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Abstract

In this paper, we propose a new approach for apply-

ing data mining techniques, and more particularly super-

vised machine learning algorithms, to large databases, in

acceptable response times. This goal is achieved by inte-

grating these algorithms within a Database Management

System.Weare thus only limited by disk capacity, andnot

by available main memory. However, the disk accesses

that are necessary to scan the database induce long re-

sponse times. Hence, we propose an original method to

reduce the size of the learning set by building its contin-

gency table. The machine learning algorithms are then

adapted to operate on this contingency table. In order to

validate our approach, we implemented the ID3 decision

tree construction method and showed that using the con-

tingency table helped us obtaining response times equiva-

lent to those of classical, in-memory software.

Keywords: Databases, Data mining, Supervised ma-

chine learning, Decision trees, Contingency table, Per-

formance.

1. Introduction

The application of data mining operators to very
large databases is an interesting challenge. However,
data mining algorithms usually operate only on main
memory data structures, more precisely on attribute-
value tables. This limits the size of the processed
databases. Traditional data mining approaches thus
use techniques for preprocessing the data, such as fea-
ture selection [1] or sampling [2].

In order to apply data mining algorithms to
large databases, several approaches have been pro-
posed. They consist in integrating data mining meth-

ods in Database Management Systems (DBMSs)
[3]. The first studies about integrating data analy-
sis methods into DBMSs came with the development
of data warehousing and On-Line Analysis Pro-
cessing (OLAP) in particular [4]. Other related
research efforts include the generation of associa-
tion rules and their generalization [5, 6, 7]. However,
few studies exist regarding the integration of clas-
sical data mining or analysis techniques such as
clustering. In this domain, research indeed princi-
pally focuses on improving data mining methods for
large databases [8]. Nevertheless, most DBMS ven-
dors included data mining features into their prod-
ucts [9, 10, 11]. However, these integration attempts
all took the form of ”black boxes” requiring either ex-
tensions of the SQL language or the use of Application
Programming Interfaces (APIs).

Hence, we proposed a different approach for inte-
grating decision tree-like data mining methods, using
only the tools offered by DBMSs [12]. More precisely,
we implemented the ID3 method [13] within the Ora-
cle DBMS as a PL/SQL stored procedure, by exploiting
relational views. We showed that we could process very
large databases with this approach, theoretically with-
out any size limit, while classical, in-memory data min-
ing software could not. However, processing times re-
mained quite long because of multiple accesses to the
database.

In order to improve these processing times, prepar-
ing the data before the data mining process becomes
crucial. In this paper, we propose an original method
to achieve this goal. We build a contingency table, i.e.,
a table that contains the frequencies and whose size
is normally much smaller than the whole training set.
The data mining methods are then adapted so that
they can apply to this contingency table. To the best
of our knowledge, no data mining method currently



uses such a data preparation phase.
To illustrate and validate our approach, we adapted

our first implementation of ID3 and applied it to the
contingency table obtained from a given training set.
We show that using the contingency table allows clear
improvements in terms of processing time, in compar-
ison to our first, view-based implementation of ID3.
Moreover, the processing times we achieve by using a
contingency table are equivalent to those of classical,
in-memory data mining software.

The remainder of this paper is organized as follows.
Section 2 explains the principle of integrating decision
tree-based methods within DBMSs. Section 3 details
our contingency table-based decision tree construction
method. Section 4 presents the experimental results
and the complexity study that validate our proposal.
Finally, Section 5 concludes this paper and presents re-
search perspectives.

2. Integrating decision tree-based meth-

ods in DBMSs

2.1. Principle of decision trees

Decision trees are data mining models that produce
”if-then”-like rules. They take as input a set of ob-
jects (tuples, in the relational databases vocabulary)
described by a collection of variables (attributes). Each
object belongs to one of a set of mutually exclusive
classes. The induction task determines the class of any
object from the values of its attributes. A training set
of objects whose class is known is needed to build the
tree. Hence, a decision tree building method takes as in-
put a set of objects defined by predictive attributes and
a class attribute, which is the attribute to predict.

These methods apply successive criteria on the
training population to obtain a succession of smaller
and smaller partitions of an initial training set,
wherein the size of one class is maximized. This pro-
cess builds a tree, or more generally a graph. Rules
are then produced by following the paths from the
root of the tree (whole population) to the differ-
ent leaves (groups wherein the one class represents the
majority in the frequency). Figure 1 provides an ex-
ample of decision tree with its associated rules,
where p(Class #i) is the probability of objects to be-
long to Class #i.

2.2. Decision tree modelling with rela-

tional views

In our first integrated approach [12], the key idea is
to associate each node in the decision tree with its cor-

responding relational view. Hence, the root node of the
decision tree is represented by a relational view corre-
sponding to the whole training dataset. Since each sub-
node in the decision tree represents a sub-population of
its parent node, we build for each node a relational view
that is based on its parent view. Then, these views are
used to count the frequency of each class in the node
with simple GROUP BY queries. These counts are used
to determine the criteria that helps either partitioning
the current node into a set of disjoint sub-partitions
based on the values of a specific attribute or conclud-
ing that the node is a leaf, i.e., a terminal node. To il-
lustrate how these views are created, we represent in
Figure 2 the SQL statements for creating the views as-
sociated with the sample decision tree from Figure 1.
This set of views constitutes the decision tree.

In order to validate this approach, we implemented
the ID3 method within the Oracle DBMS as a PL/SQL
stored procedure named V iew ID3. We showed that
we could process very large databases with this ap-
proach, theoretically without any size limit, while clas-
sical, in-memory data mining software could not. We
compared V iew ID3 to the in-memory ID3 implemen-
tation from the Sipina data mining software [14]. These
results are presented in Figure 3, where the classical
ID3 implementation is labelled Sipina ID3. Figure 3
shows that processing times remain quite long because
of multiple accesses to the database. To reduce these
processing times, we propose in this paper a new ap-
proach that uses a contingency table.

3. Contingency table-based decision

tree construction

A contingency table is usually represented by means
of a multidimensional table of frequencies that may
contain NULL values. In our approach, since data min-
ing algorithms are integrated within DBMSs and hence
operate onto relational data structures, we represent
contingency tables with relational tables or views that
include an additional attribute to represent non NULL
frequency values.

3.1. Construction of the contingency table

Within a DBMS, the contingency table correspond-
ing to a given training dataset can be computed by a
simple SQL query. Let TS be a training set defined
by n predictive attributes A1, . . . , An and the class at-
tribute C. The associated contingency table CT is ob-
tained by running the SQL query displayed in Figure 4.

Since the contingency table contains frequencies, its
size is usually much smaller than the whole training



Class #1: 50 (50%)


Class #2: 50 (50%)


Class #1: 38 (95%)


Class #2: 02 (05%)


Class #1: 20 (33%)


Class #2: 40 (67%)


att1 = A
 att1 = B


Class #1: 05 (25%)


Class #2: 15 (75%)


Class #1: 02 (05%)


Class #2: 38 (95%)


att2 = 0
 att2 = 1


Rule #1:
 if att1 = A and att2 = 0 then p(Class #2) = 95%


Rule #2:
 if att1 = A and att2 = 1 then p(Class #2) = 75%


Rule #3:
 if att1 = B then p(Class #1) = 95%


Node #0


Node #1.1
 Node #1.2


Node #2.1
 Node #2.2


Figure 1. Example of decision tree

Node #0: CREATE VIEW v0 AS SELECT att1, att2, class FROM training set

Node #1.1: CREATE VIEW v11 AS SELECT att2, class FROM v0 WHERE att1=’A’

Node #1.2: CREATE VIEW v12 AS SELECT att2, class FROM v0 WHERE att1=’B’

Node #2.1: CREATE VIEW v21 AS SELECT class FROM v11 WHERE att2=0

Node #2.2: CREATE VIEW v22 AS SELECT class FROM v11 WHERE att2=1

Figure 2. Relational views associated to the sample decision tree

set (and at most as large as the training set). There-
fore, the gain in terms of processing time is normally
significant.

3.2. Running example

To illustrate our approach, we use the TITANIC
training set, which contains 2201 tuples defined by:

• three predictive attributes:

– Class (1st, 2nd, 3rd, Crew),

– Age (Adult, Child),

– Gender (Male, Female);

• one class attribute: Survivor (Yes, No).

A sample from the TITANIC training set is provided
in Table 1.

The classical contingency table corresponding to the
TITANIC training set is provided in Table 2. Its re-
lational representation is obtained with a simple SQL
query (Figure 5). Its result contains only 24 tuples (Ta-
ble 3).

3.3. Entropy and information gain

In the ID3 algorithm [13], the discriminating power
of an attribute for segmentating of a node of the de-

cision tree is expressed by a variation of entropy. The
entropy hs of a node sk (more precisely, its entropy of
Shannon) is:

hs(sk) = −

c
∑

i=1

nik

nk

log
2

nik

nk

(1)

where nk is the frequency of sk and nik the num-
ber of objects of sk that belong to class Ci. The infor-
mation carried by a partition SK of K nodes is then
the weighted average of the entropies:

E(SK) =

K
∑

k=1

nk

nj

hs(sk) (2)

where nj is the frequency of the segmented node sj .
Finally, the information gain associated to SK is

G(SK) = hs(sj) − E(SK) (3)

3.4. New formula for information gain

To show that our approach is efficient and perti-
nent, we adapted the ID3 method to apply to a con-
tingency table. This induces changes for computing the
information gain for each predictive attribute, and con-
sequently for computing the entropy.



Figure 3. Performance comparison of V iew ID3 and Sipina ID3

CREATE VIEW CT view AS

SELECT A1, . . . , An, C, COUNT(*) AS Frequency

FROM TS
GROUP BY A1, . . . , An, C

Figure 4. Relational view associated to contingency table CT

To compute the information gain for a predictive at-
tribute, our view-based ID3 implementation reads all
the tuples in the whole partition corresponding to the
current node of the decision tree, in order to determine
the tuple distribution regarding the values of each pre-
dictive attribute value and the class attribute. In our
contingency table-based approach, it is quite simple to
obtain the size of a subpopulation satisfying a given
set of rules Er (e.g., Age = Child AND Gender =
Female) by summing the values of the Frequency at-
tribute from the contingency table, for the tuples that
satisfy Er. Hence, we reduce the number of read op-
erations to one only to calculate the information gain
for a predictive attribute. Indeed, as presented in sec-
tion 3.3, the usual calculation of the information gain
for an attribute having k possible values and with a
class attribute having c possible values is:

G(SK) =

hs(sj)−

K
∑

k=1

(

nk

nj

×

(

−

c
∑

i=1

nik

nk

× log2

(

nik

nk

)

))

(4)

where nj is the node frequency, nk is the frequency
of the subnode having value Vk for the predictive at-
tribute, nik is the frequency of the subnode partition
having value Vk for the predictive attribute and value
Ci for the class attribute. However, if we develop For-

mula 4, and since log2
a
b

= log2a − log2b, by adding up
nik and nk, we obtain:

G(SK) =

hs(sj)+
1

nj

×

(

K
∑

k=1

c
∑

i=1

nik × log2nik −

K
∑

k=1

nk × log2nk

)

(5)

By applying Formula 5 to the contingency table
(that we read only once), we obtain the information
gain easily. Indeed, in this formula, it is not necessary
to know at the same time various frequency (nj , nk,
nik), and we obtain nk by summing the nik and nj by
summing the nk.

4. Validation

4.1. Implementation

We use Oracle to implement our adaptation of ID3
to contingency tables, under the form of a PL/SQL
stored procedure named CT ID3, which is part of a
broader package named decision tree that is available
on-line1. We have tested this implementation under Or-
acle version 8i and 9i.

1 http://bdd.univ-lyon2.fr/download/decision tree.zip



Class Age Gender Survivor

1st Adult Male Yes
2nd Adult Male No

Crew Adult Female Yes
3rd Child Male Yes
1st Adult Female No
1st Child Female Yes

Crew Adult Male Yes
2nd Child Male Yes

Crew Adult Female Yes
3rd Adult Female No
1st Child Male Yes
2nd Adult Female No
2nd Adult Male Yes
3rd Adult Male No
1st Child Female Yes
2nd Child Female Yes
2nd Adult Female No
1st Adult Male No
3rd Child Female Yes

Crew Adult Female Yes
3rd Adult Male No
2nd Child Female Yes

Crew Adult Male No
Crew Adult Female No
1st Child Female Yes
3rd Adult Male No
... ... ... ...

Table 1. TITANIC training set sample

CREATE VIEW TITANIC Contingency AS

SELECT Class, Gender, Age, Survivor, COUNT(*) AS Frequency

FROM TITANIC

GROUP BY Class, Gender, Age, Survivor

Figure 5. Relational view associated to the TITANIC contingency table

4.2. Experimental results

In order to validate our contingency table-based ap-
proach and to compare its performances to those of
the previous approaches, we carried out tests on dif-
ferent views of the CovType database2. The CovType
database contains 581 012 tuples defined by 54 predic-
tive attributes and one class (with seven different val-
ues). We created five views containing each a part of

2 http://ftp.ics.uci.edu/pub/machine-learning-
databases/covtype/

the Covtype database defined by three predictive at-
tributes (each has five different values) and the class.
The predictive attributes used and the size for each
view are provided in Table 4.

First, we compare the processing times of our ID3
implementations (the view-based approach V iew ID3
and the contingency table-based approach CT ID3).
These tests have been carried out on a PC computer
with 128 MB of RAM and the Personal Oracle DBMS
version 9i. The use of Personal Oracle ensures that the
DMBS client and server were on the same machine,
hence no network traffic can interfere with our per-



Adult Child

Male Female Male Female

1st Yes 57 140 5 1
No 118 4 0 0

2nd Yes 14 80 11 13
No 154 13 0 0

3rd Yes 75 76 13 14
No 387 89 35 17

Crew Yes 192 20 0 0
No 670 3 0 0

Table 2. Classical contingency table for TITANIC

Class Age Gender Survivor Frequency

1st Adult Male Yes 57
1st Adult Male No 118
1st Adult Female Yes 140
1st Adult Female No 4
1st Child Male Yes 5
1st Child Female Yes 1
2nd Adult Male Yes 14
2nd Adult Male No 154
2nd Adult Female Yes 80
2nd Adult Female No 13
2nd Child Male Yes 11
2nd Child Female Yes 13
3rd Adult Male Yes 75
3rd Adult Male No 387
3rd Adult Female Yes 76
3rd Adult Female No 89
3rd Child Male Yes 13
3rd Child Male No 35
3rd Child Female Yes 14
3rd Child Female No 17

Crew Adult Male Yes 192
Crew Adult Male No 670
Crew Adult Female Yes 20
Crew Adult Female No 3

Table 3. Relational representation of the TITANIC contingency table

formance measurements. The results we obtain (Fig-
ure 6) clearly underline the gain induced by CT ID3,
that has a much lower processing time than V iew ID3
on an average, while producing the same result.

Then, we compare the processing times of CT ID3
to the ID3 implementation available in Sipina
(Sipina ID3). On small databases, we observe that
our contingency table-based approach presentes simi-
lar processing times than Sipina ID3. Furthermore it

can also process larger databases while Sipina ID3 re-
mains limited by main memory (Figure 7).

The processing time of our approach depends mainly
on the size of the contingency table. In conclusion, we
hint the effectiveness of our approach, since it gener-
ally considerably reduces the size of the training set.
Thus, the use of a contingency table as an optimiza-
tion tool within the framework of integrating data min-
ing methods in DBMSs improves processing times sig-



View name Predictive attributes used View size Size of contingency table

view1 1,2,3 116202 tuples 322 tuples
view2 4,5,6 232404 tuples 265 tuples
view3 7,8,9 348607 tuples 214 tuples
view4 1,4,10 464810 tuples 202 tuples
view5 2,5,8 581012 tuples 264 tuples

Table 4. Views used in CovType tests

Figure 6. Performance comparison of CT ID3 and V iew ID3

nificantly. Nevertheless, in extreme cases, the size of the
contingency table may be so close to that of the whole
training set that the profit becomes negligible. How-
ever, this is very rare in real-life cases and scanning
the contingency table can never be worse than scan-
ning the whole database.

4.3. Complexity study

Our objective is to compare the complexity of our
both integrated approaches (CT ID3 and V iew ID3)
in terms of processing time. We suppose that both al-
gorithms are optimized in their implementation so that
only the necessary tuples are read. In this study, we are
interested in the time spent reading and writing data,
since these are the most expensive operations. We con-
sider that a tuple is read or written in one time unit. Fi-
nally, we consider that the obtained decision tree is bal-
anced and whole, i.e., that at each level of the tree, the
union of the populations of the various nodes equals
the whole database.

Let N be the total number of tuples in the training
set. Let K be the number of predictive attributes. Let
T be the size of the corresponding contingency table.

With V iew ID3, to reach level i+1 from an unspec-
ified level i of the tree, each node must be read as many
times as there are predictive attributes at this level, i.e.,
(K − i). As the sum of the frequencies at this level cor-
responds to the frequency of the starting database, it
is thus necessary to read N tuples (K − i) times (num-
ber of tuples × size of a tuple × number of attributes).
Hence, the total reading time for level i is N(K − i).
In order to reach this level, it is also necessary to write
the corresponding tuples. The writing time is thus N .

Since
∑K

i=1
i = K(K + 1)/2, we obtain the follow-

ing final complexity, from the root to the leaves (level
K):

• reading complexity: N(K2/2 − K/2) time units,
therefore NK2;

• writing complexity: NK time units.



Figure 7. Performance comparison of CT ID3 and Sipina ID3

In our contingency table-based approach, we first
create the contingency table the writing time is thus T .
To compute the contingency table, we read the whole
database once. The reading time is thus N . When
reaching level i + 1 from level i, we read all the T tu-
ples (K− i) times, for a total time by level of T (K− i).

Hence, with CT ID3, the complexity results are:

• reading complexity: T (K2/2 − K/2) + N time
units, therefore TK2 or N if N > TK2;

• writing complexity: T time units.

In conclusion, in terms of processing time, our con-
tingency table-based approach allows an improvement
of N/T or K2 (if N > TK2) for reading, and of NK/T
for writing. Since N is usually much greater than T ,
this improvement is significant.

5. Conclusion and Perspectives

In order to apply data mining algorithms to large
databases, two main approaches are proposed in the lit-
erature: the classical approach and the integrated ap-
proach. The classical approach is limited by the size of
the processed databases since it operates in main mem-
ory. The main objective in this approach is then to re-
duce the size of databases, either by using techniques
for preprocessing data or by sampling. The integrated
approach consists in processing data mining methods
within DBMSs using only the tools offered by these
systems. By exploiting their management of persistent
data, the database size limit is toppled. Our first con-
tribution in this domain was the integration of the ID3

method within Oracle by means of relational views as-
sociated to the nodes of a decision tree (V iew ID3)
[12]. However, creating and exploiting views generates
multiple accesses to the database, and hence long pro-
cessing times.

Following the integrated approach, we proposed in
this paper an original method to apply data mining al-
gorithms by taking into account not only the size of
processed databases, but also processing time. Our key
idea consists in replacing the whole training set by its
contingency table represented by means of a relational
view. Our approach presents two advantages. First, it
is easy to build this contingency table with a simple
SQL query. Second, the size of the contingency table is
much smaller than the whole training set in most prac-
tical cases.

To validate our approach, we implemented the
ID3 method as a PL/SQL stored procedure named
CT ID3, and showed that processing times were
greatly improved in comparison to V iew ID3. We also
showed that the performances of CT ID3 were com-
parable to those of a classical, in-memory implemen-
tation of ID3.

The perspectives opened by this study are numer-
ous. In order to enrich our decision tree software pack-
age, we are currently implementing other data min-
ing methods, such as C4.5 and CART, using contin-
gency tables. Moreover, we plan to compare the per-
formances of these implementations to their equivalent
in the Sipina software (that operate in memory) on
real-life databases. Moreover, we plan to add in the
decision tree package other procedures to supplement
the offered data mining tools, such as sampling, miss-
ing values management, and learning validation tech-



niques.
Finally, to improve their processing time, in-memory

data mining methods could also use contingency tables
instead of original learning sets.
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