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ABSTRACT
With new emerging technologies, such as satellites and drones,
archaeologists collect data over large areas. However, it becomes
difficult to process such data in time. Archaeological data also have
many different formats (images, texts, sensor data) and can be
structured, semi-structured and unstructured. Such variety makes
data difficult to collect, store, manage, search and analyze effectively.
A few approaches have been proposed, but none of them covers the
full data lifecycle nor provides an efficient data management system.
Hence, we propose the use of a data lake to provide centralized data
stores to host heterogeneous data, as well as tools for data quality
checking, cleaning, transformation and analysis. In this paper, we
propose a generic, flexible and complete data lake architecture. Our
metadata management system exploits goldMEDAL, which is the
most generic metadata model currently available. Finally, we detail
the concrete implementation of this architecture dedicated to an
archaeological project.
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• Computer systems organization→ Data flow architectures; •
Information systems→ Data warehouses.
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1 INTRODUCTION
Over the past decade, new forms of data such as geospatial data and
aerial photography have been included in archaeology research [8],
leading to new challenges such as storing massive, heterogeneous
data, high-performance data processing and data governance [4].
As a result, archaeologists need a platform that can host, process,
analyze and share such data.

In this context, a multidisciplinary consortium of archaeologists
and computer scientists proposed the HyperThesau project1, which
aims at designing a data management and analysis platform. Hyper-
Thesau has two main objectives: 1) the design and implementation
of an integrated platform to host, search, analyze and share archaeo-
logical data; 2) the design of an archaeological thesaurus taking the
whole data lifecycle into account, from data creation to publication.

Classical data management solutions, i.e., databases or data ware-
houses, only manage previously modeled structured data (schema-
on-write approach). However, archaeologists need to store data of
all formats and they may discover the use of data over time. Hence,
we propose the use of a data lake [2], i.e., a scalable, fully integrated
platform that can collect, store, clean, transform and analyze data
of all types, while retaining their original formats, with no prede-
fined structure (schema-on-read approach). Our data lake, named
ArchaeoDAL, provides centralized storage for heterogeneous data
and data quality checking, cleaning, transformation and analysis
tools. Moreover, by including machine learning frameworks into
ArchaeoDAL, we can achieve descriptive and predictive analyses.

Many existing data lake solutions provide architecture and/or
implementation, but few include a metadata management system,
which is nevertheless essential to avoid building a so-called data
swamp, i.e., an unexploitable data lake [6, 12]. Moreover, none of
the existing metadata management systems can provide all the
needed metadata features we need. For example, in archaeology,
thesauri are often used for organizing and searching data. There-
fore, the metadata system must allow users to define one or more
thesauri, associate data with specific terms and create relations
between terms, e.g., synonyms and antonyms. Thus, we conclude
that existing data lake architectures, including metadata systems,
are not generic, flexible and complete enough for our purpose.

To address these problems, we propose in this paper a generic,
flexible and complete data lake architecture. Moreover, our metadata

1https://imu.universite-lyon.fr/projet/hypertheseau-hyper-thesaurus-et-lacs-de-
donnees-fouiller-la-ville-et-ses-archives-archeologiques-2018/
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model exploits and enriches goldMEDAL, which is the most generic
metadata model currently available [13]. To illustrate the flexibil-
ity and completeness of ArchaeoDAL’s architecture, we provide
a concrete implementation dedicated to the HyperThesau project.
With a fully integrated metadata management and security sys-
tem, we can not only ensure data security, but also track all data
transformations.

The remainder of this paper is organized as follows. In Section 2,
we review and discuss existing data lake architectures. In Section 3,
we present ArchaeoDAL’s abstract architecture, implementation
and deployment. In Section 4, we present two archaeological appli-
cation examples. In Section 5, we finally conclude this paper and
present future works.

2 DATA LAKE ARCHITECTURES
The concept of data lake was first introduced by Dixon [2] in asso-
ciation with the Hadoop file system, which can host large heteroge-
neous data sets without any predefined schema. Soon after, the data
lake concept was quickly adopted [3, 10]. With the growing popu-
larity of data lakes, many solutions were proposed. After studying
them, we divide data lake architectures into two categories: 1) data
storage-centric architecture; 2) data storage and processing-centric
architecture.

2.1 Data Storage-Centric Architectures
In the early days, a data lake was viewed as a central, physical
storage repository for any type of raw data, aiming for future insight.
In this line, Inmon proposes an architecture that organizes data
by formats, in so-called data ponds [6]. The raw data pond is the
place where data first enters the lake. The analog data pond stores
data generated by sensors or machines. The application data pond
stores data generated by applications. Finally, the textual data pond
stores unstructured, textual data.

Based on such zone solutions, Gorelik proposes that a common
data lake architecture includes four zones [5]: a landing zone that
hosts raw ingested data; a gold zone that hosts cleansed and en-
riched data; a work zone that hosts transformed, structured data
for analysis; and a sensitive zone that hosts confidential data. Bird
also proposes a similar architecture [1]. Such architectures organize
data with respect to how deeply data are processed and security
levels.

The advantage of storage-centric architectures is that they pro-
vide a way to organize data inside a data lake by default. However,
the predefined data organization may not satisfy the requirements
of all projects. For example, HyperThesau needs to store data from
different research entities. Thus, one requirement is to organize
data by research entities first. Yet, the bigger problem of storage-
centric architectures is that they omit important parts of a data
lake, e.g., data processing, metadata management, etc.

2.2 Data Storage and Processing-Centric
Architectures

With the evolution of data lakes, they have been viewed as plat-
forms, resulting in more complete architectures. Alrehamy and
Walker propose a “Personal Data Lake” architecture that consists of
five components [15], which addresses data ingestion and metadata

management issues. However, it transforms data into a special JSON
object that stores both data and metadata. By changing the original
data format, this solution contradicts the data lake philosophy of
conserving original data formats.

Pankaj and Tomcy propose a data lake architecture based on the
Lambda architecture (Figure 1) that covers almost all key stages of
the data life cycle [14]. However, it omits metadata management
and security issues. Moreover, not all data lakes need near real-time
data processing capacities.

Figure 1: Lambda data lake architecture [14]

Mehmood et al. propose an interesting architecture consisting
of four layers: a data ingestion layer that acquires data for storage;
a data storage layer; a data exploration and analysis layer; a data vi-
sualization layer [9]. This architecture is close to our definition of a
data lake, i.e., a fully integrated platform to collect, store, transform
and analyze data for knowledge extraction. Moreover, Mehmood
et al. provide an implementation of their architecture. However,
although they mention the importance of metadata management,
they do not include a metadata system in their architecture. Eventu-
ally, data security is not addressed and data visualization is the only
proposed analysis method. Raju et al. propose an architecture that
is similar to Mehmood et al.’s [11]. They essentially use a different
tool-set to implement their approach and also omit to take metadata
management and data security into account.

2.3 Discussion
In our opinion, a data lake architecture must be generic, flexible
and complete. Genericity implies that the architecture must not rely
on any specific tools nor frameworks. Flexibility means that users
must be able to define their own ways of organizing data. Com-
pleteness means that not only functional features (e.g., ingestion,
storage, analysis, etc.) must be handled, but also non-functional
features (e.g., data governance and data security). Table 1 provides
an evaluation of seven data lake architectures with respect to these
three properties.

The solutions byMehmood et al. and Raju et al. are not generic be-
cause their architecture heavily relies on certain tools. The zone ar-
chitectures by Inmon, Gorelik and Bird are not flexible, because they
force a specific data organization. Finally, Alrehamy and Walker’s
platform is the only complete architecture that addresses data gov-
ernance and security, but is not a canonical data lake.
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Table 1: Comparison of data lake architectures

Architecture Generic Flexible Complete

Alrehamy and Walker (2015) ✓ ✓
Inmon (2016) ✓
Pankaj and Tomcy (2017) ✓ ✓
Raju et al. (2018) ✓
Bird (2019) ✓
Gorelik (2019) ✓
Mehmood et al. (2019) ✓

3 ARCHAEODAL’S ARCHITECTURE,
IMPLEMENTATION AND DEPLOYMENT

In this section, we propose a generic, flexible abstract data lake
architecture that covers the full data lifecycle (Figure 2) and contains
eleven layers. The orange layers (from layer 1 to layer 6) cover
the full data lifecycle. After data processing in these layers, data
become clearer and easier to use for end-users. The yellow layers
cover non-functional requirements. After the definition of each
layer, we present how each layer is implemented in our current
ArchaeoDAL instance. As this instance is dedicated to the project
HyperThesau, it does not cover all the features of the abstract
architecture. For example, real-time data ingestion and processing
are not implemented. However,real-time or near real-time data
ingestion and processing feature can be achieved by adding tools
such as Apache Storm2 or Apache Kafka3 in the data ingestion and
data insights layers.

Figure 2: ArchaeoDAL’s architecture

3.1 Data Source Layer
In the data source layer, we gather the basic properties of data
sources, e.g., volume, format, velocity, connectivity, etc. Based on
these properties, data engineers can determine how to import data

2https://storm.apache.org/
3https://kafka.apache.org/

into the lake. If metadata are required, data engineers must also
find the best fitting metadata model to govern input data.

In our instance of ArchaeoDAL, we have data sources such as
relational databases and various files stored in the archaeologists’
personal computers.

3.2 Data Ingestion Layer
The data ingestion layer provides a set of tools that allow users
to perform batch or real-time data ingestion. Based on the data
source properties that are gathered in the data source layer, data
engineers can choose the right tools and plans to ingest data into
the lake. They must also consider the capacity of the data lake
to avoid data loss, especially for real-time data ingestion. During
ingestion, metadata provided by the data sources, e.g., the name
of excavation sites or instruments, must be gathered as much as
possible. After data are loaded into the lake, we may lose track
of data sources. It is indeed more difficult to gather this kind of
metadata without knowledge about data sources.

ArchaeoDAL’s implementation exploits Apache Sqoop4 to ingest
structured data and Apache Flume5 to ingest semi-structured and
unstructured data. Apache Sqoop can efficiently transfer bulk data
from structured data stores such as relational databases. Apache
Flume is a distributed service for efficiently collecting, aggregating
and moving large amounts of data. For one-time data ingestion,
our instance provides Sqoop scripts and a web interface to ingest
bulk data. For repeated data loading, we developed Flume agents
to achieve automated data ingestion.

3.3 Data Storage Layer
The data storage layer is the core layer of a data lake. It must have
the capacity to store all data, e.g., structured, semi-structured and
unstructured data, in any format.

ArchaeoDAL’s implementation uses the Hadoop Distributed File
System6 (HDFS) to store ingested data, because HDFS stores data
on commodity machines and provides horizontal scalability and
fault tolerance. As a result, we do not need to build large clusters.
We just add nodes when data volume grows. To better support the
storage of structured and semi-structured data, we add two tools:
Apache Hive7 to store data with explicit data structures and Apache
HBase8 that is a distributed, versioned, column-oriented database
that provides better semi-structured data retrieval speed.

3.4 Data Distillation Layer
The data distillation layer provides a set of tools for data cleaning
and encoding formalization. Data cleaning refers to eliminating
errors such as duplicates and type violations, e.g., a numeric column
contains non-numeric values. Data encoding formalization refers
to converting various data and character encoding, e.g., ASCII, ISO-
8859-15, or Latin-1, into a unified encoding, e.g., UTF-8, which
covers all language symbols and graphic characters.

4https://sqoop.apache.org/
5https://flume.apache.org/
6https://hadoop.apache.org/
7https://hive.apache.org/
8https://hbase.apache.org/

https://storm.apache.org/
https://kafka.apache.org/
https://sqoop.apache.org/
https://flume.apache.org/
https://hadoop.apache.org/
https://hive.apache.org/
https://hbase.apache.org/


IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Pengfei Liu, Sabine Loudcher, Jérôme Darmont, and Camille Noûs

ArchaeoDAL’s implementation uses Apache Spark9 to clean and
transform data. We developed a set of Spark programs that can
detect duplicates, NULL values and type violations. Based on the
percentage of detected errors, we can hint at data quality.

3.5 Data Insights Layer
The data insights layer provides a set of tools for data transfor-
mation and exploratory analysis. Data transformation refers to
transforming data from one or diverse sources into specific mod-
els that are ready to use for data application, e.g., reporting and
visualization. Exploratory data analysis refers to the process of
performing initial investigations on data to discover patterns, test
hypotheses, eliminate meaningless columns, etc. Transformed data
may also be persisted in the data storage layer for later reuse.

ArchaeoDAL’s implementation resorts to Apache Spark to per-
form data transformation and exploratory data analysis. Spark also
provides machine learning libraries that allow developers to per-
form more sophisticated exploratory data analyses.

3.6 Data Application Layer
The data application layer provides applications that allow users to
extract value from data. For example, a data lake may provide an
interactive query system to do descriptive and predictive analytics.
It may also provide tools to produce reports and visualize data.

In ArchaeoDAL’s implementation, we use a Web-based note-
book, Apache Zeppelin10, as the front end. Zeppelin connects to
the data analytics engine Apache Spark that can run a complex
directed acyclic graph of tasks for processing data. Our notebook
interface supports various languages and their associated Appli-
cation Programming Interfaces (APIs), e.g., R, Python, Java, Scala
and SQL. It provides a default data visualization system that can be
enriched by Python or R libraries.

ArchaeoDAL also provides a web interface that helps users down-
load, upload or delete data.

3.7 Data Governance Layer
The data governance layer provides a set of tools to establish and
execute plans and programs for data quality control [7]. This layer
is closely linked to the data storage, ingestion, distillation, insights
and application layers to capture all relevant metadata. A key com-
ponent of the data governance layer is a metadata model [12].

3.7.1 MetadataModel. In ArchaeoDAL,we adopt goldMEDAL [13],
which is modeled at the conceptual (formal description), logical
(graphmodel) and physical (various implementations) levels. goldMEDAL
features four main metadata concepts (Figure 3): 1) data entities, i.e.,
basic data units such as spreadsheet tables or textual documents;
2) groupings that bring together data entities w.r.t. common proper-
ties in groups; 3) links that associate either data entities or groups
with each other; and 4) processes, i.e., transformations applied to
data entities that produce new data entities. All concepts bear meta-
data, which make goldMEDAL the most generic metadata model in
the literature, to the best of our knowledge.

9https://spark.apache.org/
10https://zeppelin.apache.org/

Figure 3: goldMEDAL’s concepts [13]

However, we encountered a problem of terminology variation
when creating metadata. goldMEDAL does indeed not provide ex-
plicit guidance for metadata creation. This can lead to consistency
and efficiency problems. For example, when users create data enti-
ties, they have their own way of defining attributes, i.e., key/value
pairs that describe the basic properties of data. Without a universal
guideline or template, every user can invent his own way. The num-
ber, name and type of attributes can be different. As a result, without
explicit guidelines or templates, it may become quite difficult to
retrieve or search metadata.

Thus, we enrich goldMEDAL with a new concept, data entity
type, which explicitly defines the number, names and types of the
attributes in a data entity.

All data entity types form a type system that specifies how meta-
data describe data inside the lake. Since each and every data lake
has specific requirements on how to represent data to fulfill domain-
specific requirements, metadata must contain adequate attributes.
Thus, we need to design a domain-specific type system for each
domain. For example, in the HyperThesau project, users need not
only semantic metadata to understand the content of data, but also
geographical metadata to know where archaeological objects are
discovered. As a result, the type system is quite different from other
domains.

In sum, the benefits of having a data entity type system include:
1) consistency, a universal definition of metadata can avoid terminol-
ogy variations that may cause data retrieval problems; 2) flexibility,
a domain-specific type system helps define specific metadata for
requirements in each use case; 3) efficiency, with a given meta-
data type system, it is easy to write and implement search queries.
Because we know in advance the names and types of all meta-
data attributes, we can filter data with metadata predicates such as
𝑢𝑝𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑒 > 10/02/2016.

3.7.2 Thesaurus Modeling. Although thesauri, ontologies and tax-
onomies can definitely be modeled with goldMEDAL, its specifica-
tions do not provide details on how to conceptually and logically
model such semantic resources, while we especially need to manage
thesauri in the HyperThesau project.

https://spark.apache.org/
https://zeppelin.apache.org/


ArchaeoDAL: A Data Lake for Archaeological Data Management and Analytics IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

A thesaurus consists of a set of categories and terms that help
regroup data. A category may have one and only one parent. A
category without a parent is called the root category. A category
may have one or more children. The child of a category is called
subcategory or term. A term is a special type of category that has
no child but must have a parent category. A term may have rela-
tionships with other terms (related words, synonyms, antonyms,
etc.).

Fortunately, categories and terms can easily be modeled as data
entities and structured with labeled links, with labels defined as link
metadata. It is also easy to extend this thesaurus model to represent
ontologies or taxonomies.

3.7.3 Data Governance Implementation. The HyperThesau project
does not require sophisticated data governance tools to fix decision
domains and decide who takes decisions to ensure effective data
management [7]. Thus, ArchaeoDAL’s data governance layer im-
plementation only focuses on how to use metadata to govern data
inside the lake. We use Apache Atlas11, which is a data governance
and metadata management framework, to implement our extended
version of goldMEDAL (Section 3.7.1). With these metadata, we
build a data catalog that allows searching and filtering data through
different metadata attributes, organize data with user-defined clas-
sifications and the thesaurus and trace data lineage.

3.8 Data Security Layer
The data security layer provides tools to ensure data security. It
should ensure the user’s authenticity, data confidentiality and in-
tegrity.

ArchaeoDAL’s implementation orchestrates more than twenty
tools and frameworks, most of which have their own authentication
system. If we used their default authentication systems, a given
user could have twenty login and password pairs. But even if a user
decided to use the same login and password for all services, s/he
would have to change it twenty times in case of need. To avoid this,
we have deployed an OpenLDAP server as a centralized authentica-
tion server. All services connect to the centralized authentication
server to check user login and password. The access control system
consists of two parts. First, we need to control the access to each
service. For example, when a user wants to create a new thesaurus,
Atlas needs to check whether this user has the right to. Second, we
need to control the access to data in the lake. A user may access data
via different tools and the authorization answer of these tools must
be uniform. We use Apache Ranger12 to set security policy rules for
each service. For data access control, we implement a role-based
access control (RBAC) system by using the Hadoop group mapping
service.

Data security is enforced by combining the three systems. For
example, a user wants to view data from a table stored in Hive.
S/he uses his/her login and password to connect to the Zeppelin
notebook. This login and password are checked by the OpenLDAP
server. After login, s/he runs a SQL query that is then submitted to
Hive. Before query execution, Hive sends an authorization request
to Ranger. If Ranger allows the user to run the query, it starts and
retrieves data with the associated user credentials. Then, HDFS
11https://atlas.apache.org/
12https://ranger.apache.org/

checks whether the associated user credentials have the right to
access data. If a user does not have the right to read data, an access
denied exception is produced.

3.9 Workflow Manager Layer
The workflow manager layer provides tools to automate the flow
of data processes. This layer is optional.

For now, we have not identified any repeated data processing
tasks in the HyperThesau project. As a result, we have not im-
plemented this layer. However, it can easily be implemented by
integrating tools such as Apache Airflow13 or Apache NiFi14.

3.10 Resource Manager Layer
As data lakes may involve many servers working together, the
resource manager layer is responsible for negotiating resources and
scheduling tasks on each server. This layer is optional, because a
reasonably small data lake may be implemented on one server only.

As ArchaeoDAL rests on a distributed storage and computation
framework, a resource manager layer is mandatory.We use YARN15,
since this resource manager can not only manage the resources in
a cluster, but also schedule jobs.

3.11 Communication Layer
The communication layer provides tools that allow other layers,
e.g., data application, data security and data governance, to com-
municate with each other. It must provide both synchronous and
asynchronous communication capability. For example, a data trans-
formation generates new metadata that are registered by the data
governance layer. Metadata registration should not block the data
transformation process. Therefore, the data insights and governance
layers require asynchronous communication. However, when a user
wants to visualize data, the data application and security layers
require synchronous communication, since it is not desirable to
have a user read data before the security layer authorizes the access.

ArchaeoDAL’s implementation uses Apache Kafka, which pro-
vides a unified, high-throughput, low-latency platform for handling
real-time data feeds. Kafka can connect by default many frame-
works and tools, e.g., Sqoop, Flume, Hive and Spark. It also provides
both synchronous and asynchronous communication.

3.12 ArchaeoDAL’s Deployment
We have deployed ArchaeoDAL’s implementation in a self-hosted
cloud. The current platform is a cluster containing 6 virtual ma-
chines, each having 4 virtual cores, 16 GB of RAM and 1 TB of
disk space. We use Ambari16 to manage and monitor the virtual
machines and installed tools. The current platform allows users to
ingest, store, clean, transform, analyze, visualize and share data by
using different tools and frameworks.

ArchaeodAL already hosts the data of two archaeological re-
search facilities, i.e., Bibracte17 and Artefacts18. Artefacts currently
amounts to 20,475 records and 180,478 inventoried archaeological
13https://airflow.apache.org/
14https://nifi.apache.org/
15https://yarnpkg.com/
16https://ambari.apache.org/
17http://www.bibracte.fr/
18https://artefacts.mom.fr/
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objects. Bibracte currently contains 114 excavation site reports that
contain 30,106 excavation units and 83,328 inventoried objects. We
have imported a thesaurus developed by our partner researchers
from the Maison de l’Orient et de la Méditerranée19, who study an-
cient societies in all their aspects, from prehistory to the medieval
world, in the Mediterranean countries, the Near and Middle-East
territories. This thesaurus implements the ISO-25964 norm. A dedi-
cated thesaurus by the linguistic expert of the HyperThesau project
is also in the pipe. With the help of our metadata management
system, users can associate data with the imported thesaurus, and
our search engine allows users to search and filter data based on
the thesaurus.

4 APPLICATION EXAMPLES
In this section, we illustrate how ArchaeoDAL supports users
throughout the archaeological data lifecycle, via metadata. We also
demonstrate the flexibility and completeness of ArchaeoDAL (Sec-
tion 2.3).

4.1 Heterogeneous Archaeological Data
Analysis

In this first example, we show how to analyze heterogeneous ar-
chaeological data, how to generate relevant metadata during data
ingestion and transformation, and how to organize data flexibly via
the metadata management system.

The Artefacts dataset consists of a SQL database of 32 tables and a
set of files that stores detailed object descriptions as semi-structured
data. This dataset inventories 180,478 objects.

The data management system is implemented with Apache At-
las (Section 3.7.3) and provides three ways to ingest metadata: 1)
pre-coded atlas hook (script), 2) self-developed atlas hook and 3)
REpresentational State Transfer (REST) API.

4.1.1 Structured Data Ingestion and Metadata Generation. To im-
port data from a SQL database, we use a hook dedicated to Sqoop
that can generate the metadata of the imported data and ingest them
automatically. A new database is created in ArchaeoDAL and its
metadata is generated and inserted into the Atlas instance (Figure 4).
Figure 5 shows an example of table metadata inside Artefacts.

4.1.2 Semi-structured Data Ingestion and Metadata Generation. We
provide three ways to ingest semi-structured data. The simplest
way is to use Ambari’s Web interface (Figure 6). The second way is
to use the HDFS command-line client.

The third way is to use a data ingestion tool. ArchaeoDAL pro-
vides a tool called Flume. The Flume agent can monitor any file
system of any computer. When a file is created on the monitored
file system, the Flume agent will upload it to ArchaeoDAL automat-
ically.

Now that we have uploaded the required files into ArchaeoDAL,
we need to generate and insert the metadata into Atlas. Since Atlas
does not provide a hook for HDFS, we develop our own20. This
hook is triggered by the HDFS create, update and delete events. For
example, the upload action generates a file creation event in HDFS,
which in turn triggers our metadata generation hook (Listing 1).
19https://www.mom.fr/
20https://github.com/pengfei99/AtlasHDFSHook

After the hook has uploadedmetadata into Atlas, it can be visualized
(Figure 7).

1 { "entities": [ {
2 "typeName": "hdfs_path",
3 "createdBy": "pliu",
4 "attributes": {
5 "qualifiedName": "hdfs://lin02.udl.org:900

0/HyperThesau/Artefacts/object -168.txt",
6 "name": "object -168.txt",
7 "path": "hdfs://lin02.udl.org:9000/

HyperThesau/Artefacts",
8 "user":"pliu",
9 "group":"artefacts",
10 "creation_time":"2020-12-29",
11 "owner":"pliu",
12 "numberOfReplicas":0,
13 "fileSize":36763,
14 "isFile":true
15 } }]}

Listing 1: Sample generated metadata from a HDFS file

We also developed an Atlas API in Python21 to allow data engi-
neers to generate and insert metadata into Atlas more easily. As
Amazon S3 is the most popular cloud storage, we also developed
an Atlas S3 hook22.

4.1.3 Data Transformation and Metadata Generation for Data Lin-
eage Tracing. Once Artefacts data are ingested into ArchaeoDAL,
let us imagine that an archaeologist wants to link the detailed de-
scription of objects (stored in table objects) with their discovery and
storage locations. The first step is to convert the semi-structured ob-
ject descriptions into structured data. We developed a simple Spark
Extract, Transform and Load (ETL) script for this sake. Then, we
save the output structured data into Hive tables location (discovery
location) and musee (the museum where objects are stored).

Eventually, we join the three tables into a new table called ob-
jects_origin that contains the objects’ descriptions and their discov-
ery and storage locations.

Thereafter, objects_origin’s metadata can be gathered into Atlas
with the help of the default Hive hook23 and a Spark hook developed
by Hortonworks24. All Hive and Spark data transformations are
tracked and all relevant metadata are pushed automatically into
Atlas. Figures 8 and 9 show table objects_origin’s metadata and
lineage, respectively.

4.1.4 Flexible Data Organization. As we mentioned in Section 2.3,
existing data lake solutions do not allow users to define their own
ways of organizing data, while ArchaeoDAL users should. Moreover,
ArchaeoDAL must allow multiple data organizations to coexist.
For example, let us define four different ways to organize data:
1) by maturity, e.g., raw data vs. enriched data; 2) by provenance,
e.g., Artefacts and Bibracte; 3) by confidentiality level, e.g., strictly
confidential, restricted or public; and 4) by year of creation.

21https://pypi.org/project/atlaspyapi/
22https://pypi.org/project/atlass3hook/
23https://atlas.apache.org/1.2.0/Hook-Hive.html
24https://github.com/hortonworks-spark/spark-atlas-connector

https://www.mom.fr/
https://pypi.org/project/atlaspyapi/
https://pypi.org/project/atlass3hook/
https://atlas.apache.org/1.2.0/Hook-Hive.html
https://github.com/hortonworks-spark/spark-atlas-connector
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Figure 4: Database metadata

Figure 5: Table metadata

This is achieved through Atlas’ classifications, which can group
data of the same nature. Moreover, data can be associated with mul-
tiple classifications, i.e., be in different data groups at the same time.
Figure 10 shows the implementation of the above data organization
in Atlas. We associate table object_origin with four classifications
(i.e. enriched, Artefacts, confidential, 2020). With table object_origin

belonging to four classifications, if we want to filter data by matu-
rity, we click on the enriched classification to find the table. In sum,
classifications allow users to organize data easily and flexibly.

4.2 Data Indexing and Search through thesauri
As mentioned in Section 3.7.2, thesauri are important metadata
for project HyperThesau. As an example, we import a thesaurus
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Figure 6: Data upload interface

Figure 7: Sample metadata visualization in Altas

provided by the archaeological research facility called Artefacts into
ArchaeoDAL. This thesaurus is mainly used to index the inventoried
archaeological objects of Artefacts. Its basic building blocks are
terms that can be grouped by categories (Figure 11).

We can associate any data entity with any term. A data entity
can be associated with multiple terms. After we index a data entity
with a term, we can search data by using the terms of a thesaurus.
For example, we have a database table called bibliographie and a
file called 204docannexe.csv that contains information about shields.
Suppose we need to associate these two data entities with the term
bouclier (shield in French). After indexing, we can click on the term
bouclier to find all data associated with this term (Figure 12).

4.2.1 Data Indexing with Multiple thesauri. One of the biggest
challenges of project HyperThesau is that each research facility uses
its own thesaurus. Moreover, there is no standard thesaurus. Thus,
if we index data with one given thesaurus, archaeologists using
another one cannot use ArchaeoDAL. To overcome this challenge,

ArchaeoDAL supports multiple thesauri. Moreover, we can define
relations, e.g., synonyms, antonyms, or related terms, between
terms of different thesauri. For example, Figure 13 shows a term
from a Chinese thesaurus that we set as the synonym of the term
bouclier. As a result, even though the Chinese term does not relate
to any data directly, by using the relations, we can find terms that
are linked to actual data. A full video demo of this example can be
found online25.

5 CONCLUSION AND FUTUREWORKS
In this article, we first introduce the need of archaeologists for soft-
ware platforms that can host, process and share new, voluminous
and heterogeneous archaeological data. Data lakes looking like a vi-
able solution, we examine different existing data lake solutions and
conclude that they are not generic, flexible nor complete enough to
fulfill project HyperThesau’s requirements.
25https://youtu.be/OmxsLhk24Xo

https://youtu.be/OmxsLhk24Xo
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Figure 8: Metadata per se

Figure 9: Lineage

As a result, we propose a generic, flexible data lake architecture
that covers the full data lifecycle. ArchaeoDAL’s architecture is

generic because it does not depend on any specific technology. For
example, in our current implementation, we useHDFS as the storage
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Figure 10: Sample Atlas classification

Figure 11: Artefacts’ thesaurus in Atlas

layer. Yet, one of our collaborators could easily replace HDFS by
Amazon S3. In Section 4.1.4, we demonstrate how to organize data
flexibly, which many existing solutions [1, 5, 6, 15] do not allow.
In Section 4.1.4, we also demonstrate that ArchaeoDAL can gather
metadata automatically during the full data lifecycle. Eventually,
many features of ArchaeoDAL are very hard to demonstrate in a
paper. Thus, we recorded demo videos that are available online26.

Archaeologists encounter two major problems while working
with ArchaeoDAL. First, to associate data and terms in a thesaurus,
domain experts are needed. Moreover, this data-terms matching
is a very expensive and time-consuming operation. Thus, we plan
to use natural language processing techniques to associate data
with a thesaurus automatically, calling domain experts only for a
posteriori verification.

26https://youtube.com/playlist?list=PLrj4IMV47FypKK5WyEd4Oj3-JnfSuU_H1

Second, we handle a lot of images, e.g., aerial photographs and
satellite images. It is also very time consuming to detect useful
objects in such images. Although some machine learning tasks
can already be performed from ArchaeoDAL via Spark-ML, we
would like to use deep learning techniques to assist archaeologists
in processing images more efficiently.
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