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Abstract. The need to increase accuracy in detecting sophisticated cyber 
attacks poses a great challenge not only to the research community but also to 
corporations. So far, many approaches have been proposed to cope with this 
threat. Among them, data mining has brought on remarkable contributions to 
the intrusion detection problem. However, the generalization ability of data 
mining-based methods remains limited, and hence detecting sophisticated 
attacks remains a tough task. In such a context, this paper presents a novel 
method based on both clustering and classification for developing an efficient 
intrusion detection system (IDS). The key idea is to take useful information 
exploited from fuzzy clustering into account for the process of building an IDS. 
To this aim, we first present theoretical cornerstones to construct additional 
cluster features for an intrusion detection dataset. Then, we come up with an 
algorithm to generate an IDS based on such cluster features and the original 
input features. Finally, we experimentally prove that our method is considerably 
superior to several state-of-the-art methods. 
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1   Introduction 

In recent years, with the dramatically increasing use of network-based services and 
the vast spectrum of information technology security breaches, more and more 
organizational information systems are subject to attack by intruders. Among many 
approaches proposed in the literature to deal with this threat, data mining (or machine 
learning), an approach regarding the task of detecting cyber attacks as a classification 
problem, brings on a noticeable success to the development of high performance 
intrusion detection systems (IDSs). The preeminence of such an approach lies in its 
good generalization abilities to correctly classify (or detect) both known and unknown 
attacks. However, as an inherent essence, the effectiveness of data mining-based IDSs 
depends heavily upon the quality of IDS datasets. In practice, IDS datasets are often 
extracted from raw traces in a chaotic system environment, and hence could hold 
implicit deficiencies, e.g., the existence of noise in class labels due to mistake in 
measurement, and the lack of base features. Moreover, due to the sophisticated 
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characteristic of attacks and diversification of normal events, different regions of data 
space could behave differently, i.e., true class labels could seriously be interlaced.  

Such factors pose a great difficulty for inducers (learning algorithms) to identify 
appropriate decision boundaries from the input space (i.e., the initial or original 
feature set) of IDS datasets. In other words, when the input space is not robust enough 
to discriminate class labels, making further treatments from alternative knowledge 
sources as new supplemental features is highly desirable. To this aim, one common 
approach is to transform the input space into a higher dimensional space from which 
data are more separable. New additional features can be found by either manual ways 
based on prior knowledge or automatic analysis methods (e.g., factor or principle 
component analysis). For example, the XOR Boolean function classification problem 
is inseparable in the two-dimensional space {A1, A2} but well separate in the three-
dimensional space {A1, A2, A1A2}. However, in a high dimensional input space, 
finding new relevant features is a tough task that often requires human’s intervenient 
analyses, but derived features are sometimes not good as expectation. As a result, in 
practice, one often applies standard dimensional-transformation methods (e.g., 
polynomial, radial basic function, or sigmoid kernel) to application domains where 
class discrimination is ambiguous and additional features are hard to be identified. 
Yet, such methods are greatly affected by input parameters and data distribution, thus 
not always achieving a high performance classifier.  In this sense, it is desirable to 
find additional features in such a less complex way that general-purpose algorithms 
such as standard Decision Tree (DT) or Support Vector Machines (SVM) with 
standard kernels can learn the data more efficiently.  

Such a context motivates us to propose a novel approach that treats fuzzy cluster 
information as additional features. These features are selectively incorporated into the 
input space for building an efficient IDS. To this goal, we first present essences to 
construct and select fuzzy cluster features. Then, we propose a concrete algorithm for 
generating a high performance IDS. Eventually, we experimentally show that our 
proposed solution approach outperforms several other methods. 

 The remainder of this paper is organized as follows. Section 2 surveys some 
noticeable data mining-based intrusion detection methods, whereas Section 3 presents 
the problem formulation of our approach. Section 4 describes our proposed solution 
approach for generating an efficient IDS. Section 5 shows the experimental results. 
Section 6 finally gives a conclusion of highlight viewpoints and perspectives of the 
method we propose. 

2   Related Work 

This section provides a succinct survey of some noticeable studies related to data 
mining-based intrusion detection methods. These studies encompass both misuse and 
anomaly intrusion detection. 

Portnoy et al. propose an algorithm that takes the radius of cluster as an input 
threshold parameter [9]. The algorithm partitions an unlabeled training dataset into 
clusters based on a distance measure (e.g., Euclidean distance) and the cluster radius 
threshold. Then, clusters are sorted according to the number of data points inside each 



cluster. Subsequently, some smallest top percents of the sorted clusters are labeled as 
normal, whereas the rest is labeled as attack. In the detection phase, for a testing data 
point p, the algorithm calculates all distances from p to all clusters, and then takes the 
k smallest distances to apply a majority voting method for determining a class label 
for p. In another approach, Eskin et al. present an intrusion detection model based 
principally on calculating an outlier score for a given data point [10]. The 
fundamental notion is that the points in dense regions are assigned to a smaller outlier 
score than the points in sparse regions. The authors employ the Canopy Clustering 
technique to reduce complexity for computing the k-nearest neighbors of each point. 

By contrast, Wang and Stolfo introduce a payload-based method by computing the 
profile byte-frequency distribution and standard deviation of payload network traffic 
during the training phase [11]. In the detection phase, a similarity measurement for a 
test instance is calculated based on a pre-built profile in the training phase. Unlike the 
header-based methods that are often used to detect scanning and probing attacks (e.g., 
DoS, Probe), the payload-based method is thought of as efficient in detecting worms 
that transfer bad data to a service or application. 

Giacinto et al. describe an IDS architecture including multiple one-class k-means 
classifiers [12]. Each classifier is trained from a training subset containing a specific 
attack type belonging to a specific attack class. Then, the final result is achieved by 
fusing classifier outputs using the Decision Template method.  

Fan et al. present a method that uses a decision tree inducer together with injection 
of artificial anomalies to detect unknown and known network intrusions [16]. Unlike 
other methods that assign a default class to unknown instances, the authors introduce a 
sampling method to generate a new training set that can handle both misuse and 
anomaly detection. The idea behind this method is to amplify the density of points in 
sparse regions in the initial training set, based on the distribution of attribute values, 
to discover a boundary between known classes and anomalies. In other words, the 
proposed method automatically injects distribution-based artificial anomalies into the 
initial training set to increase the ability of the classifier in distinguishing anomalous 
from normal network traffic. 

On the other hand, Wu and Yen construct a decision tree-based IDS by introducing 
as a parameter the different proportions of normal instances in a training set to obtain 
the best tree [18]. More specifically, the training set is sampled into several different 
proportions based on the instance space of the normal class. The overall evaluation is 
based on the average value of results. 

Many hybridized intrusion detection methods that employ both clustering and 
classification techniques are widely introduced by the community. For example, Shon 
and Moon develop a hybrid IDS using multiple techniques [13]. This study proposes a 
hybrid algorithm, called Enhanced SVM, by combining Soft-Margin SVM (a 
supervised classifier) and One-Class SVM (an unsupervised classifier). The idea 
behind this IDS includes two phases. In the first phase, the system uses TCP/IP 
Fingerprinting as an online filter to drop malformed incoming packets, a Genetic 
Algorithm (GA) to select relevant feature sets, and a Self-Organizing Map (SOM) to 
create packet profiles. In the second phase, the system trains the Enhanced SVM 
classifier by using the packet profiles generated from the SOM.  



In addition, Xiang et al. come up with a multi-level hybrid prototype by combining 
two techniques, i.e., Supervised Decision Tree and Unsupervised Bayesian Net [14]. 
The prototype is hierarchically structured in forms of class labels in training set.  

Finally, Depren et al. present a hybrid IDS architecture comprising three modules, 
i.e., anomaly analyzer, misuse analyzer, and decision support system (DSS) [15]. The 
anomaly analyzer uses an SOM to model normal network traffic, whereas the misuse 
analyzer employs a Decision Tree to classify attacks. DSS aims at interpreting the 
combined results of anomaly and misuse analyzers. The anomaly analyzer is further 
specialized into three sub-analyzers based on three different protocol types, i.e., TCP, 
UDP, and ICMP. Given a test instance, both anomaly and misuse analyzers are 
operated concurrently to identify types of the instance. Then, DSS assigns a class 
label for the test instance based on the results from the two analyzers.  

3   Problem formulation 

Clustering aims to organize data into groups (clusters) according to their similarities 
measured by some concepts. In metric spaces, similarity is often defined in term of a 
distance norm measured between data vectors. Because the merit degree of 
dimensions is different, dimensions are often weighted by a merit measure (e.g., 
entropy) regarding to a given distance formula. Unlike crisp clustering that crisply 
assigns each data point to a separate cluster, fuzzy clustering allows each data point to 
belong to various clusters with different membership degrees (or weights). Fuzzy 
clusters are expressed by their centers (or centroids) that are simultaneously found in 
the partitioning process of a fuzzy clustering algorithm. The number of clusters (k) is 
often inputted as a parameter to a fuzzy clustering algorithm. The nk membership 
matrix W={wij  [0,1]} of n data points is found in the fuzzy clustering process. For 
example, Figure 1 describes the instance space of a training set partitioned into four 
fuzzy clusters, where membership weights that data point x1 belongs to clusters '1', '2', 
'3', and '4' are 0.3, 0.14, 0.16, and 0.4, respectively.    

Let us first denote S={X,Y} the original training set of n data points X={x1,…,xn}, 
where each point xi  is an m-dimensional vector (xi1,…,xim) and assigned to a label 
yiY belonging one of the c classes ={1, …,c}.  

Let { | max( ), 1... , 1... }i i ijB b b w j k i n     hold the maximum membership 
weight of each point xi, and { | arg max ( ), 1... }i i j ijZ z z w i n    contains the cluster 
(symbolic) number assigned to each point xi.  

For conciseness in describing the approach, we term two column matrices Z and B 
as two “basic cluster features”. In addition, we name the jth column of the membership 
matrix (W) as Pj, and term the columns P1, ..., Pk  as “extended cluster features”. We 
also term the training set added cluster features {X, Z, B, P1, …, Pk, Y} as a 
“manipulated training set”. These notations and terminologies are specifically 
depicted Figure 1. 

 



 
Fig. 1. A manipulated training set, resulting from adding cluster features into the input space. 

The problem formulation follows: “Given a training set S={X,Y} and an inducer I, 
the goal is to find a high performance classifier induced by I over the m initial 
features of S and the supplemental cluster features {Z, B, P1, P2, …, Pk} resulting 
from a parameterized-by-k fuzzy clustering based on X”.  

Undoubtedly, fuzzy clustering has a great potential in expressing the latently 
natural relationships between data points. Here, an arising question is that whether 
information about fuzzy clusters benefits certain inducing types. In our investigation, 
there exist several types of inducers to which fuzzy cluster features bring about 
helpfulness. For example, in Support Vector Machine (SVM) context, SVM’s 
decision boundary often falls into a low density region, but the true boundary might 
not pass through this region, thus resulting in a poor classifier. However, when 
supplemented with relevant cluster features, data points in high dimensional space are 
likely to be more uniform, hence avoiding an improper separation across this region. 
In fact, the crucial factor to the success of SVM lies in a kernel trick that plays the 
role as mapping the initial input space to a much higher dimensional feature space, 
where the transformed data are expected to be more separable from a linear hyper-
plane function. In order words, while other inducers somewhat find dimensionality a 
curse, blessing of dimensionality could enable SVM to be more effective. In this 
sense, incorporating relevant cluster features into the initial input space benefits SVM 
inducers.  

Another consideration relates to Univariate Decision Tree (DT) setting. Due to its 
greedy characteristic, DT inducer examines only one ahead partitioning step for 
growing child trees, rather than considering deeper partitioning steps that can achieve 
a better tree. This characteristic can lead to an improper tree-growing termination, and 
thus generate a poor classifier. In this sense, incorporating relevant cluster features 
into the initial input space helps DT inducer choose splits more appropriately for tree 
growing, hence achieving a more efficient classifier (decision tree). 

4   Fuzzy Cluster Feature-based Classification 

In this section, we point out the ways to generate and select cluster features for 
inducers. Then, we come up with a straightforward algorithm for building a high 
performance classifier from the initial features and supplemental cluster features.  

X Z B P1 P2 P3 P4 Y 
x1 '4' 0.4 0.3 0.14 0.16 0.4 y1 
x2 '3' 0.45 0.12 0.35 0.45 0.18 y2 
… … … …. …. … … ... 
xn … … …. …. … … yn 
 Basic cluster features Extended cluster features (W) 

Class labels n training data points Centroid 1 

Centroid 2 

Centroid 3 
Centroid 4 

x1 

x2 

0.3 
0.14 

0.16 0.4 



4.1   Cluster Feature Generation and Selection 

Basically, cluster features can be generated by any fuzzy clustering algorithm. 
However, for concreteness, we express cluster features in term of the fuzzy c-means 
clustering [17], which solves the minimization problem to the objective function of 
Formula 1. In a common form, the objective function (Formula 1) reaches to a 
minimum over W (membership matrix) and V (centroids), by Formulas 2 and 3.  
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where k is the number of clusters,  is a fuzzy constant, and ( , )i jd x v is the 
distance from point ix X  to  centroid jv V . 

 
The fuzzy c-means clustering tries to find the best fit for a fixed value of k, the 

number of clusters. However, as an essential problem of clustering, determining an 
appropriate parameter k is a tough task. Even though prior knowledge of target classes 
is known, the number of clusters corresponding to the number of classes or subclasses 
is not always meaningful. The most common way to find the reasonable number of 
clusters is to run the algorithm with various values of k  {2,…, kmax} and then 
employ a validity measure to evaluate cluster fitness. There are several validity 
measures proposed in the literature. Some of them are known as partition coefficient, 
classification entropy, partition index, separation index, Xie and Beni’s index, and 
Dunn’s index [1], [2], [15]. 

In our approach, however, the need is that data should be grouped in the way that 
reveals helpful information for inducers, not for the sense of clustering itself, even 
though the number of clusters might be wrong. In other words, using validity 
measures to determine the best number of clusters is not reliable enough to derive 
good cluster features for classifiers. In such a vision, instead of endeavoring to find 
the best k with validity measures, we use the over-production method to generate 
several candidate classifiers for different values of k and then evaluate their 
performance to determine the best one. Evaluating the performance of candidate 
classifiers can be based either on a validation set or Cross-Validation method. By 
such a way, a proper value of k is simultaneously found in the process of finding a 
maximum performance classifier from candidate classifiers. 

In addition, the use of cluster features should be examined individually for a 
concrete inducing type. In our observation, two basic cluster features (Z, B) are 
benefic enough for DT inducer, instead of including k extended cluster features 
(P1,…,Pk). By contract, in the SVM context, it is applicable to employ either only the 
basic cluster features (Z, B) or all the cluster features (Z, B, P1,…,Pk) for building a 



SVM classifier. Another solution that can be applied for any inducing type is to 
employ feature selection techniques (e.g., filter, wrapper) to pick out high merit 
features from both m initial input features and all (k+2) cluster features. The desire to 
such a way is that applying feature selection techniques on (m+k+2) features brings 
about a smaller but more qualitative feature subset than those only on m initial 
features. Here, note is that feature selection is simultaneously carried out in the 
process of building candidate classifiers. In a nutshell, formally, there are three 
possibilities to incorporate cluster features into the initial features (A1, …, Am), i.e.,   
(A1, …, Am, Z, B),  (A1, …, Am, Z, B, P1, …, Pk), or Feature Selection(A1, …, Am, Z, B, 
P1, …, Pk). 

4.2   Algorithm 

The proposed algorithm, namely CFC, is depicted by the pseudo-code from Figure 
2. Related notations are indicated in Table 1. The key idea is that, for each clustering 
with different number of clusters (kK), the algorithm builds and valuates a candidate 
classifier from the training set manipulated with a given feature selection type, by q-
fold cross validation. The resulting classifier is the one exhibiting maximum 
performance. 

Table 1. Notations used to describe the algorithm in Figure 2. 

Notation Description 
 A set of c class labels {1, …, c}. 
S={X,Y} The original training set, where X comprises n data points (xi) defined from m 

initial features {A1,…,Am} and Y  contains class labels (yi  ) of xi. 
I A base inducer (e.g., SVM, Decision Tree). 
K A predefined integer set representing possible number of clusters. 
 A feature selection technique that returns a specific feature subset. 
Ck A candidate classifier resulting from a clustering with k fuzzy clusters. 
Ck* The best classifier among |K| candidate classifiers. 
Vk A k  m matrix of k centroids obtained from clustering X into k clusters. 
Vk* A k*  m matrix of k* centroids, corresponding to Ck*. 
Wk An n  k membership matrix of n data points xi  X, corresponding to Vk. 

kB  A column matrix containing the maximum membership weight of each xi  X. 
kZ  A column matrix representing the cluster (symbolic) number of each xi  X. 

  A horizontal concatenation operator between two matrices, say M1 and M2, 
having the same number of rows. M1  M2 results in a new matrix, say M, by 
horizontally joining M2 to M1. Columns in M are columns in M1 plus columns 
in M2. Matrix M has the same number of rows as M1 and M2.  

 
In the training phase, the algorithm first normalizes continuous features (e.g., by a 

variance-based spread measure) to avoid the dispersion in different ranges (Line 1). 
Here, it is noticed that the normalized data (X) is merely for clustering purpose, 
whereas classifiers are built by using the original data (X). In addition, instead of 
executing clustering with parameter k ranging from 2 to a given kmax value, the 
algorithm uses a predefined set K={k} to mainly focus on important values of k, 



which can be recognized by experiment or prior knowledge (Line 2). As mentioned in 
Subsection 4.1, there are three cases to select relevant features from the (m+k+2) 
features of the manipulated training set for building classifiers. Hence, for general 
purpose, the algorithm introduces an input parameter   for specifying the way to 
select features from the manipulated training set (Lines 6-10). Subsequently, the 
algorithm builds and evaluates one candidate classifier for each clustering (Lines 11, 
12). Here, note is that evaluating candidate classifiers is based on the averaged 
performance of q-fold stratified cross validation from the manipulated training set. 
Finally, the algorithm determines one best classifier from |K| candidate classifiers, 
together with a corresponding centroid set (Lines 14, 15).  

 
 

Training phase 
Input: S={X, Y}, I, K, , and   
Output: *kC , *kV  
1: Normalize( )X X   
2: For each k  K do 
3: 1{ , } FuzzyClustering( , )k kW V X k  
4: { | max( ), 1... , 1... }k

i i ijB b b w i n j k     

5: { | arg max ( ), 1... , 1... }k
i i j ijZ z z w i n j k     

6: Case           // Choose features for classifier;  D is a manipulated training set 
7:   = 1: ( )k kD X Z B       //Initial  features and basic cluster features  

8:   = 2: ( )k k kD X Z B W    //Initial  features and all cluster features  
9:   = 3:  
      Begin     
   ( , )k k kF X Z B W Y      //Apply  a feature selection technique 

   ( )k k kD X Z B W   [F]  //Project data by the derived feature subset 
      End  
10: End Case 
11:  ( , )kC I D Y  //Build a candidate classifier, using inducer I 
12: ( )kPerformance C  (Averaged performance of q-fold cross validation 
          based on (D,Y) and I ) 
13: End For 
14: * arg max ( ),

kk C kC Performance C k K   //Determine one best classifier  

15: Return *
*, k

kC V  
Operation  phase 
16: For a unlabeled testing instance x: 
17: Normalize( )x x   
18: Compute cluster features for x , based on *kV  (Formula 3) 
19: Label x (with taking the derived cluster features into account) by *kC  

Fig. 2. Algorithm CFC:  generating a classifier from the initial features and cluster features. 



As a whole, determining one best classifier from |K| candidate classifiers can be 
grounded under different angles, e.g., focusing on hard classes rather than only basing 
on a generalization performance metric. For example, in the intrusion detection 
problem, both R2L attack and Normal classes exhibit similar behaviors and therefore 
are often misclassified to each other. In such a case, the accuracy ratio of R2L to 
Normal classes can be chosen as an additional trade-off threshold to evaluate 
classifier ability. Moreover, it is noted that heuristic-based clustering algorithms 
might produce different centroids for different runs with the same parameters. Hence, 
the resulting classifier should be determined by some runs of the proposed algorithm. 

In the operation phase, for an unlabeled testing instance x, the algorithm first 
normalizes x in the same way as those applied to the training set. Then, cluster 
features of x are calculated based on the centroid set *kV , using Formula 3. Finally, 
such corresponding features are input to classifier *kC  for final prediction.  

5   Experiments 

5.1   Dataset 

Our experiments are conducted on the intrusion detection dataset, KDD99 [4]. This 
dataset was derived from the DARPA dataset, a format of TCPdump files captured 
from the simulation of normal and attack activities in the network environment of an 
air-force base, created by MIT’s Lincoln Laboratory [5]. Although the DARPA 
dataset (and hence KDD99 dataset) has been criticized by the research community 
mainly because it is unrepresentative of a real-life network scenario [6, 7], so far it is 
still the only intrusion detection evaluation benchmark for research purposes. 

The (ten-percent) KDD99 dataset comprises 494,021 training instances and 
311,029 testing instances. Due to such a large data volume, the research community 
mostly uses small subsets of the dataset for evaluating IDS methods. Each instance in 
the dataset represents a network connection, i.e., a sequence of network packets 
starting and ending at some well defined times, between which data flows to and from 
a source IP address to a target IP address under some well defined protocol. Such a 
connection instance is described by a 41-dimensional feature vector and labeled with 
respect to five classes: Normal, Probe, DoS (denial of service), R2L (remote to local), 
and U2R (user to root).    

To facilitate experiments without losing generality, we only use a smaller set of the 
KDD99 dataset for the purpose of evaluating and comparing our method to others. In 
particular, the training and testing sets used in our experiments are made up of 19,752 
instances and 36,748 instances that are selectively extracted from the KDD99 training 
and testing sets, respectively. The principle for forming such reduced sets is to get all 
instances in each small group (attack type), but only a limited amount of instances in 
each large group, from both the KDD99 training and testing sets. More explicitly, we 
randomly select 3,000 instances in each large group Neptune and smurf, while 
gathering all instances in the remaining groups from both the KDD99 training and 
testing sets to form the reduced training and testing sets, respectively. For class 
normal, we randomly choose 5,000 instances from the KDD99 training set and 10,000 



instances from the KDD99 testing set for the reduced training and testing sets, 
respectively. Class distribution of these two reduced sets is shown in Table 2. 

 Table 2. Class distribution of the reduced training and testing sets used in experiments. 

Class Training Set Testing Set 
DoS 9,467 13,761 
Probe 4,107 4,163 
R2L 1,126 8,751 
U2R 52 70 
Normal 5,000 10,000 
Total 19,752 36,748 

5.2   Experiment Setup 

In our experiments, the predefined set K is set to {2, 3, …, 50}. In addition, the fuzzy 
c-means clustering is employed to generate cluster features. Convergence criterion 
(termination tolerance) of the fuzzy clustering is set to 10-6, whereas the fuzzy degree 
(exponent  in Formula 3) is set to 4. On the other hand, continuous futures are 
normalized by max_min value ranges.  

To handle different feature types as well as to express different merit contributions 
of features in the Euclidian space, we propose a distance measure as in Formula 4. 
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The base inducers (I) tested in our method are the C4.5 decision tree [8] and the 

support vector machine [20] with polynomial kernel and radial basic function kernel. 
The parametric setting of these inducers is specifically shown in Table 4. 

The feature selection technique () used in this experiment is the correlation-based 
feature subset evaluation [19] and the genetic search [21]. This technique evaluates 
the merit of a feature subset by considering the individual predictive ability of each 



feature along with the degree of redundancy between them. Those subsets that are 
highly correlated with the class while having low intercorrelation are preferred. 

Candidate classifiers are evaluated by an attack type-based stratified cross 
validation (10 folds). The maximum performance classifier is determined based on 
overall accuracy (i.e., the ratio of the number of correctly classified instances to the 
total number of instances in the training set).  

 

5.3   Experiment Results 

The experimental results of our algorithm (implemented in Matlab) and others are 
shown in Tables 3 and Figure 3. Specifically, Table 4 presents True Positive (TP) and 
False Positive (FP) rates of classifiers with respect to each class label, whereas Figure 
3 portrays TP rates of classifiers based on Table 4. Here, all compared classifiers are 
built from the same training set and tested on the same testing set as described in 
Subsection 5.1.  

To have a wider comparative view, we run our algorithm (CFC) with different 
settings of two input parameters (i.e., I: base inducer, and : the way to employ 
cluster features for classifiers). The results of such runs are listed in Rows 10-22 of 
Table 3. Here, it is mentioned that stand-alone DT and SVM (Rows 4, 6, 8) have the 
same settings as those parameterized to CFC.  

Figure 3 shows that, as a whole, our method considerably outperforms the others 
with respect to TP rates in all five classes and on weighted average. Particularly, our 
method is significantly better than all the others in detecting hard classes (i.e., R2L 
and U2R). In addition, as shown in Table 3, FP rates of all the tested methods are 
virtually equivalent (i.e., approximately one percent).  

It also noticed that the proposed method considerably improve the classification 
ability of base inducers (SVM and DT). More precisely, by using the same feature 
selection technique as described in Subsection 5.2, SVM classifier built from the 
manipulated training set (i.e., CFC(I=SVM, =3)) is considerably superior to SVM 
classifier built from the original training set (i.e., SVM_FS). Similarly, CFC(I=DT, 
=3) considerably outperforms DT_FS. This tells that applying a feature selection 
technique on the manipulated training set produces a higher qualitative feature subset 
(including base features and cluster features) than that on the original training set.   

Regarding SVM classifiers, although we further test PSVM with exponent degrees 
ranging from 2 to 6, its performance remains worse than CFC(PSVM(degree=2), 
={1,2,3}). More specifically, on average, CFC(PSVM(degree=2), ={1,2,3}) gives 
an 81.06% TP rate (with a 0.66% FP rate), whereas PSVM(degree={2, …, 6}) 
produces a 72.18% TP rate  (with a 0.81% FP rate). This tells that cluster features 
benefit SVM in high dimensionality.  

 
  
 
 
 



 Table 3. True Possitive and False Possitive rates of classifiers.  

Classifier  DoS Probe R2L U2R Normal Average 
1. Boosting TP 94.82 81.19 16.84 22.86 97.16 70.04 
 FP 0.62 0.63 0.93 0.31 0.44 1.87 
2. Bagging TP 97.34 81.74 12.32 25.71 96.25 69.87 
 FP 0.29 0.33 0.32 0.41 0.54 1.25 
3. NBTree TP 94.49 82.24 14.26 21.43 95.47 69.1 
 FP 0.12 0.26 0.88 0.11 0.97 2.25 
4. DT TP 95.83 81.07 10.27 18.57 97.08 68.54 
 FP 0.85 0.44 0.86 0.76 0.63 2.06 
5. DT_FS TP 95.83 81.07 10.27 18.57 97.08 68.54 
 FP 0.45 0.7 0.56 0.82 0.59 2.06 
6. PSVM TP 92.11 80.34 8.29 17.14 94.32 65.85 
 FP 0.84 0.12 0.87 0.99 0.4 1.62 
7. PSVM_FS TP 92.11 80.34 8.29 17.14 94.32 65.85 
 FP 0.34 0.82 0.42 0.41 0.4 1.62 
8. RSVM TP 90.32 83.54 9.34 15.71 93.18 65.66 
 FP 0.25 0.27 0.31 0.22 0.31 0.89 
9. RSVM_FS TP 90.32 83.54 9.34 15.71 93.18 65.66 
 FP 0.97 0.32 0.64 0.38 0.34 2.06 
10. CFC(I=DT,=1) TP 98.72 94.29 38.21 57.14 99.62 80.29 

 FP 0.42 0.48 0.98 0.33 0.18 1.43 
11. CFC(I=DT,=2) TP 98.11 93.66 37.15 43.12 98.71 79.02 
 FP 0.62 0.28 0.36 0.29 0.41 1.02 
12. CFC(I=DT,=3) TP 98.26 88.71 39.17 58.57 98.12 79.43 
 FP 0.33 0.21 0.82 0.55 0.22 1.21 
13. CFC(I=PSVM,=1) TP 99.26 95.66 37.65 61.43 99.45 80.56 
 FP 0.81 0.52 0.63 0.32 0.37 1.52 
14. CFC(I=PSVM,=2) TP 98.27 95.18 40.28 64.29 99.52 80.82 
 FP 0.63 0.96 0.68 0.16 0.71 2.16 
15. CFC(I=PSVM,=3) TP 99.38 96.68 41.19 60 99.72 81.82 
 FP 0.64 0.93 0.5 0.73 0.33 1.48 
16. CFC(I=RSVM,=1) TP 99.65 96.89 41.78 62.86 99.55 82.14 
 FP 0.14 0.49 0.72 0.27 0.56 1.65 
17. CFC(I=RSVM,=2) TP 99.02 94.35 36.86 58.57 98.15 79.9 
 FP 0.68 0.95 0.13 0.68 0.63 1.58 
18. CFC(I=RSVM,=3) TP 99.21 95.02 42.27 65.71 98.77 81.75 
 FP 0.11 0.33 0.71 0.73 0.28 1.18 
Note: 
- DT: Decision Tree(pessimistic pruning, confidence=0.2, min(# instances per leaf)=7). 
- Boosting: AdaBoost(DT, 10 classifiers) [22] 
- Bagging: Bagging(DT, 10 classifiers) [23] 
- PSVM: SVM with Polynomial Kernel (degree = 2). 
- RSVM: SVM with Radial Basic Function Kernel (gama = 0.1). 
- Classifier 5, 7, 9: trained on the original training set, with applying the feature selection 
technique as described in Subsection 5.2. 
- Classifier 1-4, 6, 8: trained on the original training set, without applying feature selection. 
- Classifier 10-18: built from our algorithm. 

 
 



 
Fig. 3. Chart representing classifier comparisons 

6   Conclusion and Future Work 

This study presents an efficient method in applying data mining to the intrusion 
detection problem. The incorporation of cluster features resulting from a fuzzy 
clustering into the training process is proved to be efficient for enhancing the strength 
of a base classifier. The way to achieve a high performance classifier from a training 
set supplemented with cluster features is straightforwardly addressed. It is empirically 
shown that, as a whole, our method clearly outperforms several methods, when 
evaluated on the KDD99 dataset.   

However, to be more objective in evaluating any data mining solution as well as 
overcome criticized drawbacks of the KDD99 intrusion detection dataset, our future 
work will be to test the proposed method on other real datasets. In particular, our 
current effort is fulfilling a honeypot system for the goal of gathering both real 
intrusion and normal traffic activities. Such a real dataset will then be employed to 
evaluate the method we proposed. 

Finally, although the data mining domain is mature, the need to increase accuracy 
of classification models, in general, and IDSs, in specific, is still challenging to 
researchers. We believe that our attempt in this paper is a useful contribution to the 
research community. 
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