Reference data: The reference data stores information 
about known attacks or profiles of normal behaviors.   

• Processing data: The processing element must 
frequently store intermediate results such as 
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information about partially fulfilled intrusion 
signatures. 

• Alert: It is the output of IDS that notifies the network 
security officer or automated intrusion prevention 
system (IPS). 

• System security officer or intrusion prevention system 
(IPS) carries out the prescriptions controlled by the 
IDS. 

C.  Related Work 
The concept of intrusion detection began with Anderson’s 

seminal paper in 1980 [34] by introducing a threat 
classification model that develops a security monitoring 
surveillance system based on detecting anomalies in user 
behavior. In 1986, Dr. Denning proposed several models for 
commercial IDS development based on statistics, Markov 
chains, time-series, etc [35], [36]. In 2001, Lindqvist et al. 
proposed a rule-based expert system called eXpert-BSM for 
detecting misuse of host machine by analyzing activities inside 
the host in forms of audit trails [37], which generates detail 
reports and recommendations to the system administrators, and 
produces low false positives. Rules are conditional statements 
that derived by employing domain expert knowledge. In 2005, 
Fan et al. proposed a method to generate artificial anomalies 
into training dataset of IDS to handle both misuse and anomaly 
detection [38]. This method injects artificial anomaly data into 
the training data to help a baseline classifier distinguish 
between normal and anomalous data. In 2006, Bouzida et al. 
[39] introduced a supplementary condition to the baseline 
decision tree (DT) for anomaly intrusion detection. The idea is 
that instead of assigning a default class (normally based on 
probability distribution) to the test instance that is not covered 
by the tree, the instance is assigned to a new class. Then, 
instances with the new class are examined for unknown attack 
analysis. In 2009, Wu and Yen [21] applied DT and support 
vector machine (SVM) algorithm to built two classifiers for 
comparison by employing a sampling method of several 
different normal data ratios. More specifically, KDD99 dataset 
is split into several different proportions based on the normal 
class label for both training set and testing set. The overall 
evaluation of a classifier is based on the average value of 
results. It is reported that in general DT is superior to SVM 
classifier. In the same way, Peddabachigari et al. [40] applied 
DT and SVM for intrusion detection, and proven that decision 
tree is better than SVM in terms of overall accuracy. 
Particularly, DT much better in detecting user to root (U2R) 
and remote to local (R2L) network attacks, compared to SVM. 

Naïve Bayesian (NB) classifier produces a surprising result 
of classification accuracy in comparison with other classifiers 
on KDD99 benchmark intrusion detection dataset. In 2001, 
Barbara et al. [41] proposed a method based on the technique 
called Pseudo-Bayes estimators to enhance the ability of 
ADAM intrusion detection system [42] in detecting new 
attacks and reducing false positives, which estimates the prior 
and posterior probabilities for new attacks by using information 
derived from normal instances and known attacks without 
requiring prior knowledge about new attacks. This study 
constructs a naïve Bayes Classifier to classify a given instance 

into a normal instance, known attack, or new attack. In 2004, 
Amor et al. [43] conducted an experimental study of the 
performance comparison between NB classifier and DT on 
KDD99 dataset. This experimental analysis reported that DT 
outperforms in classifying normal, denial of service (DoS), and 
R2L attacks, whereas NB classifier is superior in classifying 
Probe and U2R attacks. With respect to running time, the 
authors pointed out that NB classifier is 7 times faster than DT. 
Another naïve Bayes method for detecting signatures of 
specific attacks is motivated by Panda and Patra in 2007 [44]. 
From the experimental results implemented on KDD99 dataset, 
the authors give a conclusion that NB classifier performs back 
propagation neural network classifier in terms of detection rates 
and false positives. It is also reported that NB classifier 
produces a relatively high false positive. In a later work, the 
same authors Panda and Patra [45] in 2009, compares NB 
classifier with 5 other similar classifiers, i.e., JRip, Ridor, 
NNge, Decision Table, and Hybrid Decision Table, and 
experimental results shows that the NB classifier is better than 
other classifiers.     

III. FEATURE SELECTION AND ADAPTIVE NB TREE 

A. Feature Selection 
Feature selection becomes indispensable for high 

performance intrusion detection using data mining algorithms, 
because irrelevant and redundant features may lead to complex 
intrusion detection model as well as poor detection accuracy. 
Feature selection is the process of finding a subset of features 
from total original features. The purpose of feature selection is 
to remove the irrelevant input features from the dataset for 
improving the classification accuracy. Feature selection in 
particularly useful in the application domains that introduce a 
large number of input dimensions like intrusion detection. 
Many data mining methods have been used for selecting 
important features from training dataset such as information 
gain based, gain ratio based, principal component analysis 
(PCA), genetic search, and classifier ensemble methods etc 
[46]-[53]. In 2009, Yang et al. [54] introduced a wrapper-based 
feature selection algorithm to find most important features from 
the training dataset by using random mutation hill climbing 
method, and then employs linear support vector machine 
(SVM) to evaluate the selected subset-features. Chen et al. [55] 
proposed a neural-tree based algorithm to identify important 
input features for classification, based on an evolutionary 
algorithm that the feature contributes more to the objective 
function will consider as an important feature. 

In this paper, to select the important input attributes from 
training dataset, we construct a decision tree by applying ID3 
algorithm in training dataset. The ID3 algorithm constructs 
decision tree using information theory [56], which choose 
splitting attributes from the training dataset with maximum 
information gain. Information gain is the amount of 
information associated with an attribute value that is related to 
the probability of occurrence. Entropy is the quantify 
information that is used to measure the amount of randomness 
from a dataset. When all data in a set belong to a single class, 
there is no uncertainty then the entropy is zero. The objective 
of ID3 algorithm is to iteratively partition the given dataset into 
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sub-datasets, where all the instances in each final subset belong 
to the same class. The value for entropy is between 0 and 1 and 
reaches a maximum when the probabilities are all the same. 
Given probabilities p1, p2,..,ps, where ∑i=1 pi=1; 

    Entropy: H(p1,p2,…ps) = ∑
=

s

i 1

(pi log(1/pi))          (1) 

Given a dataset, D, H(D) finds the amount of sub-datasets of 
original dataset. When that sub-dataset is split into s new sub-
datasets S = {D1, D2,…,Ds}, we can again look at the entropy of 
those sub-datasets. A subset is completely ordered if all 
instances in it are the same class. The ID3 algorithm calculates 
the gain by the equation “(2)”. 

       Gain (D,S) = H(D)-∑
=

s

i 1

p(Di)H(Di)                    (2) 

After constructing the decision tree from training dataset, 
we weight the attributes of training dataset by the minimum 
depth at which the attribute is tested in the decision tree. The 
depth of root node of the decision tree is 1. The weight for an 
attribute is set to d1 , where d is the minimum depth at which 
the attribute is tested in the tree. The weights of attributes that 
do not appear in the decision tree are assigned to zero.  

B. Naïve Bayesian Tree 
Naïve Bayesian tree (NBTree) is a hybrid learning 

approach of decision tree and naïve Bayesian classifier. In 
NBTree nodes contain and split as regular decision-trees, but 
the leaves are replaced by naïve Bayesian classifier, the 
advantage of both decision tree and naïve Bayes can be utilized 
simultaneously [57]. Depending on the precise nature of the 
probability model, NB classifier can be trained very efficiently 
in a supervised learning. In many practical applications, 
parameter estimation for naïve Bayesian models uses the 
method of maximum likelihood. Suppose the training dataset, 
D consists of predictive attributes {A1, A2,…,An}, where each 
attribute Ai = {Ai1, Ai2,…,Aik} contains attribute values and a set 
of classes C = {C1, C2,…,Cn}. The objective is to classify an 
unseen example whose class value is unknown but values for 
attributes A1 through Ak are known. The aim of decision tree 
learning is to construct a tree model: {A1, A2,…,An}→C. 
Correspondingly the Bayes theorem, if  attribute Ai is discrete 
or continuous, we will have: 

                 P(Cj | Aij) = 
( ) ( )

( )ij

jjij

AP

CPCAP |
            (3) 

Where P(Cj|Aij) denote the probability. The aim of 
Bayesian classification is to decide and choose the class that 
maximizes the posteriori probability. Since P(Aij) is a constant 
independent of C, then: 

                       C* = ( )ijj
Cc

ACP |maxarg
ε

 

                            = ( ) ( )jjij
Cc

CPCAP |maxarg
ε

          (4) 

Adaptive naïve Bayesian tree splits the dataset by applying 
entropy based algorithm and then used standard naïve Bayesian 
classifiers at the leaf node to handle attributes. It applies 
strategy to construct decision tree and replaces leaf node with 
naïve Bayesian classifier. 

IV. PROPOSED LEARNING ALGORITHM 

A. Proposed Attribute Weighting Algorithm 
In a given training data, D = {A1, A2,…,An} of attributes, 

where each attribute Ai = {Ai1, Ai2,…,Aik} contains attribute 
values and a set of classes C = {C1, C2,…,Cn}, where each 
class Cj = {Cj1, Cj2,…,Cjk} has some values. Each example in 
the training data contains weight, w = {w1,w2…, wn}. Initially, 
all the weights of examples in training data have equal unit 
value that set to wi = 1/n. Where n is the total number of 
training examples. Estimates the prior probability P(Cj) for 
each class by summing the weights that how often each class 
occurs in the training data. For each attribute, Ai, the number 
of occurrences of each attribute value Aij can be counted by 
summing the weights to determine P(Aij). Similarly, the 
conditional probability P(Aij |Cj) can be estimated by summing 
the weights that how often each attribute value occurs in the 
class Cj in the training data. The conditional probabilities P(Aij 
|Cj) are estimated for all values of attributes. The algorithm 
then uses the prior and conditional probabilities to update the 
weights. This is done by multiplying the probabilities of the 
different attribute values from the examples. Suppose the 
training example ei has independent attribute values {Ai1, 
Ai2,…,Aip}. We already know the prior probabilities P(Cj) and 
conditional probabilities P(Aik|Cj), for each class Cj and 
attribute Aik. We then estimate P(ei |Cj) by     

               P(ei | Cj) = P(Cj) ∏ P(Aij | Cj)                           (5) 

To update the weight of training example ei, we can 
estimate the likelihood of ei for each class. The probability that 
ei is in a class is the product of the conditional probabilities for 
each attribute value. The posterior probability P(Cj | ei) is then 
found for each class. Then the weight of the example is 
updated with the highest posterior probability for that example 
and also the class value is updated according to the highest 
posterior probability. Now, the algorithm calculates the 
information gain by using updated weights and builds a tree. 
After the tree construction, the algorithm initialized weights 
for each attributes in training data D. If the attribute in the 
training data is not tested in the tree then the weight of the 
attribute is initialized to 0, else calculates the minimum depth, 
d that the attribute is tested at and initialized the weight of 
attribute to d1 . Finally, the algorithm removes all the 
attributes with zero weight from the training data D. The main 
procedure of proposed algorithm is described as follows. 

Algorithm 1: Attribute Weighting 
Input: Training Dataset, D 
Output: Decision tree, T 
Procedure:  

1. Initialize all the weights for each example in D, 
wi=1/n, where n is the total number of the examples. 
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2. Calculate the prior probabilities P(Cj) for each class 

Cj in D. P(Cj) = 

∑

∑

=

n

i
i

Ci
i

w

w

1

 

3. Calculate the conditional probabilities P(Aij | Cj) for 

each attribute values in D. P(Aij | Cj) = 
∑

iC
i

ij

w

AP )(  

4. Calculate the posterior probabilities for each example 
in D.  

P(ei | Cj) = P(Cj) ∏ P(Aij | Cj) 
5. Update the weights of examples in D with Maximum 

Likelihood (ML) of posterior probability P(Cj|ei);   
 wi= PML(Cj|ei) 

6. Change the class value of examples associated with 
maximum posterior probability, Cj = Ci→ PML(Cj|ei). 

7. Find the splitting attribute with highest information 
gain using the updated weights, wi in D. 

        Information Gain =  
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8. T = Create the root node and label with splitting 
attribute. 

9. For each branch of the T, D = database created by 
applying splitting predicate to D, and continue steps 1 
to 8 until each final subset belong to the same class or 
leaf node created.  

10. When the decision tree construction is completed, for 
each attribute in the training data D: If the attribute is 
not tested in the tree then weight of the attribute is 
initialized to 0. Else, let d be the minimum depth that 
the attribute is tested in the tree, and weight of the 
attribute is initialized to d1 .  

11. Remove all the attributes with zero weight from the 
training data D. 

B. Proposed Adaptive NBTree Algorithm 
Given training data, D where each attribute Ai and each 

example ei have the weight value. Estimates the prior 
probability P(Cj)  and conditional probability P(Aij | Cj) from 
the given training dataset using weights of the examples. Then 
classify all the examples in the training dataset using these 
prior and conditional probabilities with incorporating attribute 
weights into the naïve Bayesian formula:  

P(ei | Cj) = ( ) ( )∏
=

m

i

W
jijj

iCAPCP
1

|           (6) 

Where Wi is the weight of attribute Ai. If any example of 
training dataset is misclassified, then for each attribute Ai, 
evaluate the utility, u(Ai), of a spilt on attribute Ai. Let j = 
argmaxi(ui), i.e., the attribute with the highest utility. If uj is 
not significantly better than the utility of the current node, 

create a NB classifier for the current node. Partition the 
training data D according to the test on attribute Ai. If Ai is 
continuous, a threshold split is used; if Ai is discrete, a multi-
way split is made for all possible values. For each child, call 
the algorithm recursively on the portion of D that matches the 
test leading to the child. The main procedure of algorithm is 
described as follows. 

Algorithm 2: Adaptive NBTree 
Input: Training dataset D of labeled examples. 
Output: A hybrid decision tree with naïve Bayesian 
classifier at the leaves.  
Procedure:  

1. Calculate the prior probabilities P(Cj) for each class 

Cj in D. P(Cj) = 

∑

∑

=

n

i
i

Ci
i

w

w

1

 

2. Calculate the conditional probabilities P(Aij | Cj) for 

each attribute values in D. P(Aij | Cj) = 
∑

iC
i

ij

w

AP )(  

3. Classify each example in D with maximum posterior 

probability. P(ei | Cj) = ( ) ( )∏
=

m

i

W
jijj

iCAPCP
1

|  

4. If any example in D is misclassified, then for each 
attribute Ai, evaluate the utility, u(Ai), of a spilt on 
attribute Ai.  

5. Let j = argmaxi(ui), i.e., the attribute with the highest 
utility.  

6. If uj is not significantly better than the utility of the 
current node, create a naïve Bayesian classifier for 
the current node and return. 

7. Partition the training data D according to the test on 
attribute Ai. If Ai is continuous, a threshold split is 
used; if Ai is discrete, a multi-way split is made for all 
possible values. 

8. For each child, call the algorithm recursively on the 
portion of D that matches the test leading to the child. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset 
Experiments have been carried out on KDD99 cup 

benchmark network intrusion detection dataset, a predictive 
model capable of distinguishing between intrusions and normal 
connections [58]. In 1998, DARPA intrusion detection 
evaluation program, a simulated environment was set up to 
acquire raw TCP/IP dump data for a local-area network (LAN) 
by the MIT Lincoln Lab to compare the performance of various 
intrusion detection methods. It was operated like a real 
environment, but being blasted with multiple intrusion attacks 
and received much attention in the research community of 
adaptive intrusion detection. The KDD99 dataset contest uses a 
version of DARPA98 dataset. In KDD99 dataset each example 
represents attribute values of a class in the network data flow, 
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and each class is labeled either normal or attack. Examples in 
KDD99 dataset are represented with a 41 attributes and also 
labeled as belonging to one of five classes as follows: (1) 
Normal traffic; (2) DoS (denial of service); (3) Probe, 
surveillance and probing; (4) R2L, unauthorized access from a 
remote machine; (5) U2R, unauthorized access to local super 
user privileges by a local unprivileged user. In KDD99 dataset 
these four attack classes are divided into 22 different attack 
classes that tabulated in Table II. 

TABLE II.  ATTACKS IN KDD99 DATASET 

4 Main Attack Classes 22 Attack Classes 
Denial of Service (DoS) back, land, neptune, pod, smurt, teardrop 

Remote to User (R2L) ftp_write, guess_passwd, imap, multihop, phf, 
spy, warezclient, warezmaster 

User to Root (U2R) buffer_overflow, perl, loadmodule, rootkit 
Probing ipsweep, nmap, portsweep, satan 

The input attributes in KDD99 dataset are either discrete or 
continuous values and divided into three groups. The first 
group of attributes is the basic features of network connection, 
which include the duration, prototype, service, number of bytes 
from source IP addresses or from destination IP addresses, and 
some flags in TCP connections. The second group of attributes 
in KDD99 is composed of the content features of network 
connections and the third group is composed of the statistical 
features that are computed either by a time window or a 
window of certain kind of connections. Table III shows the 
number of examples of 10% training data and 10% testing data 
in KDD99 dataset. There are some new attack examples in 
testing data, which is no present in the training data. 

TABLE III.  NUMBER OF EXAMPLES IN TRAINING AND TESTING KDD99 
DATA 

Attack Types Training Examples Testing Examples 
Normal 97277 60592 

Denial of Service 391458 237594 
Remote to User 1126 8606 

User to Root 52 70 
Probing 4107 4166 

Total Examples 494020 311028 

B. Performance Measures 
In order to evaluate the performance of proposed learning 

algorithm, we performed 5-class classification using KDD99 
network intrusion detection benchmark dataset and consider 
two major indicators of performance: detection rate (DR) and 
false positives (FP). DR is defined as the number of intrusion 
instances detected by the system divided by the total number of 
intrusion instances present in the dataset. 

              DR = 100*
_

_det_
attacksTotal

attacksectedTotal                (7) 

FP is defined as the total number of normal instances. 

             FP = 100*
__

__
processnormalTotal

processiedmisclassifTotal         (8) 

 All experiments were performed using an Intel Core 2 Duo 
Processor 2.0 GHz processor (2 MB Cache, 800 MHz FSB) 
with 1 GB of RAM.  

C. Experiment and analysis on Proposed Algorithm 
Firstly, we use proposed algorithm 1 to perform attribute 

selection from training dataset of KDD99 dataset and then we 
use our proposed algorithm 2 for classifier construction. The 
performance of our proposed algorithm on 12 attributes in 
KDD99 dataset is listed in Table IV. 

TABLE IV.  PERFORMANCE OF PROPOSED ALGORITHM ON KDD99 DATASET  

Classes Detection Rates (%) False Positives (%) 
Normal 100 0.04 
Probe 99.93 0.37 
DoS 100 0.03 
U2R 99,38 0.11 
R2L 99.53 6.75 

Table V and Table VI depict the performance of naïve 
Bayesian (NB) classifier and C4.5 algorithm using the original 
41 attributes of KDD99 dataset. 

TABLE V.  PERFORMANCE OF NB CLASSIFIER ON KDD99 DATASET  

Classes Detection Rates (%) False Positives (%) 
Normal 99.27 0.08 
Probe 99.11 0.45 
DoS 99.68 0.05 
U2R 64.00 0.14 
R2L 99.11 8.12 

TABLE VI.  PERFORMANCE OF C4.5 ALGORITHM USING KDD99 DATASET  

Classes Detection Rates (%) False Positives (%) 
Normal 98.73 0.10 
Probe 97.85 0.55 
DoS 97.51 0.07 
U2R 49.21 0.14 
R2L 91.65 11.03 

Table VII and Table VIII depict the performance of NB 
classifier and C4.5 using reduces 12 attributes. 

TABLE VII.  PERFORMANCE OF NB CLASSIFIER USING KDD99 DATASET  

Classes Detection Rates (%) False Positives (%) 
Normal 99.65 0.06 
Probe 99.35 0.49 
DoS 99.71 0.04 
U2R 64.84 0.12 
R2L 99.15 7.85 

TABLE VIII.  PERFORMANCE OF C4.5 ALGORITHM USING KDD99 DATASET  

Classes Detection Rates (%) False Positives (%) 
Normal 98.81 0.08 
Probe 98.22 0.51 
DoS 97.63 0.05 
U2R 56.11 0.12 
R2L 91.79 8.34 

We also compare the intrusion detection performance 
among Support Vector Machines (SVM), Neural Network 
(NN), Genetic Algorithm (GA), and proposed algorithm on 
KDD99 dataset that tabulated in Table IX [59], [60].  

TABLE IX.  COMPARISON OF SEVERAL ALGORITHMS 

 SVM NN GA Proposed Algorithm 
Normal 99.4 99.6 99.3 99.93 
Probe 89.2 92.7 98.46 99.84 
DoS 94.7 97.5 99.57 99.91 
U2R 71.4 48 99.22 99.47 
R2L 87.2 98 98.54 99.63 
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VI. CONCLUSIONS AND FUTURE WORKS 

This paper presents a hybrid approach to intrusion detection 
based on decision tree-based attribute weighting with naïve 
Bayesian tree, which is suitable for analyzing large number of 
network logs. The main propose of this paper is to improve the 
performance of naïve Bayesian classifier for network intrusion 
detection systems (NIDS). The experimental results manifest 
that proposed approach can achieve high accuracy in both 
detection rates and false positives, as well as balanced detection 
performance on all four types of network intrusions in KDD99 
dataset. The future works focus on applying the domain 
knowledge of security to improve the detection rates for current 
attacks in real time computer network, and ensemble with other 
mining algorithms for improving the detection rates in intrusion 
detection. 
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