
Joint Management and Analysis of Textual
Documents and Tabular Data within the

AUDAL Data Lake

Pegdwendé N. Sawadogo1, Jérôme Darmont1, and Camille Noûs2

1 Université de Lyon, Lyon 2, UR ERIC
5 avenue Pierre Mendès France, F69676 Bron Cedex, France
{pegdwende.sawadogo,jerome.darmont}@univ-lyon2.fr

2 Université de Lyon, Lyon 2, Laboratoire Cogitamus
camille.nous@cogitamus.fr

Abstract. In 2010, the concept of data lake emerged as an alterna-
tive to data warehouses for big data management. Data lakes follow a
schema-on-read approach to provide rich and flexible analyses. However,
although trendy in both the industry and academia, the concept of data
lake is still maturing, and there are still few methodological approaches
to data lake design. Thus, we introduce a new approach to design a
data lake and propose an extensive metadata system to activate richer
features than those usually supported in data lake approaches. We im-
plement our approach in the AUDAL data lake, where we jointly exploit
both textual documents and tabular data, in contrast with structured
and/or semi-structured data typically processed in data lakes from the
literature. Furthermore, we also innovate by leveraging metadata to acti-
vate both data retrieval and content analysis, including Text-OLAP and
SQL querying. Finally, we show the feasibility of our approach using a
real-word use case on the one hand, and a benchmark on the other hand.

Keywords: Data lakes · Data lake architectures · Metadata manage-
ment · Textual documents · Tabular data

1 Introduction

Over the past two decades, we have witnessed a tremendous growth of the
amount of data produced in the world. These so-called big data come from di-
verse sources and in various formats, from social media, open data, sensor data,
the Internet of things, etc. Big data induce great opportunities for organizations
to get valuable insights through analytics. However, this presupposes storing and
organizing data in an effective manner, which involves great challenges.

Thus, the concept of data lake was proposed to tackle the challenges related to
the variety and velocity characteristics of big data [10]. A data lake can be defined
as a very large data storage, management and analysis system that handles any
data format. Data lakes use a schema-on-read approach, i.e., no schema is fixed
until data are analyzed [12], which provides more flexibility and richer analyses



2 P.N. Sawadogo et al.

than traditional storage systems such as data warehouses, which are based on a
schema-on-write approach [20]. Yet, in the absence of a fixed schema, analyses
in a data lake heavily depend on metadata [16]. Thus, metadata management
plays a vital role.

Although quite popular in both the industry and academia, the concept of
data lake is still maturing. Thence, there is a lack of methodological proposals
for data lakes implementations for certain use cases. Existing works on data
lakes indeed mostly focus on structured and/or semi-structured data [15, 17,
23, 26], with little research on managing unstructured data. Yet, unstructured
data represent up to 80% of the data available to organizations [9]. Therefore,
managing texts, images or videos in a data lake is an open research issue.

Furthermore, most of data lake proposals (about 75%) refer to Apache Hadoop
for data storage [31]. However, using Hadoop requires technical human resources
that small and medium-sized enterprises (SMEs) may not have. Thence, alter-
natives are needed. Last but not least, data lake usage is commonly reserved
to data scientists [12, 20, 24]. Yet, business users represent a valuable expertise
while analyzing data. Consequently, opening data lakes to such users is also a
challenge to address.

To meet these issues, we contribute to the literature on data lakes through
a new approach to build and exploit a data lake. We implement our approach
in AUDAL (the AURA-PMI3 Data Lake). AUDAL exploits an extensive meta-
data system to activate richer features than common data lake proposals. More
concretely, our contribution is threefold. First, we introduce a new methodolog-
ical approach to integrate both structured (tabular) and unstructured (textual)
data in a lake. Our proposal opens a wider range of analyses than common data
lake proposals, which goes from data retrieval to data content analysis. Second,
AUDAL also innovates through an architecture leading to an “inclusive data
lake”, i.e, usable by data scientists as well as business users. Third, we propose
an alternative to Hadoop for data and metadata storage in data lakes.

The remainder of this paper is organized as follows. In Section 2, we focus
on our metadata management approach. In Section 3, we detail AUDAL’s archi-
tecture and the analyses it allows. In Section 4, we demonstrate the feasibility
of our approach through performance measures. In Section 5, we review and
discuss the related works from the literature. Finally, in Section 6, we conclude
the paper and hint at future research.

2 Metadata Management in AUDAL

The most critical component in a data lake is presumably the metadata man-
agement system. In the absence of a fixed schema, accessing and analyzing the
lake’s data indeed depend on metadata [15, 23, 35]. Thence, we particularly focus
in this section on how metadata are managed in AUDAL.

3 AURA-PMI is a multidisciplinary project in Management and Computer Sciences,
aiming at studying the digital transformation, servicization and business model mu-
tation of industrial SMEs in the French Auvergne-Rhône-Alpes (AURA) Region.



Data Management and Analysis within the AUDAL Data Lake 3

First and foremost, let us precise what we consider as metadata. We adopt
the definition: “structured information that describes, explains, locates, or oth-
erwise makes it easier to retrieve, use, or manage information resources” [37].
This definition highlights that metadata are not limited to simple atomic data
descriptions, but may be more complex.

AUDAL’s metadata management system is based on MEDAL [33], a meta-
data model for data lakes. We adopt MEDAL because it is extensive enough to
allow both data exploration and data content analysis by business users. In line
with MEDAL, our metadata system implements data polymorphism, i.e., the
simultaneous management of multiple raw and/or preprocessed representations
of the same data [33]. Our motivation is that different analyses may require the
same data, but in various, specific formats. Thus, pregenerating several formats
for data would lead to readily available and faster analyses [2, 22].

Still in line with MEDAL, we use the term “object” as our lower-granularity
data item, i.e., either a tabular or textual document. We also exploit three types
of metadata that are detailed in the following sections. Section 2.1 is dedicated to
intra-object metadata management; Section 2.2 focuses on inter-object metadata
management; and Section 2.3 details global metadata management. .

2.1 Intra-object Metadata

Definition and Generation Intra-object metadata are atomic or more com-
plex information associated with a specific object. We classify them in two cat-
egories.

Metadata properties are information that describe an object. They often take
the form of simple key-value pairs, e.g., author name, file path, creation date, etc.
However, they may sometimes be more complex. Particularly, the description of
the columns of a table can be viewed as a complex form of metadata properties.

Metadata properties are mostly provided by the file system. However, espe-
cially when dealing with textual documents, we use Apache Tika [36] to auto-
matically extract metadata such as the author, language, creation timestamp,
mime-type and even the program used to edit the document.

Refined representations are more complex. When an object is transformed,
the result may be considered as both data and metadata. This is in line with the
definition we adopt for metadata, since such transformed data make easier the
use of the original object. In AUDAL, refined representations of textual docu-
ments are either bag-of-word vectors [30] or document embedding vectors [21].
Bag-of-words can easily be aggregated to extract top keywords from a set of
documents. However, they do not suit distance calculation, due to their high
dimensionality. By contrast, embedding vectors do not bear this disadvantage,
while allowing the extraction of top keywords. Refined representations of tab-
ular data are plain and simply relational tables. Eventually, let us note that
AUDAL’s metadata system may be extended with additional types of refined
representations, if needed.

To generate bag-of-word representations, we perform for each document a
classical process: tokenizing, stopword removal, lemmatization and finally word



4 P.N. Sawadogo et al.

count. To generate embedding representations, we project documents in an em-
bedding space with the help of the Doc2Vec model [21]. Each document is thus
transformed into a reduced vector of only a few tens of coordinates. Eventually,
we use a custom process to generate refined representations from tables. Each
tabular document is read in a Python dataframe and then transformed into a
relational table.

Modeling and Storage Still using MEDAL [33], we follow a graph approach
to model the interactions between data and metadata. Therefore, AUDAL’s
metadata system is centered on Neo4J [29]. We exploit four types of nodes to
manage intra-object metadata.

Object nodes represent raw objects. They contain atomic metadata, i.e.,
metadata properties, in particular the path to the raw file. As Neo4J does not
support non-atomic data inside nodes, we define Column nodes to store column
descriptions. Column nodes are thus associated to Object nodes only in the case
of tabular documents.

Each Object node is also associated with Refined nodes that reference re-
fined representations stored in other DBMSs. Refined representations of textual
documents, i.e., embedding and bag-of-word vectors, are indeed stored in Mon-
goDB [27]. Similarly, refined representations of tabular documents are stored in
the form of SQLite tables [34]. Refined nodes stored in Neo4J actually contain
references to their storage location.

Figure 1 illustrates the organization of intra-object metadata.

Fig. 1. Organization of intra-object metadata in AUDAL



Data Management and Analysis within the AUDAL Data Lake 5

2.2 Inter-object Metadata

Definition and Generation Inter-object metadata are information that reflect
relationships between objects. We manage two types of inter-object metadata.

Data groupings are organized tag systems that allow to categorize objects
into groups, i.e., collections. Each data grouping induces several groups, i.e.,
collections. Then, data retrieval can be achieved through simple intersections
and/or unions of groups. Data groupings are particularly interesting as they are
not data type-dependent. For example, a grouping based on data source can serve
to retrieve tabular data as well as textual documents, indistinctly (Figure 2A).

Fig. 2. Organization of inter-object metadata in AUDAL

Data groupings are usually generated on the basis of categorical properties.
Starting from the property of interest, we first identify possible groups. Then,
each object is associated to the group it belongs to.

Similarity links are information on relatedness between objects. These meta-
data are obtained applying a suitable similarity measure between couple of tex-
tual documents. In our case, we use the cosine similarity that is classically used
in information retrieval to compare document vector-space representations [1].
As the number of potential links increases exponentially with the number of
documents, we simply retain the links of each document to its ten closest. When
dealing with tabular data, we use primary key/foreign key relationships to link
columns and thus connect tables. We deduce primary key/foreign key relation-
ships from raw data with the help of the PowerPivot method [7], which is casually
used in structured data lakes [14].

Modeling and Storage To set up data groupings, we introduce two types of
nodes in AUDAL’s metadata catalogue: Grouping and Group. A Grouping node



6 P.N. Sawadogo et al.

represents the root of a partition of objects. Each Grouping node is associated
with several Group nodes that represent the resulting parts of such a partition.
For example, a partition on data source could lead to a Group node for “ac-
counting department”, another for “human resources” and so on (Figure 2A).
Object nodes are then associated with Group nodes with respect to the group
they belong to. A data grouping organization may thus be seen as a three-layer
tree graph where the root node represents the grouping instance, intermediate
nodes groups, and leaf nodes objects.

More simply, similarity measures in AUDAL are edges linking nodes. Such
edges potentially carry information that indicates the strength of the link, how
it was measured, its orientation, etc. More concretely, textual similarity is repre-
sented by edges of type Document Similarity between Neo4J Object nodes. We
model tabular data similarity with Coulumn Joinability edges between Column
nodes to connect primary key/foreign key column pairs that appear to be join-
able. Figure 2B depicts an instance of Column Joinability edge that connects
two tables through columns.

2.3 Global Metadata

Definition and Generation Global metadata are data structures that are
built and continuously enriched to facilitate and optimize analyses in the lake.
AUDAL includes two types of global metadata.

Semantic resources are knowledge bases (thesauri, dictionaries, etc.) that
help improve both metadata generation and data retrieval. Dictionaries allow
filtering on specific terms and building vector representations of documents.
Similarly, AUDAL uses a thesaurus to automatically expand term-based queries
with synonyms. Such semantic resources are ingested and enriched by lake users.

Indexes are also exploited in AUDAL. An inverted index is notably a data
structure that establishes a correspondence between keywords and objects from
the lake. Such an index is particularly needed to support and, above all, speed-
up term-based queries. There are two indexes in AUDAL: document index and
table index. The first handles the entire content of each textual document, while
the latter collects all string values in tabular documents

Modeling and Storage As global metadata are not directly linked to objects,
we do not focus on their modeling, but on their storage, instead. In AUDAL,
we manage indexes with ElasticSearch [11], an open-source indexing service that
enforces scalability. We define in ElasticSearch an alias to allow simultaneous
querying on the two indexes. Eventually, we store semantic resources, i.e., the-
sauri and dictionaries, in a MongoDB collection. Each is thus a MongoDB doc-
ument that can be updated and queried.

3 AUDAL’s Architecture and Analysis Features

In this section, we highlight how AUDAL’s components are organized (Sec-
tion 3.1) and the range of possible analyses (Section 3.2).



Data Management and Analysis within the AUDAL Data Lake 7

3.1 AUDAL Architecture

AUDAL’s functional architecture is made of three main layers: a storage layer,
a metadata management layer and a data querying layer (Figure 3).

Fig. 3. Architecture of AUDAL

The storage layer is in charge of storing raw and processed data, as well as
metadata, through a combination of storage systems, each adapted to a specific
storage need. In AUDAL, we use a simple file system for raw data storage, a
graph DBMS to store links across data entities, a document-oriented DBMS to
store refined representations and a relational DBMS for table storage.

The metadata management layer is made of a set of processes dedicated
to data polymorphism management. More concretely, this layer is in charge of
generating metadata, notably refined representations from raw data, as well as
links. It allows future analyses and avoids a data swamp, i.e., a data lake whose
data cannot be accessed [35]. The data swamp syndrome is indeed often caused
by a lack of efficient metadata management system.

Finally, the data querying layer is an interface that consumes data from
the lake. Its main component is a representational state transfer application pro-
gramming interface (REST API) from which raw data and some ready-to-use
analyses are accessible to data scientists. However, a REST API is not accessible
to business users who, unlike data scientists, do not have enough skills to trans-
form raw data into useful information on their own. In addition, business users
are not familiar with API querying. Thence, we also provide a graphical analysis
platform for them in AUDAL. This platform features the same functions as the
REST API, but in a graphical way. Thus, each type of user can access the lake
with respect to its needs, which makes AUDAL “inclusive”, unlike the common
vision of data lakes that excludes business users [12, 20, 24].



8 P.N. Sawadogo et al.

Overall, AUDAL’s architecture looks a lot like a multistore system, i.e., a
collection of heterogeneous storage systems with a uniform query language [22].
AUDAL indeed offers a single REST API to query data and metadata across
different systems (Neo4J, MongoDB, ElasticSearch, and SQLite). However, AU-
DAL also features an extensive metadata management layer that goes beyond
what multistore systems do, i.e., multistores handle only intra-object metadata.

3.2 AUDAL’s Analysis Features

Data Retrieval Data retrieval consists in filtering data from the lake. The
techniques we propose for data retrieval are suitable for both textual and tabular
documents.

Term-based querying allows to filter data with respect to a set of keywords It
includes a fuzzy search feature that allows to expand queries with syntactically
similar terms.

Navigation exploits groupings, i.e., organized sets of tags that allow data
filtering by intersecting several groups. For example, we can retrieve documents
edited by a given author on a specific year, who is associated with a department
via the intersection of three groups, e.g., “Scott”, 2010 and “Human resources”.

Finding related data consists retrieving the objects that are the closest of
a given object. Closeness is obtained from similarity links. For example, in the
case of tabular data, we use Column Joinability links.

Document Content Analysis Content analyses provide insights from one
or several objects, while taking their intrinsic characteristics into account. The
techniques we propose are specific to each data type. In the case of textual
documents, AUDAL allows OLAP-like analyses [8]. Groupings may indeed serve
as dimensions and thus allow data filtering in multiple manners. Thus, the lake’s
data can quickly and intuitively be reduced to a subset by intersecting groups,
which is comparable to OLAP Slice & Dice operations.

Once documents are filtered, they can be aggregated to obtain valuable in-
sights. Aggregated results can be compared across different subsets of documents
using suitable visualizations.

Top keywords summarize documents through a list of most frequent key-
words, by aggregating a bag-of-word representation of documents. Thanks to
the principle of data polymorphism, different top keyword extraction strategies
can coexist. For instance, one can be based on a predefined vocabulary, while an
other is based on a free vocabulary. We graphically display top keywords using
bar charts or word clouds.

Scoring numerically evaluates the relatedness of a set of documents to a set of
query terms with the help of a scoring algorithm that takes into account, amongst
others, the appearances of query terms in each document. Due to the wide
number of documents, the scores per document may not be readable. Thence,
we propose instead an aggregated score per group.



Data Management and Analysis within the AUDAL Data Lake 9

Highlights display text snippets where a set of terms appear. In other words,
it can be viewed as a document summary centered on given terms. This is also
commonly called a concordance.

Group comparison exploits embedding representations to show together groups
of documents using a similar vocabulary. This is done in two steps. First, we av-
erage the embedding vectors of all documents per group. Then, we exploit the
resulting mean embedding vectors to extract group likeness using KMeans clus-
tering [19] or principal component analysis (PCA) [38]. KMeans analysis iden-
tifies strongly similar groups into a user-defined number of clusters, while PCA
provides a simple two-dimensional visualization where the proximity between
groups reflects their similarity.

Tabular Content Analysis We propose several ways to analyze tabular data.
SQL querying helps users extract or join tabular data. SQL queries actually

run on the refined representations of tabular data. As such refined representa-
tions are in the form of classical relational tables, all SQL features are supported,
including joins and aggregations.

Column correlation evaluates the links between a couple of table columns. We
use a suitable statistical measure with respect to columns types. For example, a
Jaccard similarity measure can serve to compare categorical columns, while the
Kolmogorov-Smirnov statistic is suitable for numerical columns [5].

Tuple comparison consists in running a KMeans clustering or a PCA on a
set of tuples, by taking only numeric values into account. Tuples to compare are
extracted through a SQL query, potentially including joins and/or aggregations.

4 Quantitative Assessment of AUDAL

The goal of the experiments we propose in this section is to show the feasibility
and adaptability of our approach. For this purpose, we implement AUDAL with
two different datasets. AUDAL’s source code is available online4.

4.1 Datasets and Query Workload

The first dataset we use comes from the AURA-PMI project. It is composed of
8,122 textual documents and 6 tabular documents, for a total size of 6.2 GB.
As the AURA-PMI dataset is quite small, we also create an artificial dataset by
extracting 50,000 scientific articles from the French open archive HAL. To these
textual documents, we add 5,000 tabular documents coming from an existing
benchmark [28], for a total volume of 62.7 GB.

To compare how AUDAL works on our two datasets, we define a set of
15 queries that reflect AUDAL’s main features (Table 1). Then, we measure
the response time of our workload to assess whether our approach is realistic.
In Table 1, the terms document, table and object refer to textual document,
relational table and one or the other indistinctly, respectively.

4 https://github.com/Pegdwende44/AUDAL



10 P.N. Sawadogo et al.

Table 1. Query workload

Data retrieval queries

1 Retrieve documents written in English and edited in December

2 Retrieve objects (tables or documents) containing the terms “big” and “data”

3 Retrieve objects with terms “big”, “data”, “document” and “article”

4 Retrieve 3 tables, joinable to any table.

5 Retrieve 5 most similar documents to a given document

Textual content analysis

6 Calculate document scores w.r.t. the terms “big”, “data”, “article”
and “document”

7 Extract a concordance from documents using the terms “data” and “ai”

8 Extract a concordance from documents using the terms “data”, “ai” “article”
and “paper”

9 Find top 10 keywords from all documents

10 Run a 3-cluster KMeans clustering on documents grouped by month

11 Run a PCA analysis on documents grouped by month.

Tabular content analysis

12 Run a join query between two tables

13 Run a join query between two tables while averaging all numerical values
and aggregating by any categorical column.

14 Run a 3-cluster KMeans clustering on the result of query 12

15 Run a PCA on the result of query 12.

4.2 Experimental Setup and Results

Both instances of AUDAL are implemented on a cluster of three VMware virtual
machines (VMs). The first VM has a 7-core Intel-Xeon 2.20 GHz processor and
24 GB of RAM. It runs the API. Both other VMs have a mono-core Intel-
Xeon 2.20 GHz processor and 24 GB of RAM. Each hosts a Neo4J instance, an
ElasticSearch instance and a MongoDB instance to store AUDAL’s metadata.
The execution times we report in Table 2 are the average of ten runs of each
query, expressed in milliseconds.

Our experimental results show that AUDAL does support almost all its query
and analysis features in a reasonable time. We also see that AUDAL scales quite
well with respect to data volume. All data retrieval and tabular content analyses
indeed run very fast on both the AURA-PMI dataset (174 ms on average) and
the larger, artificial dataset (183 ms on average). Admittedly, half of textual
content queries, i.e., queries #9, #10 and #11, take longer to complete: 5, 2
and 2 seconds on average, respectively, on the AURA-PMI dataset; and 188, 27
and 27 seconds on average, respectively, on the artificial dataset. However, we
note that without our approach, such tasks would be definitely impossible for
business users. Moreover, the situation can certainly be improved by increasing
CPU resources. Thus, we consider our results promising.

However, AUDAL’s features are achieved at the cost of an extensive metadata
system. Table 4.2 indeed shows that the size of metadata represents up to half



Data Management and Analysis within the AUDAL Data Lake 11

Table 2. Query response time (ms)

Query AURA-PMI Artificial
dataset dataset

Data retrieval queries

Query 1 194 653

Query 2 108 207

Query 3 143 305

Query 4 59 81

Query 5 51 79

Textual content analysis

Query 6 85 117

Query 7 169 198

Query 8 62 92

Query 9 4,629 188,199

Query 10 1,930 26,969

Query 11 1,961 26,871

Tabular content analysis

Query 12 71 37

Query 13 61 12

Query 14 174 144

Query 15 670 520

Table 3. Raw data vs. metadata size (GB)

System AURA-PMI Artificial
dataset dataset

Raw data

- 6.2 62.7

Metadata

Neo4J 0.9 2.0

SQLite 0.003 1.7

MongoDB 0.28 3.4

ElasticSearch 1.6 27.6

Total 2.8 34.7

of raw data. Yet we deem this acceptable given the benefits. Moreover, it is
acknowledged that metadata can be larger than the original data, especially in
the context of data lakes, where metadata are so important [18].

5 Related Works

The research we present in this paper relates to many systems from the data
lake literature. Some of them address data retrieval issues, while others mostly
focus on data content analysis. We discuss them with respect of our structured
and unstructured data context.

5.1 Data Retrieval from Data Lakes

A great part of the literature considers data lakes as a playground dedicated to
data scientists. Related research focuses on data retrieval, since content analyses
are assigned to expert users. We identify three main approaches for data retrieval
in data lakes, namely navigation, finding related data and term-based search. A
first retrieval-by-navigation model exploits tags to easily and quickly find the
target object [28]. A similar approach is implemented in several data lakes [3,
17, 26]. However, all these models are set in the context of structured data only.

A second data retrieval approach exploits data relatedness, i.e., finding a
significant similarity between objects or their components [5]. Several techniques



12 P.N. Sawadogo et al.

help detect relatedness between tabular data through column joinability and
unionability [5, 13, 14, 23]. To the best of our knowledge, only one proposal [9] is
relevant to unstructured data.

Finally, term-based querying is particularly useful for textual data. Thus,
in previous work, we used an indexing system to allow textual documents data
retrieval [32]. This technique, i.e., inverted indexes, is also implemented with
structured data in Google’s data lake [17] and CoreKG [4].

5.2 Data Content Analysis from Data Lakes

An alternative vision of data lakes considers that business users, i.e., not data
scientists, can also consume data from a lake. Thus, content querying is re-
quired and methods must be used to ease the users’ work. In the structured
data world, fuzzy SQL querying can be used in data lakes [25]. Similarly, a cus-
tom query rewriting system is exploited to analyse data from the Constance
lake [16]. There is also a way to personalize table querying by taking user profile
into account [3]. Although very few, some approaches propose content analysis
for semi-structured [15] and unstructured data [32]. The latter exploits text and
graph mining techniques to enable document aggregation.

5.3 Discussion

As stated above, most data lake approaches focus either on data retrieval or data
content analyses. Therefore, they present a partial vision of data lakes, in our
opinion. In contrast, there exists a system that frees itself from this cleavage [3].
However, it does not support unstructured data. More generally, unstructured
data are very rarely supported in data lakes. Our own CODAL data lake [32]
does manage textual documents management, but only textual documents. It is
therefore limited. In contrast, AUDAL goes beyond these limitations by featuring
both data retrieval as well as content analyses. In addition, AUDAL supports
both tabular documents and, above all, textual documents whose inclusion in
data lakes still challenging.

6 Conclusion and Future Works

In this paper, we present AUDAL, presumably the first methodological approach
to manage both textual and tabular documents in a data lake. AUDAL includes
an extensive metadata system to allow querying and analyzing the data lake and
supports more features than state-of-the-art data lake implementations. In terms
of queries, AUDAL indeed supports both data retrieval and data content anal-
yses, including Text-OLAP and SQL querying. Moreover, AUDAL also allows
the exploitation of a data lake not only by data scientists, but also by business
users. All these makes AUDAL an “inclusive” data lake.

In our near-future research, we plan a deeper validation of AUDAL on two
aspects. First, we will work on that complexity and time cost of metadata gen-
eration algorithms. Second, we will study how AUDAL’s analysis interface is



Data Management and Analysis within the AUDAL Data Lake 13

useful to and usable by business users, e.g., using the widely used SUS (Sys-
tem Usability Scale) protocol [6]. Another perspective is data lineage tracking
to allow AUDAL support version management. This is particularly important
for tabular documents that are often merged or altered. Such a lineage could
be implemented by extending AUDAL’s refined representations. Finally, we en-
visage to include more unstructured data types into a lake, i.e., images, videos
and/or sounds, and manage their particular metadata for retrieval and analysis.

Acknowledgments

P.N. Sawadogo’s PhD is funded by the Auvergne-Rhône-Alpes Region through
the AURA-PMI project.

References

1. Allan, J., Lavrenko, V., Malin, D., Swan, R.: Detections, Bounds, and Timelines:
UMass and TDT-3. In: Proc. TDT-3. pp. 167–174 (2000)

2. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: A New Generation of
Open Platforms that Unify Data Warehousing and Advanced Analytics. In: Proc.
CIDR (2021)

3. Bagozi, A., Bianchini, D., Antonellis, V.D., Garda, M., Melchiori, M.: Personalised
Exploration Graphs on Semantic Data Lakes. In: Proc. OTM. pp. 22–39 (2019)

4. Beheshti, A., Benatallah, B., Nouri, R., Tabebordbar, A.: CoreKG: A Knowledge
Lake Service. PVLDB 11(12), 1942–1945 (2018)

5. Bogatu, A., Fernandes, A., Paton, N., Konstantinou, N.: Dataset Discovery in Data
Lakes. In: Proc. ICDE (2020)

6. Brooke, J.: Sus: a quick and dirty usability scale. Usability evaluation in industry
189 (1996)

7. Chen, Z., Narasayya, V., Chaudhuri, S.: Fast foreign-key detection in Microsoft
SQL server PowerPivot for Excel. PVLDB 7(13), 1417–1428 (2014)

8. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-line Analytical Processing)
to User-Analysts: An IT Mandate. E. F. Codd and Associates (1993)

9. Diamantini, C., Giudice, P.L., Musarella, L., Potena, D., Storti, E., Ursino, D.: A
New Metadata Model to Uniformly Handle Heterogeneous Data Lake Sources. In:
Proc. ADBIS 2018. pp. 165–177 (2018)

10. Dixon, J.: Pentaho, Hadoop, and Data Lakes (2010),
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/

11. Elastic: Elasticsearch. https://www.elastic.co (2020)
12. Fang, H.: Managing Data Lakes in Big Data Era. In: Proc. CYBER. pp. 820–824

(2015)
13. Farrugia, A., Claxton, R., Thompson, S.: Towards Social Network Analytics for

Understanding and Managing Enterprise Data Lakes. In: Proc. ASONAM. pp.
1213–1220 (2016)

14. Fernandez, R.C., Abedjan, Z., Koko, F., Yuan, G., Madden, S., Stonebraker, M.:
Aurum: A Data Discovery System. In: Proc. ICDE. pp. 1001–1012 (2018)

15. Hai, R., Geisler, S., Quix, C.: Constance: An Intelligent Data Lake System. In:
Proc. SIGMOD. pp. 2097–2100 (2016)



14 P.N. Sawadogo et al.

16. Hai, R., Quix, C., Zhou, C.: Query Rewriting for Heterogeneous Data Lakes. In:
Proc. ADBIS 2018. pp. 35–49 (2018)

17. Halevy, A., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.:
Managing Google’s data lake: an overview of the GOODS system. In: Proc. SIG-
MOD. pp. 795–806 (2016)

18. Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S., Ra-
machandran, K., Arora, S., Bhattacharyya, A., Das, S., Donsky, M., Fierro, G.,
She, C., Steinbach, C., Subramanian, V., Sun, E.: Ground: A Data Context Service.
In: Proc. CIDR (2017)

19. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters
31(8), 651 – 666 (2010)

20. Khine, P.P., Wang, Z.S.: Data Lake: A New Ideology in Big Data Era. In: Proc.
WCSN. ITM Web of Conferences, vol. 17, pp. 1–6 (2017)

21. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proc. ICML. pp. 1188–1196 (2014)

22. Leclercq, E., Savonnet, M.: A Tensor Based Data Model for Polystore: An Appli-
cation to Social Networks Data. In: Proc. IDEAS. pp. 110–118 (2018)

23. Maccioni, A., Torlone, R.: KAYAK: A Framework for Just-in-Time Data Prepara-
tion in a Data Lake. In: Proc. CAiSE. pp. 474–489 (2018)

24. Madera, C., Laurent, A.: The next information architecture evolution: the data
lake wave. In: Proc. MEDES. pp. 174–180 (2016)

25. Malysiak-Mrozek, B., Stabla, M., Mrozek, D.: Soft and Declarative Fishing of In-
formation in Big Data Lake. IEEE Trans. on Fuzzy Systems 26(5), 2732–2747
(2018)

26. Mehmood, H., Gilman, E., Cortes, M., Kostakos, P., Byrne, A., Valta, K., Tekes,
S., Riekki, J.: Implementing big data lake for heterogeneous data sources. In: Proc.
ICDEW. pp. 37–44 (2019)

27. MongoDB-Inc: The database for modern applications.
https://www.mongodb.com/ (2020)

28. Nargesian, F., Zhu, E., Pu, K.Q., Miller, R.J.: Table Union Search on Open Data.
PVLDB 11, 813–825 (2018)

29. Neo4J Inc.: The Neo4j Graph Platform. https://neo4j.com (2018)
30. Pu, W., Liu, N., Yan, S., Yan, J., Xie, K., Chen, Z.: Local Word Bag Model for

Text Categorization. In: Proc. ICDM. pp. 625–630 (2007)
31. Russom, P.: Data Lakes Purposes, Practices, Patterns, and Platforms. TDWI re-

search (2017)
32. Sawadogo, P.N., Kibata, T., Darmont, J.: Metadata Management for Textual Doc-

uments in Data Lakes. In: Proc. ICEIS. pp. 72–83 (2019)
33. Sawadogo, P.N., Scholly, E., Favre, C., Ferey, É., Loudcher, S., Darmont, J.: Meta-

data Systems for Data Lakes: Models and Features. In: Proc. BBIGAP@ADBIS.
CCIS, vol. 1064, pp. 440–451 (2019)

34. SQLite-Consortium: What Is SQLite? https://www.sqlite.org/ (2020)
35. Suriarachchi, I., Plale, B.: Crossing Analytics Systems: A Case for Integrated

Provenance in Data Lakes. In: Proc. e-Science. pp. 349–354 (2016)
36. The Apache Software Foundation: Apache Tika – a content analysis toolkit.

https://tika.apache.org/ (2018)
37. Visengeriyeva, L., Abedjan, Z.: Anatomy of Metadata for Data Curation. J. Data

and Information Quality 12(3) (2020)
38. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics

and Intelligent Laboratory Systems 2(1), 37–52 (1987)


