
An Efficient Clustering-Based Classification Approach
for Intrusion Detection

Huu-Hoa Nguyen, Nouria Harbi and Jérôme Darmont

Université de Lyon (ERIC Lyon 2)
5 avenue Pierre Mendès-France, 69676 Bron Cedex, France

nhhoa@eric.univ-lyon2.fr, {nouria.harbi, jerome.darmont}@univ-lyon2.fr

Abstract. The need to increase accuracy in detecting sophisticated cyber
attacks poses a great challenge not only to the research community but also to
corporations. So far, many approaches have been proposed to cope with this
threat. Among them, data mining has brought on remarkable contributions to
the intrusion detection problem. However, the generalization ability of data
mining-based methods remains limited, and hence detecting sophisticated
attacks remains a tough task. In such a context, this paper presents a novel
method based on both clustering and classification for developing an efficient
intrusion detection system (IDS). The key idea is to take useful information
exploited from fuzzy clustering into account for the process of building an IDS.
To this aim, we first present theoretical cornerstones to construct additional
cluster features for an intrusion detection dataset. Then, we come up with an
algorithm to generate an IDS based on such cluster features and the original
input features. Finally, we experimentally prove that our method is considerably
superior to several state-of-the-art methods.

Keywords: classification, fuzzy clustering, intrusion detection, cyber attack.

1 Introduction

In recent years, with the dramatically increasing use of network-based services and
the vast spectrum of information technology security breaches, more and more
organizational information systems are subject to attack by intruders. Among many
approaches proposed in the literature to deal with this threat, data mining (or machine
learning), an approach regarding the task of detecting cyber attacks as a classification
problem, brings on a noticeable success to the development of high performance
intrusion detection systems (IDSs). The preeminence of such an approach lies in its
good generalization abilities to correctly classify (or detect) both known and unknown
attacks. However, as an inherent essence, the effectiveness of data mining-based IDSs
depends heavily upon the quality of IDS datasets. In practice, IDS datasets are often
extracted from raw traces in a chaotic system environment, and hence could hold
implicit deficiencies, e.g., the existence of noise in class labels due to mistake in
measurement, and the lack of base features. Moreover, due to the sophisticated

mailto:nhhoa@eric.univ-lyon2.fr,
mailto:@univ-lyon2.fr

characteristic of attacks and diversification of normal events, different regions of data
space could behave differently, i.e., true class labels could seriously be interlaced.

Such factors pose a great difficulty for inducers (learning algorithms) to identify
appropriate decision boundaries from the input space (i.e., the initial or original
feature set) of IDS datasets. In other words, when the input space is not robust enough
to discriminate class labels, making further treatments from alternative knowledge
sources as new supplemental features is highly desirable. To this aim, one common
approach is to transform the input space into a higher dimensional space from which
data are more separable. New additional features can be found by either manual ways
based on prior knowledge or automatic analysis methods (e.g., factor or principle
component analysis). For example, the XOR Boolean function classification problem
is inseparable in the two-dimensional space {A1, A2} but well separate in the three-
dimensional space {A1, A2, A1A2}. However, in a high dimensional input space,
finding new relevant features is a tough task that often requires human’s intervenient
analyses, but derived features are sometimes not good as expectation. As a result, in
practice, one often applies standard dimensional-transformation methods (e.g.,
polynomial, radial basic function, or sigmoid kernel) to application domains where
class discrimination is ambiguous and additional features are hard to be identified.
Yet, such methods are greatly affected by input parameters and data distribution, thus
not always achieving a high performance classifier. In this sense, it is desirable to
find additional features in such a less complex way that general-purpose algorithms
such as standard Decision Tree (DT) or Support Vector Machines (SVM) with
standard kernels can learn the data more efficiently.

Such a context motivates us to propose a novel approach that treats fuzzy cluster
information as additional features. These features are selectively incorporated into the
input space for building an efficient IDS. To this goal, we first present essences to
construct and select fuzzy cluster features. Then, we propose a concrete algorithm for
generating a high performance IDS. Eventually, we experimentally show that our
proposed solution approach outperforms several other methods.

 The remainder of this paper is organized as follows. Section 2 surveys some
noticeable data mining-based intrusion detection methods, whereas Section 3 presents
the problem formulation of our approach. Section 4 describes our proposed solution
approach for generating an efficient IDS. Section 5 shows the experimental results.
Section 6 finally gives a conclusion of highlight viewpoints and perspectives of the
method we propose.

2 Related Work

This section provides a succinct survey of some noticeable studies related to data
mining-based intrusion detection methods. These studies encompass both misuse and
anomaly intrusion detection.

Portnoy et al. propose an algorithm that takes the radius of cluster as an input
threshold parameter [9]. The algorithm partitions an unlabeled training dataset into
clusters based on a distance measure (e.g., Euclidean distance) and the cluster radius
threshold. Then, clusters are sorted according to the number of data points inside each

cluster. Subsequently, some smallest top percents of the sorted clusters are labeled as
normal, whereas the rest is labeled as attack. In the detection phase, for a testing data
point p, the algorithm calculates all distances from p to all clusters, and then takes the
k smallest distances to apply a majority voting method for determining a class label
for p. In another approach, Eskin et al. present an intrusion detection model based
principally on calculating an outlier score for a given data point [10]. The
fundamental notion is that the points in dense regions are assigned to a smaller outlier
score than the points in sparse regions. The authors employ the Canopy Clustering
technique to reduce complexity for computing the k-nearest neighbors of each point.

By contrast, Wang and Stolfo introduce a payload-based method by computing the
profile byte-frequency distribution and standard deviation of payload network traffic
during the training phase [11]. In the detection phase, a similarity measurement for a
test instance is calculated based on a pre-built profile in the training phase. Unlike the
header-based methods that are often used to detect scanning and probing attacks (e.g.,
DoS, Probe), the payload-based method is thought of as efficient in detecting worms
that transfer bad data to a service or application.

Giacinto et al. describe an IDS architecture including multiple one-class k-means
classifiers [12]. Each classifier is trained from a training subset containing a specific
attack type belonging to a specific attack class. Then, the final result is achieved by
fusing classifier outputs using the Decision Template method.

Fan et al. present a method that uses a decision tree inducer together with injection
of artificial anomalies to detect unknown and known network intrusions [16]. Unlike
other methods that assign a default class to unknown instances, the authors introduce a
sampling method to generate a new training set that can handle both misuse and
anomaly detection. The idea behind this method is to amplify the density of points in
sparse regions in the initial training set, based on the distribution of attribute values,
to discover a boundary between known classes and anomalies. In other words, the
proposed method automatically injects distribution-based artificial anomalies into the
initial training set to increase the ability of the classifier in distinguishing anomalous
from normal network traffic.

On the other hand, Wu and Yen construct a decision tree-based IDS by introducing
as a parameter the different proportions of normal instances in a training set to obtain
the best tree [18]. More specifically, the training set is sampled into several different
proportions based on the instance space of the normal class. The overall evaluation is
based on the average value of results.

Many hybridized intrusion detection methods that employ both clustering and
classification techniques are widely introduced by the community. For example, Shon
and Moon develop a hybrid IDS using multiple techniques [13]. This study proposes a
hybrid algorithm, called Enhanced SVM, by combining Soft-Margin SVM (a
supervised classifier) and One-Class SVM (an unsupervised classifier). The idea
behind this IDS includes two phases. In the first phase, the system uses TCP/IP
Fingerprinting as an online filter to drop malformed incoming packets, a Genetic
Algorithm (GA) to select relevant feature sets, and a Self-Organizing Map (SOM) to
create packet profiles. In the second phase, the system trains the Enhanced SVM
classifier by using the packet profiles generated from the SOM.

In addition, Xiang et al. come up with a multi-level hybrid prototype by combining
two techniques, i.e., Supervised Decision Tree and Unsupervised Bayesian Net [14].
The prototype is hierarchically structured in forms of class labels in training set.

Finally, Depren et al. present a hybrid IDS architecture comprising three modules,
i.e., anomaly analyzer, misuse analyzer, and decision support system (DSS) [15]. The
anomaly analyzer uses an SOM to model normal network traffic, whereas the misuse
analyzer employs a Decision Tree to classify attacks. DSS aims at interpreting the
combined results of anomaly and misuse analyzers. The anomaly analyzer is further
specialized into three sub-analyzers based on three different protocol types, i.e., TCP,
UDP, and ICMP. Given a test instance, both anomaly and misuse analyzers are
operated concurrently to identify types of the instance. Then, DSS assigns a class
label for the test instance based on the results from the two analyzers.

3 Problem formulation

Clustering aims to organize data into groups (clusters) according to their similarities
measured by some concepts. In metric spaces, similarity is often defined in term of a
distance norm measured between data vectors. Because the merit degree of
dimensions is different, dimensions are often weighted by a merit measure (e.g.,
entropy) regarding to a given distance formula. Unlike crisp clustering that crisply
assigns each data point to a separate cluster, fuzzy clustering allows each data point to
belong to various clusters with different membership degrees (or weights). Fuzzy
clusters are expressed by their centers (or centroids) that are simultaneously found in
the partitioning process of a fuzzy clustering algorithm. The number of clusters (k) is
often inputted as a parameter to a fuzzy clustering algorithm. The nk membership
matrix W={wij  [0,1]} of n data points is found in the fuzzy clustering process. For
example, Figure 1 describes the instance space of a training set partitioned into four
fuzzy clusters, where membership weights that data point x1 belongs to clusters '1', '2',
'3', and '4' are 0.3, 0.14, 0.16, and 0.4, respectively.

Let us first denote S={X,Y} the original training set of n data points X={x1,…,xn},
where each point xi is an m-dimensional vector (xi1,…,xim) and assigned to a label
yiY belonging one of the c classes ={1, …,c}.

Let { | max(), 1... , 1... }i i ijB b b w j k i n    hold the maximum membership
weight of each point xi, and { | arg max (), 1... }i i j ijZ z z w i n   contains the cluster
(symbolic) number assigned to each point xi.

For conciseness in describing the approach, we term two column matrices Z and B
as two “basic cluster features”. In addition, we name the jth column of the membership
matrix (W) as Pj, and term the columns P1, ..., Pk as “extended cluster features”. We
also term the training set added cluster features {X, Z, B, P1, …, Pk, Y} as a
“manipulated training set”. These notations and terminologies are specifically
depicted Figure 1.

Fig. 1. A manipulated training set, resulting from adding cluster features into the input space.

The problem formulation follows: “Given a training set S={X,Y} and an inducer I,
the goal is to find a high performance classifier induced by I over the m initial
features of S and the supplemental cluster features {Z, B, P1, P2, …, Pk} resulting
from a parameterized-by-k fuzzy clustering based on X”.

Undoubtedly, fuzzy clustering has a great potential in expressing the latently
natural relationships between data points. Here, an arising question is that whether
information about fuzzy clusters benefits certain inducing types. In our investigation,
there exist several types of inducers to which fuzzy cluster features bring about
helpfulness. For example, in Support Vector Machine (SVM) context, SVM’s
decision boundary often falls into a low density region, but the true boundary might
not pass through this region, thus resulting in a poor classifier. However, when
supplemented with relevant cluster features, data points in high dimensional space are
likely to be more uniform, hence avoiding an improper separation across this region.
In fact, the crucial factor to the success of SVM lies in a kernel trick that plays the
role as mapping the initial input space to a much higher dimensional feature space,
where the transformed data are expected to be more separable from a linear hyper-
plane function. In order words, while other inducers somewhat find dimensionality a
curse, blessing of dimensionality could enable SVM to be more effective. In this
sense, incorporating relevant cluster features into the initial input space benefits SVM
inducers.

Another consideration relates to Univariate Decision Tree (DT) setting. Due to its
greedy characteristic, DT inducer examines only one ahead partitioning step for
growing child trees, rather than considering deeper partitioning steps that can achieve
a better tree. This characteristic can lead to an improper tree-growing termination, and
thus generate a poor classifier. In this sense, incorporating relevant cluster features
into the initial input space helps DT inducer choose splits more appropriately for tree
growing, hence achieving a more efficient classifier (decision tree).

4 Fuzzy Cluster Feature-based Classification

In this section, we point out the ways to generate and select cluster features for
inducers. Then, we come up with a straightforward algorithm for building a high
performance classifier from the initial features and supplemental cluster features.

X Z B P1 P2 P3 P4 Y
x1 '4' 0.4 0.3 0.14 0.16 0.4 y1
x2 '3' 0.45 0.12 0.35 0.45 0.18 y2
… … … …. …. … … ...
xn … … …. …. … … yn
 Basic cluster features Extended cluster features (W)

Class labels n training data points Centroid 1

Centroid 2

Centroid 3
Centroid 4

x1

x2

0.3
0.14

0.16 0.4

4.1 Cluster Feature Generation and Selection

Basically, cluster features can be generated by any fuzzy clustering algorithm.
However, for concreteness, we express cluster features in term of the fuzzy c-means
clustering [17], which solves the minimization problem to the objective function of
Formula 1. In a common form, the objective function (Formula 1) reaches to a
minimum over W (membership matrix) and V (centroids), by Formulas 2 and 3.

 2

1 1
(, ,) (,)

k n

obj ij i j
j i

f X W V w d x v

 

 , subject to the constrain
1

1
k

ij
j

w


 (1)

1 1

() ()
n n

j ij i ij
i i

v w x w 

 

   
    
   
  (2)

1 1
1 1

2 2
1

1 1
(,) (,)

k

ij
qi j i q

w
d x v d x v

  



   
          

 (3)

where k is the number of clusters,  is a fuzzy constant, and (,)i jd x v is the
distance from point ix X to centroid jv V .

The fuzzy c-means clustering tries to find the best fit for a fixed value of k, the

number of clusters. However, as an essential problem of clustering, determining an
appropriate parameter k is a tough task. Even though prior knowledge of target classes
is known, the number of clusters corresponding to the number of classes or subclasses
is not always meaningful. The most common way to find the reasonable number of
clusters is to run the algorithm with various values of k  {2,…, kmax} and then
employ a validity measure to evaluate cluster fitness. There are several validity
measures proposed in the literature. Some of them are known as partition coefficient,
classification entropy, partition index, separation index, Xie and Beni’s index, and
Dunn’s index [1], [2], [15].

In our approach, however, the need is that data should be grouped in the way that
reveals helpful information for inducers, not for the sense of clustering itself, even
though the number of clusters might be wrong. In other words, using validity
measures to determine the best number of clusters is not reliable enough to derive
good cluster features for classifiers. In such a vision, instead of endeavoring to find
the best k with validity measures, we use the over-production method to generate
several candidate classifiers for different values of k and then evaluate their
performance to determine the best one. Evaluating the performance of candidate
classifiers can be based either on a validation set or Cross-Validation method. By
such a way, a proper value of k is simultaneously found in the process of finding a
maximum performance classifier from candidate classifiers.

In addition, the use of cluster features should be examined individually for a
concrete inducing type. In our observation, two basic cluster features (Z, B) are
benefic enough for DT inducer, instead of including k extended cluster features
(P1,…,Pk). By contract, in the SVM context, it is applicable to employ either only the
basic cluster features (Z, B) or all the cluster features (Z, B, P1,…,Pk) for building a

SVM classifier. Another solution that can be applied for any inducing type is to
employ feature selection techniques (e.g., filter, wrapper) to pick out high merit
features from both m initial input features and all (k+2) cluster features. The desire to
such a way is that applying feature selection techniques on (m+k+2) features brings
about a smaller but more qualitative feature subset than those only on m initial
features. Here, note is that feature selection is simultaneously carried out in the
process of building candidate classifiers. In a nutshell, formally, there are three
possibilities to incorporate cluster features into the initial features (A1, …, Am), i.e.,
(A1, …, Am, Z, B), (A1, …, Am, Z, B, P1, …, Pk), or Feature Selection(A1, …, Am, Z, B,
P1, …, Pk).

4.2 Algorithm

The proposed algorithm, namely CFC, is depicted by the pseudo-code from Figure
2. Related notations are indicated in Table 1. The key idea is that, for each clustering
with different number of clusters (kK), the algorithm builds and valuates a candidate
classifier from the training set manipulated with a given feature selection type, by q-
fold cross validation. The resulting classifier is the one exhibiting maximum
performance.

Table 1. Notations used to describe the algorithm in Figure 2.

Notation Description
 A set of c class labels {1, …, c}.
S={X,Y} The original training set, where X comprises n data points (xi) defined from m

initial features {A1,…,Am} and Y contains class labels (yi  ) of xi.
I A base inducer (e.g., SVM, Decision Tree).
K A predefined integer set representing possible number of clusters.
 A feature selection technique that returns a specific feature subset.
Ck A candidate classifier resulting from a clustering with k fuzzy clusters.
Ck* The best classifier among |K| candidate classifiers.
Vk A k  m matrix of k centroids obtained from clustering X into k clusters.
Vk* A k*  m matrix of k* centroids, corresponding to Ck*.
Wk An n  k membership matrix of n data points xi  X, corresponding to Vk.

kB A column matrix containing the maximum membership weight of each xi  X.
kZ A column matrix representing the cluster (symbolic) number of each xi  X.

 A horizontal concatenation operator between two matrices, say M1 and M2,
having the same number of rows. M1  M2 results in a new matrix, say M, by
horizontally joining M2 to M1. Columns in M are columns in M1 plus columns
in M2. Matrix M has the same number of rows as M1 and M2.

In the training phase, the algorithm first normalizes continuous features (e.g., by a

variance-based spread measure) to avoid the dispersion in different ranges (Line 1).
Here, it is noticed that the normalized data (X) is merely for clustering purpose,
whereas classifiers are built by using the original data (X). In addition, instead of
executing clustering with parameter k ranging from 2 to a given kmax value, the
algorithm uses a predefined set K={k} to mainly focus on important values of k,

which can be recognized by experiment or prior knowledge (Line 2). As mentioned in
Subsection 4.1, there are three cases to select relevant features from the (m+k+2)
features of the manipulated training set for building classifiers. Hence, for general
purpose, the algorithm introduces an input parameter  for specifying the way to
select features from the manipulated training set (Lines 6-10). Subsequently, the
algorithm builds and evaluates one candidate classifier for each clustering (Lines 11,
12). Here, note is that evaluating candidate classifiers is based on the averaged
performance of q-fold stratified cross validation from the manipulated training set.
Finally, the algorithm determines one best classifier from |K| candidate classifiers,
together with a corresponding centroid set (Lines 14, 15).

Training phase
Input: S={X, Y}, I, K, , and 
Output: *kC , *kV
1: Normalize()X X 
2: For each k  K do
3: 1{ , } FuzzyClustering(,)k kW V X k
4: { | max(), 1... , 1... }k

i i ijB b b w i n j k   

5: { | arg max (), 1... , 1... }k
i i j ijZ z z w i n j k   

6: Case // Choose features for classifier; D is a manipulated training set
7:  = 1: ()k kD X Z B  //Initial features and basic cluster features

8:  = 2: ()k k kD X Z B W   //Initial features and all cluster features
9:  = 3:
 Begin
 (,)k k kF X Z B W Y    //Apply a feature selection technique

 ()k k kD X Z B W   [F] //Project data by the derived feature subset
 End
10: End Case
11: (,)kC I D Y //Build a candidate classifier, using inducer I
12: ()kPerformance C  (Averaged performance of q-fold cross validation
 based on (D,Y) and I)
13: End For
14: * arg max (),

kk C kC Performance C k K  //Determine one best classifier

15: Return *
*, k

kC V
Operation phase
16: For a unlabeled testing instance x:
17: Normalize()x x 
18: Compute cluster features for x , based on *kV (Formula 3)
19: Label x (with taking the derived cluster features into account) by *kC

Fig. 2. Algorithm CFC: generating a classifier from the initial features and cluster features.

As a whole, determining one best classifier from |K| candidate classifiers can be
grounded under different angles, e.g., focusing on hard classes rather than only basing
on a generalization performance metric. For example, in the intrusion detection
problem, both R2L attack and Normal classes exhibit similar behaviors and therefore
are often misclassified to each other. In such a case, the accuracy ratio of R2L to
Normal classes can be chosen as an additional trade-off threshold to evaluate
classifier ability. Moreover, it is noted that heuristic-based clustering algorithms
might produce different centroids for different runs with the same parameters. Hence,
the resulting classifier should be determined by some runs of the proposed algorithm.

In the operation phase, for an unlabeled testing instance x, the algorithm first
normalizes x in the same way as those applied to the training set. Then, cluster
features of x are calculated based on the centroid set *kV , using Formula 3. Finally,
such corresponding features are input to classifier *kC for final prediction.

5 Experiments

5.1 Dataset

Our experiments are conducted on the intrusion detection dataset, KDD99 [4]. This
dataset was derived from the DARPA dataset, a format of TCPdump files captured
from the simulation of normal and attack activities in the network environment of an
air-force base, created by MIT’s Lincoln Laboratory [5]. Although the DARPA
dataset (and hence KDD99 dataset) has been criticized by the research community
mainly because it is unrepresentative of a real-life network scenario [6, 7], so far it is
still the only intrusion detection evaluation benchmark for research purposes.

The (ten-percent) KDD99 dataset comprises 494,021 training instances and
311,029 testing instances. Due to such a large data volume, the research community
mostly uses small subsets of the dataset for evaluating IDS methods. Each instance in
the dataset represents a network connection, i.e., a sequence of network packets
starting and ending at some well defined times, between which data flows to and from
a source IP address to a target IP address under some well defined protocol. Such a
connection instance is described by a 41-dimensional feature vector and labeled with
respect to five classes: Normal, Probe, DoS (denial of service), R2L (remote to local),
and U2R (user to root).

To facilitate experiments without losing generality, we only use a smaller set of the
KDD99 dataset for the purpose of evaluating and comparing our method to others. In
particular, the training and testing sets used in our experiments are made up of 19,752
instances and 36,748 instances that are selectively extracted from the KDD99 training
and testing sets, respectively. The principle for forming such reduced sets is to get all
instances in each small group (attack type), but only a limited amount of instances in
each large group, from both the KDD99 training and testing sets. More explicitly, we
randomly select 3,000 instances in each large group Neptune and smurf, while
gathering all instances in the remaining groups from both the KDD99 training and
testing sets to form the reduced training and testing sets, respectively. For class
normal, we randomly choose 5,000 instances from the KDD99 training set and 10,000

instances from the KDD99 testing set for the reduced training and testing sets,
respectively. Class distribution of these two reduced sets is shown in Table 2.

 Table 2. Class distribution of the reduced training and testing sets used in experiments.

Class Training Set Testing Set
DoS 9,467 13,761
Probe 4,107 4,163
R2L 1,126 8,751
U2R 52 70
Normal 5,000 10,000
Total 19,752 36,748

5.2 Experiment Setup

In our experiments, the predefined set K is set to {2, 3, …, 50}. In addition, the fuzzy
c-means clustering is employed to generate cluster features. Convergence criterion
(termination tolerance) of the fuzzy clustering is set to 10-6, whereas the fuzzy degree
(exponent  in Formula 3) is set to 4. On the other hand, continuous futures are
normalized by max_min value ranges.

To handle different feature types as well as to express different merit contributions
of features in the Euclidian space, we propose a distance measure as in Formula 4.

 2 2(,) (,)
m

i j q q iq jq
q

d x v G d x v  (4)

 where

   1, , {symbolic} (, {unknown}

| |, , {continuous}
(,) | |

, , {ordinals}, {ordinals}
1

0, otherwise,

iq jq iq jq iq jq

iq jq iq jq

q iq jq
iq jq

iq jq

x v x v x v

x v x v
d x v x v

x v t
t

     


 
  
  




 and ()

2

| |
() () ()

| |

() log ,
j j j

j

v
q v

v Dom q

j

SG InformationGain feature q Entropy S Entropy S
S

Entropy S P P P is prior probability of class  







   


 






The base inducers (I) tested in our method are the C4.5 decision tree [8] and the

support vector machine [20] with polynomial kernel and radial basic function kernel.
The parametric setting of these inducers is specifically shown in Table 4.

The feature selection technique () used in this experiment is the correlation-based
feature subset evaluation [19] and the genetic search [21]. This technique evaluates
the merit of a feature subset by considering the individual predictive ability of each

feature along with the degree of redundancy between them. Those subsets that are
highly correlated with the class while having low intercorrelation are preferred.

Candidate classifiers are evaluated by an attack type-based stratified cross
validation (10 folds). The maximum performance classifier is determined based on
overall accuracy (i.e., the ratio of the number of correctly classified instances to the
total number of instances in the training set).

5.3 Experiment Results

The experimental results of our algorithm (implemented in Matlab) and others are
shown in Tables 3 and Figure 3. Specifically, Table 4 presents True Positive (TP) and
False Positive (FP) rates of classifiers with respect to each class label, whereas Figure
3 portrays TP rates of classifiers based on Table 4. Here, all compared classifiers are
built from the same training set and tested on the same testing set as described in
Subsection 5.1.

To have a wider comparative view, we run our algorithm (CFC) with different
settings of two input parameters (i.e., I: base inducer, and : the way to employ
cluster features for classifiers). The results of such runs are listed in Rows 10-22 of
Table 3. Here, it is mentioned that stand-alone DT and SVM (Rows 4, 6, 8) have the
same settings as those parameterized to CFC.

Figure 3 shows that, as a whole, our method considerably outperforms the others
with respect to TP rates in all five classes and on weighted average. Particularly, our
method is significantly better than all the others in detecting hard classes (i.e., R2L
and U2R). In addition, as shown in Table 3, FP rates of all the tested methods are
virtually equivalent (i.e., approximately one percent).

It also noticed that the proposed method considerably improve the classification
ability of base inducers (SVM and DT). More precisely, by using the same feature
selection technique as described in Subsection 5.2, SVM classifier built from the
manipulated training set (i.e., CFC(I=SVM, =3)) is considerably superior to SVM
classifier built from the original training set (i.e., SVM_FS). Similarly, CFC(I=DT,
=3) considerably outperforms DT_FS. This tells that applying a feature selection
technique on the manipulated training set produces a higher qualitative feature subset
(including base features and cluster features) than that on the original training set.

Regarding SVM classifiers, although we further test PSVM with exponent degrees
ranging from 2 to 6, its performance remains worse than CFC(PSVM(degree=2),
={1,2,3}). More specifically, on average, CFC(PSVM(degree=2), ={1,2,3}) gives
an 81.06% TP rate (with a 0.66% FP rate), whereas PSVM(degree={2, …, 6})
produces a 72.18% TP rate (with a 0.81% FP rate). This tells that cluster features
benefit SVM in high dimensionality.

 Table 3. True Possitive and False Possitive rates of classifiers.

Classifier DoS Probe R2L U2R Normal Average
1. Boosting TP 94.82 81.19 16.84 22.86 97.16 70.04
 FP 0.62 0.63 0.93 0.31 0.44 1.87
2. Bagging TP 97.34 81.74 12.32 25.71 96.25 69.87
 FP 0.29 0.33 0.32 0.41 0.54 1.25
3. NBTree TP 94.49 82.24 14.26 21.43 95.47 69.1
 FP 0.12 0.26 0.88 0.11 0.97 2.25
4. DT TP 95.83 81.07 10.27 18.57 97.08 68.54
 FP 0.85 0.44 0.86 0.76 0.63 2.06
5. DT_FS TP 95.83 81.07 10.27 18.57 97.08 68.54
 FP 0.45 0.7 0.56 0.82 0.59 2.06
6. PSVM TP 92.11 80.34 8.29 17.14 94.32 65.85
 FP 0.84 0.12 0.87 0.99 0.4 1.62
7. PSVM_FS TP 92.11 80.34 8.29 17.14 94.32 65.85
 FP 0.34 0.82 0.42 0.41 0.4 1.62
8. RSVM TP 90.32 83.54 9.34 15.71 93.18 65.66
 FP 0.25 0.27 0.31 0.22 0.31 0.89
9. RSVM_FS TP 90.32 83.54 9.34 15.71 93.18 65.66
 FP 0.97 0.32 0.64 0.38 0.34 2.06
10. CFC(I=DT,=1) TP 98.72 94.29 38.21 57.14 99.62 80.29

 FP 0.42 0.48 0.98 0.33 0.18 1.43
11. CFC(I=DT,=2) TP 98.11 93.66 37.15 43.12 98.71 79.02
 FP 0.62 0.28 0.36 0.29 0.41 1.02
12. CFC(I=DT,=3) TP 98.26 88.71 39.17 58.57 98.12 79.43
 FP 0.33 0.21 0.82 0.55 0.22 1.21
13. CFC(I=PSVM,=1) TP 99.26 95.66 37.65 61.43 99.45 80.56
 FP 0.81 0.52 0.63 0.32 0.37 1.52
14. CFC(I=PSVM,=2) TP 98.27 95.18 40.28 64.29 99.52 80.82
 FP 0.63 0.96 0.68 0.16 0.71 2.16
15. CFC(I=PSVM,=3) TP 99.38 96.68 41.19 60 99.72 81.82
 FP 0.64 0.93 0.5 0.73 0.33 1.48
16. CFC(I=RSVM,=1) TP 99.65 96.89 41.78 62.86 99.55 82.14
 FP 0.14 0.49 0.72 0.27 0.56 1.65
17. CFC(I=RSVM,=2) TP 99.02 94.35 36.86 58.57 98.15 79.9
 FP 0.68 0.95 0.13 0.68 0.63 1.58
18. CFC(I=RSVM,=3) TP 99.21 95.02 42.27 65.71 98.77 81.75
 FP 0.11 0.33 0.71 0.73 0.28 1.18
Note:
- DT: Decision Tree(pessimistic pruning, confidence=0.2, min(# instances per leaf)=7).
- Boosting: AdaBoost(DT, 10 classifiers) [22]
- Bagging: Bagging(DT, 10 classifiers) [23]
- PSVM: SVM with Polynomial Kernel (degree = 2).
- RSVM: SVM with Radial Basic Function Kernel (gama = 0.1).
- Classifier 5, 7, 9: trained on the original training set, with applying the feature selection
technique as described in Subsection 5.2.
- Classifier 1-4, 6, 8: trained on the original training set, without applying feature selection.
- Classifier 10-18: built from our algorithm.

Fig. 3. Chart representing classifier comparisons

6 Conclusion and Future Work

This study presents an efficient method in applying data mining to the intrusion
detection problem. The incorporation of cluster features resulting from a fuzzy
clustering into the training process is proved to be efficient for enhancing the strength
of a base classifier. The way to achieve a high performance classifier from a training
set supplemented with cluster features is straightforwardly addressed. It is empirically
shown that, as a whole, our method clearly outperforms several methods, when
evaluated on the KDD99 dataset.

However, to be more objective in evaluating any data mining solution as well as
overcome criticized drawbacks of the KDD99 intrusion detection dataset, our future
work will be to test the proposed method on other real datasets. In particular, our
current effort is fulfilling a honeypot system for the goal of gathering both real
intrusion and normal traffic activities. Such a real dataset will then be employed to
evaluate the method we proposed.

Finally, although the data mining domain is mature, the need to increase accuracy
of classification models, in general, and IDSs, in specific, is still challenging to
researchers. We believe that our attempt in this paper is a useful contribution to the
research community.

References

[1] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New
York, 2 edition, 1987.

[2] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. Wiley, Chichester, 1999.
[3] A.M. Bensaid, L.O. Hall, J.C. Bezdek, L.P. Clarke, M.L. Silbiger, J.A. Arrington, and R.F. Murtagh.

Validity-guided (Re) Clustering with applications to imige segmentation. IEEE Transactions on
Fuzzy Systems, 4:112-123, 1996.

[4] UCI KDD ARCHIVE. 1999. KDD Cup 1999 Data. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[5] MIT LINCOLN LAB. DARPA intrusion detection data sets.
Available:http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html.

[6] J. McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by Lincoln Laboratory. ACM Transactions on Information
and System Security, 3(4):262–294, Nov. 2000.

[7] G. Vigna, E. Jonsson, and C. Krügel, editors. An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection, volume 2820 of Lecture Notes in Computer
Science. Springer, 2003.

[8] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.
[9] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using clustering. In

Proceedings of ACM CSS Workshop on Data Mining Applied to Security, 2001.
[10] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised

anomaly detection: Detecting intrusions in unlabeled data. Applications of Data Mining in Computer
Security, 2002.

[11] K. Wang and S. Stolfo. Anomalous payload-based network intrusion detection. In Proceedings of
Recent Advance in Intrusion Detection (RAID) (Sophia Antipolis, France, 2004), 203-222.

[12] G. Giacinto, R. Perdisci, and F. Roli. Network intrusion detection by combining one-class classifiers.
Image Analysis and Processing – ICIAP 2005, LNCS 3617, 58-65, 2005.

[13] T. Shon and J. Moon. A hybrid machine learning approach to network anomaly detection. Inf. Sci,
177(18):3799–3821, 2007.

[14] C. Xiang, P. C. Yong, and L. S. Meng. Design of multiple-level hybrid classifier for intrusion
detection system using bayesian clustering and decision trees. Pattern Recognition Letters,
29(7):918–924, 2008.

[15] O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz. An intelligent intrusion detection system (IDS)
for anomaly and misuse detection in computer networks. Expert Syst. Appl, 29(4):713–722, 2005.

[16] W. Fan, M. Miller, S. J. Stolfo, W. Lee, and P. K. Chan. Using artificial anomalies to detect unknown
and known network intrusions. Knowl. Inf. Syst, 6(5):507–527, 2004.

[17] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New
York, 1981.

[18] S. Y. Wu and E. Yen. Data mining-based intrusion detectors. Expert Syst. Appl, 36(3):5605–5612,
2009.

[19] M. A. Hall (1998). Correlation-based Feature Subset Selection for Machine Learning. Hamilton, New
Zealand.

[20] J. Platt: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In B.
Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning, 1998.

[21] David E. Goldberg (1989). Genetic algorithms in search, optimization and machine learning.
Addison-Wesley.

[22] Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth
International Conference on Machine Learning, San Francisco, 148-156, 1996.

[23] Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html.

