
A Novel Multi-Secret Sharing Approach for Secure Data Warehousing and

On-Line Analysis Processing in the Cloud

Varunya Attasena, Nouria Harbi and Jérôme Darmont

Université de Lyon (Laboratoire ERIC), France

ABSTRACT

Cloud computing helps reduce costs, increase business agility and deploy solutions with a

high return on investment for many types of applications, including data warehouses and on-

line analytical processing. However, storing and transferring sensitive data into the cloud rais-

es legitimate security concerns. In this paper, we propose a new multi-secret sharing approach

for deploying data warehouses in the cloud and allowing on-line analysis processing, while

enforcing data privacy, integrity and availability. We first validate the relevance of our ap-

proach theoretically and then experimentally with both a simple random dataset and the Star

Schema Benchmark. We also demonstrate its superiority to related methods.

KEYWORDS

Data warehouses, OLAP, Cloud computing, Secret sharing, Data privacy, Data availability,

Data integrity

INTRODUCTION

Business intelligence (BI) has been an ever-growing trend for more than twenty years, but the

recent advent of cloud computing now allows deploying data analytics even more easily.

While building a traditional BI system typically necessitates an important initial investment,

with the cloud pay-as-you-go model, users can punctually devote small amounts of resources

in return for a one-time advantage. This trend is currently supported by numerous “BI as a

service” offerings, with high economic stakes.

Although cloud computing is currently booming, data security remains a top concern for

cloud users and would-be users. Some security issues are inherited from classical distributed

architectures, e.g., authentication, network attacks and vulnerability exploitation, but some

directly relate to the new framework of the cloud, e.g., cloud service provider or subcontractor

espionage, cost-effective defense of availability and uncontrolled mashups (Chow et al.,

2009). In the context of cloud BI, privacy is of critical importance. Security issues are current-

ly handled by cloud service providers (CSPs). But with the multiplication of CSPs and sub-

contractors in many countries, intricate legal issues arise, as well as another fundamental is-

sue: trust. Telling whether trust should be placed in CSPs falls back onto end-users, with the

implied costs.

Critical security concerns in (especially public) cloud storage are depicted in Figure 1. User

data might be deleted, lost or damaged. First, some CSPs have the policy of taking the highest

profit. Therefore, unmodified or unaccessed data may be deleted to serve other customers.

Second, data loss may also be caused by accidental, e.g., electrical or network failure, or in-

tentional plans, e.g., maintenance or system backup. Moreover, virtual cloud architectures

might not be sufficiently safeguarded from inside attacks. Finally, all CSPs cannot guarantee

100% data availability, although some cloud businesses must run on a 7/24 basis. Thus, data

privacy, availability and integrity are major issues in cloud data security.

Figure 1. Cloud data security issues.

Encrypting and replicating data can solve most of these issues, but existing solutions are

greedy in resources such as data storage, memory, CPU and bandwidth. Moreover, cloud data

warehouses (DWs) must be both highly protected and effectively refreshed and analyzed

through on-line analysis processing (OLAP). Thence, while CSPs must optimize service qual-

ity and profit, users seek to reduce storage and access costs within the pay-as-you-go para-

digm. Thus, in cloud DWs, the tradeoff between data security and large-scale OLAP analysis

poses a great challenge (Chow et al., 2009; Sion, 2007).

To address this challenge, we propose a global approach that relies on a new multi-secret

sharing scheme, a family of encryption methods that enforce privacy and availability by de-

sign. Moreover, we incorporate in our approach features for data integrity verification and

computation on shared data (or shares). Eventually, we minimize shared data volume. This

paper expands (Attasena et al., 2013) along three axes. First, we complement the state of the

art and deepen our analysis of related works. Second, we detail the section related to sharing a

DW and specify the way OLAP queries run on shares. Finally, we complement our validation

effort with new experiments, especially with the Star Schema Benchmark.

The remainder of this paper is organized as follows. We first introduce and discuss previous

research related to our proposal. Based on this diagnosis, we further motivate and position our

work. Then, we detail our secret sharing-based approach, before providing a security analysis

and performance evaluation that highlight the relevance of our proposal and demonstrates the

enhancements it brings over existing methods. We finally conclude this paper and hint at fu-

ture research perspectives.

RELATED WORKS

Existing research solve data privacy, availability and integrity issues by encrypting, anony-

mizing, replicating or verifying data (Figure 2).

Figure 2. Existing data security solutions.

Encryption turns original data into unreadable cipher-text. Modern encryption schemes, such

as homomorphic (HE – Melchor et al., 2008; Gentry, 2009) and incremental encryption (Bel-

lare et al., 1994), help perform computations and updates on cipher-texts without decrypting

them first. Partially HE allows only one operation, e.g., addition or multiplication, whereas

fully HE supports several, but still does not allow mixed-operators. Unfortunately, HE is cur-

rently too computationally expensive for practical use. An older, well-known encryption strat-

egy is secret sharing (Asmuth & Bloom, 1983; Blakley, 1979; Shamir, 1979), which distrib-

utes individually meaningless shares of data to n participants to enforce privacy. A subset of

𝑡 ≤ 𝑛 participants is required to reconstruct the secret. Moreover, up to 𝑛 − 𝑡 participants

may disappear without compromising data availability. The drawback of this solution is the

multiplication of the initial data volume by the number of participants. Modern secret sharing

schemes, such as multi-secret sharing (Liuet al., 2012; Waseda & Soshi, 2012), verifiable

secret sharing (Bu & Zhou, 2009), and verifiable multi-secret sharing (Bu & Yang, 2013; Es-

lami & Ahmadabadi, 2010; Hu et al., 2012), help reduce the volume of shares, verify the hon-

esty of each participant, and both, respectively.

Data anonymization (Cormode & Srivastava, 2009; Kenneally & Claffy, 2010; Machanava-

jjhala et al., 2007; Sweeney, 2002) is also used to enforce data privacy. In a database, only

keys or sensitive information are protected (Sedeyao, 2012). Thus, data anonymization

straightforwardly allows data querying. There are several models (e.g., 𝑘-anonymized, 𝑙-
diversity) and techniques (hashing, hiding, permutation, shift…) to protect keys and sensitive

information, respectively. For example, the 𝑘-anonymized model transforms 𝑘 distinguishable

records into 𝑘 indistinguishable records (Sweeney, 2002). The 𝑙-diversity model creates 𝑙 dif-

ferent sensitive values from only one value in each key identification combination (Ma-

chanavajjhala et al., 2007). While cheap when accessing data, anonymization is not strong

enough to protect against attacks such as homogeneity and background knowledge attacks

(Sedeyao, 2012), and is not designed to address data availability and integrity issues.

Data replication (Padmanabhan et al., 2008) is the process of copying some or all data from

one location to one or several others. Its main purposes are to improve availability, fault-

tolerance and/or accessibility. A well-known data replication scheme is Reed Solomon (RS)

code (Thomas & Schwarz, 2002), which is quite similar to secret sharing. RS code indeed

distributes data amongst a group of participants and can reconstruct data even if some partici-

pants disappear, thus enforcing availability. RS code and secret sharing mostly differ in their

driving goals, i.e., availability and privacy, respectively.

Data verification (Bowers et al., 2009; Juels & Kaliski, 2007; Shacham & Waters, 2008;

Wang et al., 2009) is the process of checking data integrity, by verifying data corruption

caused by either accident or intruder attack, with the help of signatures (digital signature,

message authentication, fingerprint…). However, since signature creation typically involves

random or hash functions, they cannot guarantee 100% data correctness. Moreover, so-called

outer code verifying methods (Juels & Kaliski, 2007) allow checking encrypted data without

decrypting them first.

Table 1 summarizes the features of the above security approaches, with respect to data priva-

cy, availability, integrity and full access. No existing approach simultaneously satisfies all

criteria.

Approaches
Data

Privacy

Data

availability

Data

Integrity
Data access

Encryption

- Homomorphic encryption √ On encrypted data without decryption.

- Incremental encryption √ On encrypted data without decryption.

- Secret sharing √ √ Summing and averaging shares

- Multi-secret sharing √ √

- Verifiable secret sharing √ √ √

- Verifiable multi-secret sharing √ √ √

Data anonymization √ On non-anonymized data

Data replication(RS code) √

Data verification √

Table 1. Comparison of data security solutions.

Eventually, some security solutions directly relate to ours. Most apply Shamir’s (1979) classi-

cal secret sharing to relational databases or data warehouses (Emekci et al., 2006; Hadavi &

Jalili, 2010), thus, enforcing data privacy, availability and updating. In addition, Thompson et

al. (2009), Wang et al. (2011) and Hadavi et al. (2012) also support data verification through

HE, a hash function, and checksums and a hash function, respectively. Most of these methods

allow computing at least one query type (aggregation, range and match queries) on shares.

As in the three last cited approaches (here after denoted TWH for brevity), our strategy is to

extend one security scheme presenting interesting characteristics, namely multi-secret sharing,

by integrating the missing features needed in cloud DWs. However, in our approach, shared

data volume is better controlled than in TWH’s, i.e., it is significantly lower than 𝑛 times that

of the original data volume. Moreover, we also incorporate both inner and outer code data

verification in our solution, whereas TWH only feature inner code data verification. Finally,

we also include capabilities from homomorphic and incremental encryption that allow updat-

ing and computing basic operations on shares. Thus, to the best of our knowledge, our multi-

secret sharing-based approach is the first attempt at securing data warehousing and OLAP

while minimizing data volume.

MULTI-SECRET SHARING OF CLOUD DATA WAREHOUSES

The solution we propose is based on trusting neither CSPs nor network data transfers. It is

subdivided into two schemes. Scheme-I is a new multi secret sharing scheme that transforms

data into blocks (to optimize computing and storage costs), and shares data blocks at several

CSPs’. Each CSP only stores part of the shares, which are not exploitable, neither by the CSP

nor any intruder, because they have been transformed by a mathematical function. Though

performing computations on shares is possible, i.e., data need not be decrypted, it yields

meaningless results. It is only when all results are mathematically transformed back at the

user’s that they can be reconstructed into global, meaningful information. Individual shares

and computed results being encrypted, network transfers to and from CSPs are thus safe.

Hence, privacy is achieved at any point outside of the user’s (network, providers). Finally, to

verify the honesty of CSPs and the correctness of shares, we incorporate into Scheme-I two

types of hash-based signatures. Signatures help verify data correctness in case some CSPs are

not honest, and incorrect or erroneous data before decryption.

However, updating and querying data are still difficult and expensive in Scheme-I, because

data pieces are dependent on the others in the same block. Thus, Scheme-II builds upon

Scheme-I to actually allow sharing and querying a DW in the cloud. Assuming a DW stored

in a relational database, each attribute value in each record is shared independently. We first

transform each attribute value to at least one block, depending on data type and size (e.g., one

block for integers, reals or characters; and 𝑙 blocks for strings of length 𝑙), and encrypt each

data block with Scheme-I. Then, we allow analyzing data over shares with ad-hoc queries and

Relational OLAP (ROLAP) operations, without decrypting all data first whenever possible.

All basic OLAP operations (roll-up, drill-down, some slice and dice, pivot and drill-across)

can apply directly on shares at the CSPs’, with results being reconstructed at the user’s. How-

ever, other complex queries must be transformed or split first, depending on operations and

functions used.

Scheme-I: (𝒎, 𝒏, 𝒕) Multi-secret sharing with data verification

Scheme-I is an (𝑚, 𝑛, 𝑡) multi-secret sharing scheme: 𝑚 data pieces are encrypted and shared

among 𝑛 CSPs. 𝑡 out of 𝑛 shares can reconstruct the original data. The total volume of shares

is only about 𝑚𝑛 (𝑡 − 1)⁄ . Data are organized into blocks that are encrypted and decrypted all

at once. The priorities of blocks and data in the blocks are important because they directly

affect the results of data access in Scheme-II. All data pieces in a block are encrypted at once

by 𝑛 distinct random 𝑡-variable linear equations, where variables are data and their signatures

and coefficients are pseudorandom. Eventually, we introduce two types of signatures. The

first, inner signature is created from all data pieces in one block. It matches with data in the

reconstruction process if CSPs return correct shares. The second, outer signature is created

from each share. At each CSP’s, it verifies shares before transferring them back to the user for

reconstruction.

Parameters of Scheme-I are listed in Table 2. 𝐼𝐷𝑖=1..𝑚 are randomly selected from distinct

integers and are stored at the user's. 𝐷 is split into 𝑜 blocks with 𝑜 = ⌈
𝑚

𝑡−1
⌉. If 𝑚 is not a mul-

tiple of 𝑡 − 1, the last block is padded with integer values -1 (Figure 3).

Table 2. Scheme-I parameters.

Parameters Definitions

𝑛 Number of CSPs

𝐶𝑆𝑃𝑘 CSP number 𝑘

𝑚 Number of data pieces

𝑜 Number of data blocks

𝑡 Number of shares necessary for reconstructing original data

𝑃 A big prime number

𝐷 Original data such that 𝐷 = {𝑑1, … , 𝑑𝑚} and 𝐷 = {𝑏1, … , 𝑏𝑜}

𝑑𝑖 The 𝑖𝑡ℎ piece of 𝐷 in integer format such that 𝑃 − 2 > 𝑑𝑖 ≥ 0

𝑏𝑗 The 𝑗𝑡ℎ block of 𝐷 such that 𝑏𝑗 = {𝑑(𝑗−1)(𝑡−1), … , 𝑑(𝑗)(𝑡−1)}

𝐼𝐷𝑘 Identifier number of 𝐶𝑆𝑃𝑘 such that 𝐼𝐷𝑘 > 0

𝑒𝑗,𝑘 Share of 𝑏𝑗 stored at 𝐶𝑆𝑃𝑘

𝑠_𝑖𝑛𝑗 Signature of original data in 𝑏𝑗 such that 𝑃 > 𝑠_𝑖𝑛𝑗 ≥ 0

𝑠_𝑜𝑢𝑡𝑗,𝑘 Signature of share of 𝑏𝑗 stored at 𝐶𝑆𝑃𝑘

Figure 3. Organization of data in blocks.

Data sharing process

Each data block is encrypted independently (Figure 4). Data pieces in block 𝑏𝑗 are encrypted

as follows.

1. Compute signature 𝑠_𝑖𝑛𝑗 from data block 𝑏𝑗 with homomorphic function 𝐻1: 𝑠_𝑖𝑛𝑗 =

𝐻1(𝑏𝑗).

2. Create 𝑛 distinct random 𝑡 − 1 linear equations (Equation 1).

𝑦 = 𝑓𝑘(𝑥1, ⋯ , 𝑥𝑡) = (∑ (𝑥ℎ + 2) × 𝑎𝑘,ℎ
𝑡−1
ℎ=1) + (𝑥𝑡 × 𝑎𝑘,𝑡) (1)

where 𝑥𝑖 is positive variable, 𝑎𝑘ℎ is the ℎth positive pseudorandom coefficient seeded

at 𝐼𝐷𝑘, 𝑃 > 𝑎𝑘,ℎ ≥ 0 and 𝑓𝑘1 ≠ 𝑓𝑘2 if 𝑘1 ≠ 𝑘2. These functions are used for all

blocks.

3. Compute the set of shares {𝑒𝑗,𝑘}
𝑘=1...𝑛

 from data block 𝑏𝑗 such that 𝑒𝑗,𝑘 =

𝑓𝑘(𝑏𝑗 , 𝑠_𝑖𝑛𝑗), and distribute each share 𝑒𝑗,𝑘 to 𝐶𝑆𝑃𝑘.

4. Compute signatures {𝑠_𝑜𝑢𝑡𝑗,𝑘}
𝑘=1...𝑛

with hash function 𝐻2 such that 𝑠_𝑜𝑢𝑡𝑗,𝑘 =

𝐻2(𝑒𝑗,𝑘), and distribute each signature 𝑠_𝑜𝑢𝑡𝑗,𝑘to 𝐶𝑆𝑃𝑘 along with 𝑒𝑗,𝑘.

Thus, data and their signatures are shared among 𝑛 CSPs. 𝐶𝑆𝑃𝑘 stores 𝑜 pairs of shares and

signatures ((𝑒𝑗,𝑘, 𝑠_𝑜𝑢𝑡𝑗,𝑘)
𝑗=1…𝑜

).

Figure 4.Data sharing process.

Data reconstruction process

A dataset D is reconstructed from shares and signatures (𝑒𝑗,𝑘, 𝑠_𝑜𝑢𝑡𝑗,𝑘)
𝑗=1…𝑜

 stored at 𝐶𝑆𝑃𝑘 ∈

𝐺, where 𝐺 is any group of t CSPs (Figure 5). There are two phases to reconstruct original

data: the initialization phase and the actual reconstruction phase.

Figure 5.Data reconstruction process.

Initialization phase: In this phase, share correctness is verified and a matrix 𝐶 that is used in

the reconstruction phase is created as follows.

1. Verify information at all 𝐶𝑆𝑃𝑘 ∈ 𝐺. At each CSP’s, only shares to be decrypted are

verified for correctness. Share 𝑒𝑗,𝑘 is correct if 𝑠_𝑜𝑢𝑡𝑗,𝑘 = 𝐻2(𝑒𝑗,𝑘). In case of error at

𝐶𝑆𝑃𝑘, then another CSP is selected and correctness is verified again.

2. At the user’s, matrix 𝐴 is created from 𝐼𝐷𝑘 of 𝐶𝑆𝑃𝑘 ∈ 𝐺 such that 𝐴 = [𝑎𝑥,𝑦]
𝑡×𝑡

,

where 𝑎𝑥,𝑦 is the 𝑦𝑡ℎ coefficient of 𝑓𝑥. Then, 𝐶 is computed such that 𝐶 = 𝐴−1. Let

𝑐𝑥,𝑦 be an entry in the 𝑥𝑡ℎ row and the 𝑦𝑡ℎ column of matrix 𝐶.

Reconstruction phase: To decrypt data block𝑏𝑗, share 𝑒𝑗,𝑘 of 𝐶𝑆𝑃𝑘 ∈ 𝐺 is transferred to the

user and decrypted as follows.

1. Compute data block 𝑏𝑗 (Equation 2) and its signature 𝑠_𝑖𝑛𝑗 (Equation 3).

𝑑(𝑗−1)(𝑡−1)+𝑙 = (∑ 𝑐𝑙,ℎ × 𝑒𝑗,ℎ
𝑡
ℎ=1) − 2; ∀[1, 𝑡 − 1] (2)

𝑠_𝑖𝑛𝑗 = ∑ 𝑐𝑡,ℎ × 𝑒𝑗,ℎ
𝑡
ℎ=1 (3)

2. If 𝑠_𝑖𝑛𝑗 = 𝐻1(𝑏𝑗), then data in block 𝑏𝑗 are correct. In case of errors, the user can re-

construct data from shares from a new 𝐺.

Scheme-II: Sharing a data warehouse in the cloud

In this section, we exploit Scheme-I to share a DW among CSPs. Databases attribute values,

except NULL values and primary or foreign keys, are shared in relational databases at CSPs’.

Keys help match records in the data reconstruction process and perform JOIN and GROUP

BY operations. Any sensitive primary key, such as a social security number, is replaced by an

unencrypted sequential integer key. Each attribute in the original tables is transformed into

two attributes in encrypted tables, i.e., share and signature attributes. Figure 6 shows the ex-

ample of a PRODUCT table that is shared among three CSPs. To handle data from a shared

DW, we propose solutions to encrypt data of various types, to share the customary DW logi-

cal models in the cloud, to perform loading, backup and recovery processes, and to analyze

shared data through ROLAP operations.

(a) Original data

(b) Shares at 𝐶𝑆𝑃1

(c) Shares at 𝐶𝑆𝑃2

(d) Shares at 𝐶𝑆𝑃3

Figure 6. Example of original data and shares at three CSPs’.

Data types

To handle the usual data types featured in databases, we encrypt and handle each data piece

independently. Data pieces of any type are first transformed into integers, then split into one

or several data blocks (depending on type and value), and finally encrypted with Scheme-I.

For sharing an integer, date or timestamp 𝐼, 𝐼 is split into 𝑡 − 1 pieces 𝑑𝑖=1…(𝑡−1) such that

𝑑𝑖 = ⌊
𝐼

𝑝𝑖−1⌋ mod 𝑝, where 𝑝 is a prime number and ‖𝑝‖ >
‖𝑚𝑎𝑥𝑖𝑛𝑡‖

𝑡−1
 bits, where ‖𝑚𝑎𝑥𝑖𝑛𝑡‖ is

the size of the maximum integer value in bits. Then, 𝑑𝑖=1…(𝑡−1) is encrypted to 𝑛 shares with

Scheme-I.

For sharing a real 𝑅, 𝑅 is transformed into an integer 𝐼 by multiplication. For example, let 𝑅

be stored in numeric format (𝑣, 𝑠), where 𝑣 is a precision value and 𝑠 a scale value. Then, 𝑅

is transformed into 𝐼 = 𝑅 × 10|𝑠|. 𝐼 can then be encrypted as any integer.

For sharing a character 𝐿, 𝐿 is transformed into an integer 𝐼through its ASCII code. For ex-

ample, let 𝐿 be ’A’. 𝐿 is transformed into 𝐼 = 65. 𝐼 can then be encrypted as any integer.

For sharing a string 𝑆, 𝑆 is transformed into a set of integers {𝐼𝑗}
𝑗=1…𝑙

 where 𝑙 is the length of

𝑆, using the ASCII code of each character in 𝑆. For example, let 𝑆 be ’ABC’. Then, 𝑆 is trans-

formed into {𝐼𝑗}
𝑗=1…3

= {65, 66, 67}. After transformation, each character 𝐼𝑗 is encrypted in-

dependently as any integer.

For sharing a binary string 𝐵, 𝐵 is transformed into a set of integers {𝐼𝑗}
𝑗=1…⌈

𝑙

‖𝑚𝑎𝑥𝑖𝑛𝑡‖
⌉
 where 𝑙

is the length of 𝐵 and ‖𝑚𝑎𝑥𝑖𝑛𝑡‖ is the size of the maximum integer value in bits. For exam-

ple, let 𝐵 = 1000000000000000000000000000000011 and ‖𝑚𝑎𝑥𝑖𝑛𝑡‖ = 32 bits. Then 𝐵

is split into two smaller binaries: 10 and 00000000000000000000000000000011 sizing less

than ‖𝑚𝑎𝑥𝑖𝑛𝑡‖, which are then transformed into {𝐼𝑗}
𝑗=1,2

= {2, 3}. After transformation, each

𝐼𝑗 is encrypted independently as any integer.

An example of sharing an integer 𝐼 follows.

1. Sharing parameters are assigned as follows: 𝑛 = 4, 𝑡 = 3 and 𝑝 = 13.

2. Homomorphic and hash functions are 𝐻1(𝑏𝑗) = ∑ 𝑑𝑖(mod 𝑝)𝑑𝑖∈𝑏𝑗
 and 𝐻2(𝑒𝑗,𝑘) =

𝑒𝑗,𝑘 mod 13.

3. Let 𝐼 = 75, i.e., the shirt’s unit price in Figure 6(a).

4. We compute 𝑑𝑖=1,2 as follows: 𝑑1 = ⌊
75

131−1⌋ mod 13 = 10 and 𝑑2 =

⌊
75

132−1⌋ mod 13 = 5.

5. We compute 𝑠_𝑖𝑛1 = 𝐻1(𝑏1) = (10 + 5) mod 13 = 2.

6. Let four random 3-variable linear equations be:

a. 𝑦 = 𝑓1(𝑥1, 𝑥2, 𝑥3) = 1 × (𝑥1 + 2) + 0 × (𝑥2 + 2) + 2 × 𝑥3,

b. 𝑦 = 𝑓2(𝑥1, 𝑥2, 𝑥3) = 3 × (𝑥1 + 2) + 1 × (𝑥2 + 2) + 0 × 𝑥3,

c. 𝑦 = 𝑓3(𝑥1, 𝑥2, 𝑥3) = 2 × (𝑥1 + 2) + 1 × (𝑥2 + 2) + 1 × 𝑥3,

d. 𝑦 = 𝑓4(𝑥1, 𝑥2, 𝑥3) = 0 × (𝑥1 + 2) + 2 × (𝑥2 + 2) + 1 × 𝑥3.

7. We compute 𝑒1,𝑘=1…4 such that 𝑒1,1 = 𝑓1(10,5,2) = 1 × (10 + 2) + 0 × (5 + 2) +
2 × 2=16. Similarly, 𝑒1,2 = 43, 𝑒1,3 = 33 and 𝑒1,4 = 14.

8. We compute 𝑠_𝑜𝑢𝑡1,𝑘=1…4 such that 𝑠_𝑜𝑢𝑡1,1 = 𝐻2(16) = 16 mod 7 = 2. Similarly,

𝑠_𝑜𝑢𝑡1,2 = 1, 𝑠_𝑜𝑢𝑡1,3 = 5 and 𝑠_𝑜𝑢𝑡1,4 = 0.

9. We distribute each couple (𝑒1,𝑘, 𝑠_𝑜𝑢𝑡1,𝑘) to 𝐶𝑆𝑃𝑘.

Then, 𝐼 is reconstructed as follows.

1. Suppose 𝐶𝑆𝑃1, 𝐶𝑆𝑃2 and 𝐶𝑆𝑃3 are selected into 𝐺.

2. We verify 𝑠_𝑜𝑢𝑡1,𝑗=1,2,3 such that 𝑠_𝑜𝑢𝑡1,1
′ = 𝐻2(16) = 16 mod 7 = 2 = 𝑠_𝑜𝑢𝑡1,1.

Then 𝑒1,1 is correct. After verification, all three shares {𝑒1,1, 𝑒1,2, 𝑒1,3} are found cor-

rect.

3. We create matrix 𝐴 from 𝐼𝐷𝑖=1,2,3: 𝐴 = [
1 0 2
3 1 0
2 1 1

].

4. We compute matrix 𝐶 = 𝐴−1 mod 𝑃 =
[

1 2 −2
−3 −3 6
1 −1 1

]

3

5. We compute 𝑑𝑖=1,2 as follows.

a. 𝑑1 = ((16 × 1 + 43 × 2 + 33 × −2) 3⁄) − 2 = 10.

b. 𝑑2 = ((16 × −3 + 43 × −3 + 33 × 6) 3⁄) − 2 = 5.

6. We compute 𝑠_𝑖𝑛1 = (16 × 1 + 43 × −1 + 33 × 1) 3⁄ = 2.

7. We verify the original data. The result is correct since 𝑠_𝑖𝑛1
′ = 𝐻1(𝑏1) =

(10 + 5) mod 13 = 2 = 𝑠_𝑖𝑛1.

Data warehouse sharing

Since each table of a shared DW is stored in a relational database at a given CSP’s and each

attribute value in each record is encrypted independently, Scheme-II straightforwardly helps

implement any DW logical model, i.e., star, snowflake or constellation schema. Figures 7(a)

and 7(b) show an example of snowflake-modeled DW that is shared among three CSPs. Each

shared DW bears the same schema as the original DW’s, but type and size of each attribute in

each shared table differ from the original tables. All attribute types, except Booleans that are

not encrypted to save computation and data storage costs, are indeed transformed into inte-

gers.

(a) Original schema

(b) Transformed schemas at CSPs’ (c) Sample shared cube-I

Figure 7. Example of shared data warehouse and cube.

Moreover, Scheme-II supports the storage of data cubes that optimize response time and

bandwidth when performing ROLAP operations. Cubes are physically stored into tables that

are shared among CSPs, retaining the same structure. For example, Figure 7(c) features a

shared cube named cube-I that totalizes total prices and numbers of sales by time period and

by product. Shared cubes include signatures for shared aggregate measures and customarily

use NULL values to encode superaggregates. Finally, indices can also be shared to improve

query performance. However, they must be created from the original data before the sharing

process. We envisage lazy index creation on shares in future research, though.

Loading, backup and recovery processes

For loading data into a shared DW, each data piece is encrypted and loaded independently.

New data can be loaded without decrypting previous data first, because each attribute value in

each record is encrypted independently. For instance, in Figure 8, data from Figure 6 are al-

ready shared and the last record (#126) is new.

(a) Original data

(b) Shares at 𝐶𝑆𝑃1

(c) Shares at 𝐶𝑆𝑃2

(d) Shares at 𝐶𝑆𝑃3

Figure 8. Example of sharing new data.

However, when updating cubes, some shared aggregates may have to be recomputed. Within

Scheme-II, we currently cannot apply all aggregation operations on shares. Thus, such aggre-

gations still require to be computed on the original data. For example, maximum and mini-

mum cannot be computed on shares because original data order is lost in the sharing process.

Averaging data must be performed by summing and counting. Hence, to optimize costs, ag-

gregates are first computed on new data, and then aggregated to relevant existing shares,

which are decrypted on-the-fly.

Finally, a backup process is unnecessary in our scheme, because each share 𝑒𝑗,𝑙 is actually a

backup share of all other shares 𝑒𝑗,𝑘, where 𝑘 ∈ {1, … , 𝑙 − 1, 𝑙 + 1, … , 𝑛}. In case a share is

erroneous, it can be recovered from 𝑡 other shares.

Data analysis over shares

Since DWs and cubes can be shared in the cloud, Scheme-II directly supports all basic OLAP

operations at the CSPs’ through SQL operators and aggregation functions, and helps recon-

struct the result on the user’s side by performing queries on shared tables. For example, query

“select YearID, YearName, TotalPrice from cube-I, year where cube-I.YearID=year.YearID

and MonthID=null and DateID=null and CategoryID=null and ProdNo=null” can be run at t

CSPs to compute the total price of products per year.

However, although some queries apply directly onto shares, others require some or all data to

be decrypted. Simple SELECT/FROM queries directly apply onto shares. All join operators,

when operating on unencrypted keys, also apply directly. However, when expressing condi-

tions in a WHERE or HAVING clause, the following routine must be followed:

1. encrypt compared values,

2. substitute these shares to compared values in the query,

3. launch the query on t shares,

4. decrypt the t results,

5. reconstruct the global result by intersection.

For example, the query “SELECT ProdName FROM Product WHERE UnitPrice=75” would

be transformed to “SELECT ProdName FROM Product WHERE UnitPrice=16” at 𝐶𝑆𝑃1,

where 16 is the share of 75 at 𝐶𝑆𝑃1.

This routine works for many comparison operators (=, ≠, EXISTS, IN, LIKE…) and their

conjunction, but when ordering is necessary, as in ORDER BY clauses and many comparison

operators (>, <, ≥, ≤, BETWEEN…), it can no longer apply since the original order is broken

when sharing data. Thus, all fetched data must be reconstructed at the client’s before the result

can be computed by an external program. However, some range queries can be transformed

and performed on shares if comparison range is known and comparison attribute type is inte-

ger, char or string. For example, the query “SELECT ProdName FROM Product WHERE

UnitPrice between 75 and 77” would be transformed to “SELECT ProdName FROM Product

WHERE UnitPrice IN (16, 19, 22)” at 𝐶𝑆𝑃1, where 16, 19 and 22 are the shares of 75, 76 and

77 at 𝐶𝑆𝑃1., respectively.

Similarly, aggregation functions SUM, AVG and COUNT can directly apply on shares,

whereas other aggregation functions, such as MAX and MIN, require all original data to be

reconstructed prior to computation. Finally, grouping queries using the GROUP BY or

GROUP BY CUBE clauses can directly apply if and only if they target unencrypted key at-

tributes. Again, grouping by other attribute(s) requires all data to be reconstructed at the us-

er’s before aggregation by an external program.

Consequently, executing a complex query may require either transforming or splitting the

query, depending on its clauses and operators, following the above guidelines. Figure 9 shows

an example of complex query execution.

Figure 9. Example of complex query execution over shares.

SECURITY ANALYSIS AND PERFORMANCE EVALUATION

In this section, we illustrate the relevance of our approach along two axes. First, we mainly

theoretically study the security features of our schemes, which are our primary focus. Second,

since our approach applies in the cloud, we both theoretically and experimentally study the

factors that influence cost in the pay-as-you-go paradigm, i.e., computing, storage and data

transfer costs, with respect to the TWH secret sharing schemes.

Security analysis

Privacy

We focus here on data pilfering. Neither a CSP nor any intruder can decrypt original data

from only one share, and data transferred between the user and CSPs are all encrypted. In case

an intruder can steal shares from 𝑥 CSPs with 𝑥 ≤ 𝑡, the probability of discovering 𝑏𝑗 (the

original data in the 𝑗𝑡ℎ block) remains low, i.e.,
1

𝑃2𝑡−𝑥−1 and
1

𝑝2𝑡−𝑥−1 in Scheme-I and Scheme-

II, respectively (Figure 10). The probability of discovering 𝑏𝑗 depends on the following.

1. The size of control parameters 𝑃 in Scheme-I and 𝑝 in Scheme-II. In Scheme-I, the

probability of breaking the secret is low because 𝑃 is a big prime number. In Scheme-

II, the probability of breaking the secret ranges between 10−22 and 10−10 in Fig-

ure 10’s example, because 𝑝 depends on 𝑡. If p = 𝑃, the probabilities of breaking the

secret are equal in both schemes, but storage cost in Scheme-II is not controlled,

which falls back to Shamir’s (1979) case.

2. The user-defined value of 𝑡. The higher 𝑡, the lower the probability of breaking the se-

cret.

3. The number of pilfered shares 𝑥. The probability of breaking the secret obviously in-

creases with x. However, both our schemes are secure enough since it is difficult to re-

trieve shares from at least 𝑡 CSPs by attacking them simultaneously.

(a) Scheme-I (b) Scheme-II

Figure 10.Probability of decrypting a data block from its shares.

Within Scheme-II, although some data can be decrypted, if an intruder steals all data from one

CSP, s/he must discover the pattern of data blocks and generate all 𝑝𝑡−1 combinations of data

pieces stored at the 𝑡 − 1 other CSPs’ by brute force. The complexity of Scheme-II’s recon-

structing process is 𝑂(𝑚𝑡2), since the 𝑡 × 𝑡 𝐶 matrix must be computed for 𝑚 data pieces.

Thus, with 𝑝 = 99,991, 𝑡 = 3 and 𝑚 = 100 (11 KB of data), breaking the secret with a

standard desktop computer would take more than 13 years. Thence, even with a botnet availa-

ble, even partially decrypting a giga or terabyte-scale DW cannot be achieved in reasonable

time.

Reliability

Reliability includes data availability and recovery, which are achieved by design with secret

sharing, and data integrity and correctness. Our schemes can verify both the honesty of CSPs

and the correctness of shares. Verification performance depends on the user-defined hash

functions that define inner and outer signatures.

To test the reliability of our signatures, we generate random 32-bits unsigned integers and

share them. Then, we generate errors in all shares with respect to a given pattern. Finally, we

account the number of incorrect data pieces that are not detected as such. Figure 11 plots the

ratio of false positives achieved with inner signature 𝑠_𝑖𝑛𝑗=∑ 𝑑𝑖(mod 𝑝)𝑑𝑖∈𝑏𝑗
 and outer signa-

ture 𝑠_𝑜𝑢𝑡𝑗,𝑘 = 𝑒𝑗,𝑘mod 𝑝2, where 𝑝2 is a prime. If only the inner signature is used to verify

data, i.e., only the honesty of CSPs is verified, the ratio ranges between 7.7E-6% and 3.2E-

2%, inversely depending on 𝑝. However, all incorrect data pieces can be detected if data are

verified by both inner and outer signatures (i.e., share correctness is also verified) and 𝑝2 >
61.

Figure 11.Rate of incorrect data not being detected.

Finally, note that sharing data on one node is a surjective function, i.e., two different initial

values may have the same share value. However, since the reconstruction process is achieved

by intersection from all nodes, sharing data is overall a bijective function. Thus, querying

shares always results in a 100% hit rate.

Cost analysis

In this section, we provide a cost analysis of the main factors inducing costs when storing a

DW in the cloud. For this sake, in addition to theoretical considerations, we run two series of

experiments. In the first series of experiments, we run 100 1 GB test cases made of 32-bits

unsigned integers and vary parameters 𝑡, 𝑛 and 𝑝. In the second series of experiments, we use

the Star Schema Benchmark (SSB – O’Neil et al., 2009) and vary parameter 𝑝 with 𝑡 = 3 and

𝑛 = 4. Experiments are conducted with Bloodshed Dev-C++ 5.5.3 and MySQL 5.0.51a on a

PC with an Intel(R) Core(TM) i5 2.76 GHz processor with 3 GB of RAM running Microsoft

Windows 7.

Computing cost

The time complexity of Scheme-I’s data sharing process is 𝑂(𝑜𝑛𝑡), since 𝑛 𝑡-variable linear

equations must be computed for 𝑜 data blocks. Moreover, since 𝑚 = 𝑜(𝑡 − 1), complexity

can also be expressed as 𝑂(𝑚𝑛). The time complexity of Scheme-II’s data sharing process is

also 𝑂(𝑜𝑛𝑡), or 𝑂(𝑚𝑛𝑡) since 𝑚 = 𝑜 here.

The time complexity of Scheme-I’s data reconstruction process is 𝑂(𝑚𝑡) or 𝑂(𝑜𝑡2), since the

𝑡 × 𝑡 𝐶 matrix must be computed for 𝑜 data blocks and 𝑜 = ⌈
𝑚

𝑡−1
⌉. Scheme-II’s is 𝑂(𝑚𝑡2) or

𝑂(𝑜𝑡2), since 𝐶 must be computed for 𝑜 data blocks and 𝑜 = 𝑚.

For example, the execution time of sharing and reconstructing 32-bits unsigned integers with

Scheme-II is plotted in Figure 12 with respect to 𝑡 and 𝑛. The execution time of both process-

es increase with 𝑡 when 𝑡 = 𝑛. The execution time of the sharing process increases with 𝑛

when 𝑡 is fixed, whereas 𝑛 does not affect reconstruction. For instance, the execution time of

the data sharing and reconstruction processes are about 15 seconds (throughput is 68 MB/s)

and 7 seconds (throughput is 144 MB/s) when 𝑛 = 𝑡 = 3 and 𝑝 = 99991.

Figure 12.Execution time of Scheme-II.

To evaluate the performance of data analysis on shares more accurately, we measure the exe-

cution time of SSB’s OLAP query workload (Table 3). Quite unexpectedly, query execution

is faster on shares than on the original DW. But this is because we run plain SSB queries on

the original DW and MySQL does not optimize joins natively. When executing the same que-

ry on shares, we have to split the original queries and process subqueries before joining, thus

implicitly optimizing join dimensionality. Query response on shares appears reasonable,

though it could be further enhanced through shared indices and materialized views.

SSB query
Query response time (seconds) Query result size

Original query Scheme-II query Original query (bytes) Scheme-II query (KB)

Q.1.1 8 10 12 7,751

Q.1.2 4 4 11 176

Q.1.3 3 4 11 32

Q.2.1 80 25 6,097 930

Q.2.2 80 7 1,232 388

Q.2.3 80 4 1,232 28

Q.3.1 78 49 2,460 16,343

Q.3.2 66 8 14,400 864

Q.3.3 64 5 567 25

Q.3.4 64 4 72 5

Q.4.1 80 54 756 13614

Q.4.2 81 36 2,760 3531

Q.4.3 66 5 9,936 11

Average 58 17 3,042 3,361

Table 3.OLAP performance with SSB.

Storage cost

One advantage of our schemes is that the volume of shares nears that of original data when

𝑛 = 𝑡, 𝑡 is big, and 𝑃 in Scheme-I and 𝑝 in Scheme-II are small. Shared data volume is only

𝑜𝑛‖𝑃‖ in Scheme-I and 𝑜𝑛‖𝑝‖ in Scheme-II, where ‖𝑃‖ and ‖𝑝‖ are sizes of 𝑃 and 𝑝, re-

spectively. For example, with Scheme-II, let us consider a set 𝐷 of ten 32-bits unsigned inte-

gers that is shared among six CSPs, with five CSPs being sufficient to reconstruct 𝐷. The vol-

ume of 𝐷 is 10 × 32 = 320 bits. Let ‖𝑝‖ = 9 bits. Then, the volume of all shares is lower

than 10 × 6 × 9 = 540 bits (1.69 × 𝐷). The volume of each share is about 10 × 9 = 90 bits

(0.17 × 𝐷).

The volume of our shared 32-bit unsigned integer dataset using Scheme-II is plotted in Fig-

ure 13. The volume of each share varies with respect to 𝑛, 𝑡 and 𝑝. The volume of all shares

ranges between
𝑛

𝑡−1
 and 𝑛 times the volume of 𝐷. For example, it is 1.89 GB (

3

3−1
= 1.5 ≤

1.89 ≤ 3) when the volume of original data is 1 GB, 𝑛 = 𝑡 = 3 and 𝑝 = 99991.

Figure 13. Shared data volume.

Finally, Table 4 shows the volume of SSB’s DW, once shared with Scheme-II. The volume of

each share is still smaller than that of the original DW (about 46% smaller). Therefore, this

guarantees any shared DW can be stored and queried if the original DW can. If data volume is

very large, a higher-performance DBMS can be envisaged, e.g., a parallel DBMS or low-level

distributed storage. Although, the volume of all shares is greater than that of original data

(about 185% greater), it is smaller than twice that of original data. Shared volume may be

reduced to about 139% of original data if the data availability constraint is relaxed, though.

Table

Original SSB 1st share 2nd share 3th share 4th share All shares

Volume

(KB)

Volume

(KB)

%(1) Volume

(KB)

%(1) Volume

(KB)

%(1) Volume

(KB)

%(1) Volume

(KB)

%(1)

Customer 3,167 2,550 80.52 2,550 80.52 2,550 80.52 2,550 80.52 10,200 322.07

Date 218 205 94.04 205 94.04 205 94.04 205 94.04 820 376.15

Part 18,798 14,940 79.48 14,940 79.48 14,940 79.48 14,940 79.48 59,760 317.91

Supplier 965 768 79.59 758 78.55 758 78.55 758 78.55 3,042 315.23

Lineorder 822,929 373,610 45.40 373,610 45.40 373,610 45.40 373,610 45.40 1,494,440 181.60

All tables 846,077 392,073 46.34 392,063 46.34 392,063 46.34 392,063 46.34 1,568,262 185.36
(1)Percentage of original data volume.

Table 4. SSB shared data warehouse volume achieved with Scheme-II.

Data transfer cost

In our context, data transfer cost only relates to the size of query results, since uploads are

generally free of charge at major CSPs’. SSB query result size is shown in Table 3. Since

many queries do not need to decrypt data, only some parts of the shared DW are transferred

when executing SSB’s workload. Thus, the transferred data volume is greater than the volume

of each query result, but lower than that of all shares. For example, query Q.1.3 ran on shares

outputs 32 KB, which is greater the actual result size (11 bytes) but much lower than the vol-

ume of all shares (1.5 GB), thus incurring reasonable transfer costs.

Comparison of Scheme-II to existing related approaches

In this section, we compare Scheme-II to the TWH approaches presented in our state of the

art, with respect to security and cost. Table 5 synthesizes the features and costs of all ap-

proaches, which we discuss below.

Features and costs
Thompson et al.

(2009)

Wang et al.

(2011)

Hadavi et al.

(2012)
Scheme-II

Privacy Yes Yes Yes Yes

Data availability Yes Yes Yes Yes
Data integrity

- Inner code verifying Yes Yes Yes Yes

- Outer code verifying No No No Yes

Target Databases Databases Databases Data warehouses

Data types Positive integers Positive integers Positive integers

Integers, Reals,

Characters,

Strings, Dates,

Booleans

Shared data access

- Data updates Yes Yes Yes Yes

- Exact match queries No Yes Yes Yes

- Range queries No Yes Yes No

- Aggregation functions Yes No Yes Yes

- OLAP queries No No No Yes

Costs

- Data storagew.r.t. original data volume
≥ 2𝑛

+ 1 (hash tree)

≥ 𝑛/𝑡

+ 𝑛/𝑡 (B++ tree

index)

+ signatures

≥ 𝑛

+ 1 (B++ tree

index)

≥ 𝑛/(𝑡 − 1)

+ signatures

- Sharing process execution time 𝑂(𝑚𝑛𝑡) 𝑂(max (𝑚 log 𝑚 , 𝑚𝑛)) 𝑂(𝑚𝑛𝑡) 𝑂(𝑚𝑛𝑡)

- Reconstructing process execution time 𝑂(𝑚𝑡2) 𝑂(𝑚𝑡) 𝑂(𝑚𝑡2) 𝑂(𝑚𝑡2)

Table 5. Comparison of database sharing approaches

Security

All approaches handle data security, availability and integrity issues, but only ours verifies

both the correctness of shares and the honesty of CSPs by outer and inner code verification,

respectively.

Computing cost

The time complexity of Scheme-II’s sharing process is equal to TH’s and better than W’s be-

cause 𝑚 is normally much bigger than 𝑛 and 𝑡. Thence, 𝑚 log 𝑚 > 𝑚𝑛𝑡 > 𝑚𝑛. However, in

the context of DWs, where updates are performed off-line, update performance is not as criti-

cal as in transactional databases.

The time complexity of Scheme-II’s reconstructing process is again equal to TH’s and better

than W’s. Since data decryption is part of query response time, it is critical in a DW context.

However, shared data access is also part of query response time. In this regard, our approach

is faster than TWH, because we can directly query shared tables, whereas TWH must perform

ad-hoc queries, aggregate and reconstruct data to achieve the same result. For instance, W

cannot perform any aggregation operation on shares. Thence, many shares are transferred

back to the user for aggregation.

Storage cost

In addition to the storage estimations provided in Table 5, let us illustrate the storage gain

achieved with our approach through an example. Let 𝑛 = 4, 𝑡 = 3 and 𝑉 be the original data

volume. Let us also assume that each share is not bigger than the original data it encrypts. For

simplicity, let us finally disregard the volume of signatures that depends on user-defined pa-

rameters in all approaches. The result is shown in Table 6, with column Improvement display-

ing the storage gain achieved by Scheme-II over TWH.

Approach Shared data volume Scope Improvement

Scheme-II
𝑛

(𝑡 − 1)
𝑉 =

4

(3 − 1)
𝑉 = 2𝑉 Shares 0%

T 2𝑛𝑉 = 2 × 4 × 𝑉 = 8𝑉 Shares 300%

W
𝑛

𝑡
𝑉 +

𝑛

𝑡
𝑉 =

2𝑛

𝑡
𝑉 =

2 × 4

3
𝑉 = 2.67𝑉 Shares and indices 33%

H 𝑛𝑉 + 𝑉 = (𝑛 + 1)𝑉 = (4 + 1) × 𝑉 = 5𝑉 Shares and indices 150%

Table 6. Comparison shared data volume in Scheme-II and TWH.

Data transfer cost

Data transfer cost directly relates to the size of shares when loading data, and to the size of

query results when accessing the shared database. Since all approaches allow different opera-

tions and vary in shared data volume, it is difficult to compare data transfer costs by proof.

However, data transfer cost in our approach is cheaper in the sharing phase because the size of

each encrypted data piece is 1/(𝑡 − 1) smaller than that of TWH. Moreover, by creating

shared data cubes, we allow straight computations on shares, and thus only target results are

transferred to the user, i.e., with no additional data to decrypt at the user’s.

CONCLUSION

In this paper, we propose an original approach to share a DW in the cloud that simultaneously

supports data privacy, availability, integrity and OLAP querying. Our approach is constituted

of two schemes. Scheme-I exploits block cryptography and secret sharing to protect data and

guarantee data privacy and availability. Moreover, Scheme-I ensures data correctness by uti-

lizing homomorphic and hash functions as signatures. Scheme-II builds upon Scheme-I to

allow sharing and querying cloud DWs. It allows analyzing data over shares without decrypt-

ing all data first. Our security and performance analysis shows that our schemes are more ro-

bust and cheaper than similar existing techniques when storing and querying data.

Future research shall run along two axes. First, we plan to further assess the cost of our solu-

tion in the cloud pay-as-you-go paradigm. Sharing data indeed implies increasing the initial

data volume, and thus storage cost, as well as duplicating computing costs over CSPs. How-

ever, it also guarantees data availability. Hence, we plan to run monetary cost evaluations

against classical data replication schemes. It would also be very interesting to balance the cost

of our solution against the cost of risking data loss or theft. Moreover, parameter assignment

affects the security of our schemes. Notably, to enforce security, big values should be as-

signed to primes 𝑃, p and number of CSPs needed to decrypt data t. In contrast, small values

should be assigned to 𝑃, 𝑝, 𝑛 and 𝑡 to reduce execution time and data volume. Thus, a suitable

tradeoff must be investigated.

Second, although we provide in this paper a raw framework for OLAPing shared data, more

research is required to implement all operations needed in OLAP analyses, as well as incre-

mental updates. We notably plan to reuse the strategies of Wang et al. (2011) and Hadavi et

al. (2012) to achieve range and match queries, e.g., by implementing shared B+ tree indices.

REFERENCES

Asmuth, C., & Bloom, J. (1983). A modular Approach to Key Safeguarding. IEEE Transac-

tions on Information Theory.29 (2), 208-210.

Attasena, V., Harbi, N., & Darmont, J. (2013) Sharing-based Privacy and Availability of

Cloud Data Warehouses. 9th French-speaking days on Data Warehouse and On-line Analysis

(EDA 2013), Blois, France: RNTI, B-9.17-32.

Bellare, M., Goldreich, O., & Goldwasser, S. (1994). Incremental Cryptography: The Case of

Hashing and Signing. Advances in Cryptology (CRYPTO’94): LNCS, 839. 216-233.

Blakley, G. R. (1979). Safeguarding Cryptographic Keys.1979 AFIPS National Computer

Conference, Monval, NJ, USA. 313-317.

Bowers, K.D., Juels, A., & Oprea, A. (2009). Proofs of Retrievability: Theory and Implemen-

tation. 1st ACM Workshop on Cloud Computing Security (CCSW’09), Chicago, IL, USA. 43-

54.

Bu, S., & Yang, R. (2013).Novel and Effective Multi-Secret Sharing Scheme. International

Conference on Information Engineering and Applications (IEA’12): LNEE, 219. 461-467.

Bu, S., & Zhou, H. (2009). A Secret Sharing Scheme Based on NTRU Algorithm. Interna-

tional Conference on Wireless Communications, Networking and Mobile Computing

(WiCom’09), Beijing, China. 1-4.

Cormode, G. & Srivastava, D. (2009). Anonymized Data: Generation, Models, Usage. ACM

SIGMOD International Conference on Management of Data (SIGMOD‘09), Providence,

Rhode Island, USA. 1015-1018.

Emekci, F., Agrawal, D., El Abbadi, A., & Gulbeden, A. (2006).Privacy Preserving Query

Processing Using Third Parties. 22ndInternational Conference on Data Engineering

(ICDE'06), Atlanta, Georgia, USA. 27-37.

Eslami, Z., & Ahmadabadi, J.Z. (2010). A Verifiable Multi-Sharing Scheme Based on Cellu-

lar Automata. Information Sciences, 180(15). 2889-2894.

Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. 41st Annual ACM

Symposium on Theory of Computing (STOC’09), Bethesda, MD, USA. 169-178.

Hadavi, M.A., Noferesti, M., Jalili, R., & Damiani, E. (2012). Database as a service: Towards

a unified solution for security requirements. 36th Computer Software and Applications Con-

ference Workshops (COMPSACW’12), Izmir, Turkey. 415–420.

Hadavi, M.A., & Jalili, R. (2010).Secure Data Outsourcing Based on Threshold Secret Shar-

ing; Towards a More Practical Solution. VLDB PhD Workshop, Singapore. 54-59.

Hu, C., Liao, X., & Cheng, X. (2012). Verifiable Multi-Secret Sharing Based on LFSR Se-

quences. Theoretical Computer Science, 445. 52-62.

Juels, A., & Kaliski, B. (2007). PORs: Proofs of Retrievability for Large Files. 14th ACM con-

ference on Computer and communications security (CCS’07), Alexandria, VA, USA. 584-597.

Kenneally, E. & Claffy, K. (2010).Dialing Privacy and Utility: a Proposed Data-sharing

Framework to Advance Internet Research. IEEE Security and Privacy, 8(4), 31-39.

Liu, Y.X., Harn, L., Yang, C.N., & Zhang, Y.Q. (2012). Efficient (𝑛, 𝑡, 𝑛) secret sharing

schemes. Journal of Systems and Software, 85(6). 1325-1332.

Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). 𝑙-diversity:

Privacy beyond 𝑘-anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1).

3.

Melchor, C.A., Castagnos, G., & Gaborit, P. (2008). Lattice-based Homomorphic Encryption

of Vector Spaces. IEEE International Symposium on Information Theory (ISIT’08), Toronto,

ON, Canada. 1858-1862.

O’Neil, P., O’Neil, E., Chen, X., & Revilak, S. (2009).The Star Schema Benchmark and

Augmented Fact Table Indexing. 1st Technology Conference on Performance Evaluation and

Benchmarking (TPCTC’09), Lyon, France: LNCS, 5895. 237-252.

Padmanabhan P., Gruenwald, L., Vallur, A., & Atiquzzaman, M. (2008). A Survey of Data

Replication Techniques for Mobile Adhoc Network Databases. VLDB Journal, 17(5). 1143-

1164.

Sedeyao, J. (2012). Enhancing Cloud Security using Data Anonymization.

http://www.intel.ie/content/www/ie/en/it-management/intel-it-best-practices/enhancing-cloud-

security-using-data-anonymization.html.

Shacham, H., & Waters, B. (2008). Compact Proofs of Retrievability. 14th International Con-

ference on the Theory and Application of Cryptology and Information Security: Advances in

Cryptology (ASIACRYPT’08), Melbourne, Australia. 90-107.

Shamir, A. (1979). How to Share a Secret. Communications of the ACM, 22(11). 612-613.

Sion, R. (2007). Secure Data Outsourcing. 33rd International Conference on Very Large Data

Bases (VLDB'07), Vienna, Austria. 1431-1432.

Sweeney, L. (2002). 𝑘-anonymity: a Model for Protecting Privacy. International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, 10(5). 557-570.

Thomas J., & Schwarz, E. (2002). Generalized Reed Solomon Codes for Erasure Correction

in SDDS. Workshop on Distributed Data and Structures (WDAS’02), Paris, France. 75-86.

http://www.intel.ie/content/www/ie/en/it-management/intel-it-best-practices/enhancing-cloud-security-using-data-anonymization.html
http://www.intel.ie/content/www/ie/en/it-management/intel-it-best-practices/enhancing-cloud-security-using-data-anonymization.html

Thompson, B., Haber, S., Horne, W. G., Sander, T., & Yao, D. (2009). Privacy-Preserving

Computation and Verification of Aggregate Queries on Outsourced Databases. Privacy En-

hancing Technologies: LNCS, 5672. 185-201.

Wang, Q., Wang, C., Li, J., Ren, K., & Lou, W. (2009). Enabling Public Verifiability and

Data Dynamics for Storage Security in Cloud Computing. 14th European Symposium on Re-

search in Computer Security (ESORICS’09), Saint-Malo, France. 355-370.

Wang, S., Agrawal, D., & Abbadi, A.E. (2011). A Comprehensive Framework for Secure

Query Processing on Relational Data in the Cloud. Secure Data Management: LNCS, 6933.

52-69.

Waseda, A., & Soshi, M. (2012).Consideration for Multi-Threshold Multi-Secret Sharing

Schemes. International Symposium on Information Theory and its Applications (ISITA’12),

Honolulu, HI, USA. 265–269.

