
Materialized View Selection by Query Clustering
in XML Data Warehouses

Hadj Mahboubi, Kamel Aouiche and Jérôme Darmont
ERIC – University of Lyon 2

5 avenue Pierre Mendès-France
69676 Bron Cedex

France
Phone: +33 478 773 154 – Fax: +33 478 772 375
{hmahboubi,kaouiche,jdarmont}@eric.univ-lyon2.fr

ABSTRACT

XML data warehouses form an interesting basis for decision-support applications that exploit complex data.
However, native XML database management systems currently bear limited performances and it is necessary
to design strategies to optimize them. In this paper, we propose an automatic strategy for the selection of XML
materialized views that exploits a data mining technique, more precisely the clustering of the query workload.
To validate our strategy, we implemented an XML warehouse modeled along the XCube specifications. We
executed a workload of XQuery decision-support queries on this warehouse, with and without using our
strategy. Our experimental results demonstrate its efficiency, even when queries are complex.

Keywords: Materialized views, XML, Data warehouses, Clustering, Complex data.

1 Introduction

Decision support applications nowadays exploit
heterogeneous data from various sources. Further-
more, the development of the Web and the prolif-
eration of multimedia documents contributed to the
analysis of so-calledcomplex data[8]. For instance,
analyzing medical data may lead to exploit jointly in-
formation under various forms: patient records (clas-
sical database), medical history (text), radiographies,
echographies (multimedia documents), physician di-
agnoses (texts or audio recordings), etc.

In this context, we have used XML in the process
of integrating and warehousing complex data for ana-
lysis [7]. However, decision-support queries are gen-
erally complex because they involve several join and
aggregation operations. In addition, native XML data-
base management systems (DBMSs) present poor per-
formances when the volume of data is very large and
the queries are complex. Thus, it is crucial to design
XML data warehouses that guarantee the best perfor-
mance when accessing data. Indexing and view ma-
terialization are the most frequently used optimiza-
tion techniques for this sake [12].

Materialized views are physical structures that im-
prove data access time by precomputing intermedi-

ary query results. Then, end-user queries can be pro-
cessed efficiently from the data stored within these
views and do not need access the original data any
more. Nevertheless, the use of materialized views
requires additional storage space and induces some
refreshing process overhead. So it is crucial to select
only pertinent views.

In the context of relational data warehouses, sev-
eral studies have been proposed to resolve the materi-
alized view selection problem [1, 3, 4, 10, 11, 13, 18,
22, 23, 24, 25, 27]. The views that are relevant to ma-
terialize are selected to minimize the processing time
of a given workload. This optimization is achieved
under maintenance cost or storage space constraints
[16]. The existing studies differ in several points:

1. the way of determining candidate views;

2. the framework used to capture relationships be-
tween candidate views;

3. the use of mathematical cost modelsvs. calls
to the query optimizer;

4. the selection of views in a relational or multi-
dimensional context;

5. multiple or simple query optimization;

6. theoretical or technical solutions.

The most recent approaches are workload-driven.
They syntactically analyze the workload to enumer-
ate the relevant candidate views [1]. By calling the
query optimizer, they greedily build a configuration
of the most pertinent views. A materialized view se-
lection based on clustering has also been proposed [2].
This proposal exploits query clustering to determine
a set of candidate views and cost models to choose
pertinent views to materialize.

To the best of our knowledge, no such view ma-
terialization approach exist in XML databases and
XML data warehouses in particular. Hence, we pro-
pose in this paper an adaptation of the query clus-
tering-based relational view selection approach [2]
to the XML context. Our approach clusters XQuery
queries (instead of SQL queries) and builds candidate
XML views that can resolve multiple similar queries
belonging to the same cluster. New XML-specific
cost models are used to define the XML views that
are pertinent to materialize. To validate our proposal,
we implemented an XML data warehouse in a native
XML DBMS. It is indeed interesting to check wether
native XML DBMSs could someday be able to com-
pete with XML-compatible, relational DBMSs. Then,
we measured the execution time of a decision-support
query workload with and without using our strategy.
Our experimental results show that the use of our
strategy greatly improves query performance.

The remainder of this paper is organized as fol-
lows. We first present the context of this study in
Section 2. Then we detail our materialized view se-
lection strategy in Section 3. In order to validate
our strategy, we present some experimental results
in Section 4. Finally, we conclude and outline some
research perspectives in Section 5.

2 Study context

2.1 XML data warehouse specification

Several studies have been proposed for designing
and building XML data warehouses. For instance,
Pokorny modelled a star schema in XML by defin-
ing dimension hierarchies as a sets of logically con-
nected collections of XML data, and facts as XML
data elements [20, 21].

Park et al. also proposed an XML multidimen-
sional model in which each fact is described by a sin-
gle XML document and dimension data are grouped
into a repository of XML documents [19].

Finally, Hümmeret al. designed XCube, a fam-
ily of templates allowing the description of a mul-
tidimentional structure, dimension and fact data for
integrating several data warehouses into a virtual or

federated data warehouse [14]. The federated tem-
plates are not directly related to XML warehousing,
but they can be used to represent XML star schemas.
XCube is organized as a set of modules or formats:
XCube Schema, XCube DimensionsandXCube Facts,
which respectively formalize the schema, the dimen-
sions and the facts according to a star schema.

These studies use XML documents to manage or
represent the facts and dimensions of an XML data
warehouse. They actually help logically modelling
a data warehouse. This allows the native storage of
documents and their easy interrogation based on XML
languages.

In this paper, we selected the XCube specifica-
tion to model a reference XML data warehouse and
apply our strategy. Indeed, in XCube, authors pro-
posed a simple structure for representing facts and
dimensions in star schema. They use one XML doc-
ument to represent dimensions and one XML doc-
ument to represent facts. In addition, they use an-
other XML document representing warehouse meta-
data. The other proposals do not use XML docu-
ments for representing warehouse schema. However,
we need these metadata to compute our cost models.

Thus, our data warehouse is composed of the fol-
lowing XML documents:

• Schema.xmlspecifies the data warehouse meta-
data;

• Dimensions.xmldefines all the dimensions char-
acterized by their attributes and values;

• Facts.xml specifies the facts, i.e., the identi-
fiers of dimensions and the description of mea-
sures.

Figure 1 shows how these documents are structured.

*

*

Figure 1. XCube warehouse specifica-
tion

2

2.2 XML data warehouse interroga-
tion

We selected the XQuery language [5] to formulate
our decision-support queries because, unlike simpler
languages such as XPath, it allows complex queries,
including join queries over multiple XML documents,
to be expressed with theFLWORsyntax. However,
in our implementation, we had to extendFLWORex-
pressions with explicitGroup byclauses to be able
to formulate the decision-support queries we needed.
Thus, we added the functionsGroup by (attribute
list) andAggregation (aggregation operations, mea-
sure list)to the XQuery syntax. Figure 2 provides an
example of decision-support query with a multiple
Group byclause.

Figure 2. Decision-support XQuery ex-
ample

3 XML materialized view selection strat-
egy

The architecture of our materialized view selec-
tion strategy is depicted in Figure 3. We assume
that we have a workload composed of representative
queries for which we want to select a configuration of
materialized views in order to reduce their execution
time. The first step is to build, from the workload,
a clustering context. Then we define similarity and
dissimilarity measures that help clustering together
similar queries.

For each cluster, we build a set of candidate views.
The last step exploits cost models that evaluate the
cost of accessing data using views and the cost of
their storage to build a final materialized view con-
figuration.

3.1 Query workload analysis

The workload that we consider is a set ofselec-
tion, join andaggregationqueries. Figure 4 gives a
snapshot of this workload. The first step consists in
extracting from the workload the representative at-
tributes for each query. We mean by representative
attributes those are present inWhere(selection pred-
icate attributes) andGroup byclauses.

We store the relationships between the query work-
load and the extracted attributes in a ”query-attribute”

q1 for $a in //dimensionData/classification/Level
[@node=’channels’]/node,
$b in //dimensionData/classification/Level
[@node=‘customers’]/node,
$x in //CubeFacts/cube/Cell
let $q := $b/attribute[@name=‘custfirst name’],
$s := $a/attribute[@name=‘channelclass’]
where$a/attribute[@name=‘channeldesc’,@value=‘Internet’]
and $b/attribute[@name=‘custcity’,@value=‘Montpellier’]
and $x/dimension /@node=$a/@id
and $x/dimension /@node=$b/@id
and $x/dimension/@id=‘customers’
and $x/dimension/@id=‘channels’
group by(@custfirst name,@channelclass)
return @custfirst name, @channelclass,sum(quantity)

q2 for $a in //dimensionData/classification/Level
[@node=’channels’]/node,
$b in //dimensionData/classification/Level
[@node=’customers’]/node,
$x in //CubeFacts/cube/Cell
let $q := $b/attribute[@name=’custfirst name’],
$s := $a/attribute[@name=’channelclass’]
where$a/attribute[@name=‘channeldesc’,@value= ‘Internet’]
and $b/attribute[@name=‘custcity’,@value=‘Lyon’]
and $x/dimension /@node=$a/@id
and $x/dimension/@node=$b/@id
and $x/dimension/@id=‘customers’
and $x/dimension/@id=‘channels’
group by(@custfirst name,@channelclass)
return @custfirst name,@channelclass,sum(quantity)

q3 for $a in //dimensionData/classification/Level
[@node=‘channels’]/node,
$b in //dimensionData/classification/Level
[@node=‘customers’]/node,
$x in //CubeFacts/cube/Cell
let $q := $b/attribute[@name=‘custfirst name’],
$s := $a/attribute[@name=‘channelclass’]
where$a/attribute[@name=‘channeldesc’,@value=‘Internet’]
and $b/attribute[@name=‘custcity’,@value=‘Gif-sur-Yvette’]
and $x/dimension /@node=$a/@id
and $x/dimension /@node=$b/@id
and $x/dimension/@id=‘customers’
and $x/dimension/@id=‘channels’
group by(@custfirst name,@channelclass)
return @custfirst name,@channelclass,sum(quantity)

. . .

Figure 4. Workload snapshot

matrix. The matrix lines are the queries and the colu-
mns are the extracted attributes. A queryqi is then
seen as a line in the matrix that is composed of cells
corresponding to representative attributes. The gen-
eral termqji of this matrix is set to one if extracted
attributeaj is present in queryqi, and to zero other-
wise. This matrix represents our clustering context.
Table 1 shows the query-attribute matrix that is built
from the workload snapshot from Figure 4.

3.2 Building the candidate view con-
figuration

In practice, it is hard to search all the syntactically
relevant views (candidate views) because the search
space is very large [1]. To reduce the size of this
space, we propose to cluster the queries. Hence, we
group in a same cluster all the queries that are similar.
Similar queries are the one having a close binary rep-
resentation in the query-attribute matrix. Two simi-

3

1

2

3

4

5

6

Figure 3. Materialized view selection strategy

a1 a2 a3 a4 a5 ...
q1 1 1 1 1 0
q2 1 0 1 1 1
q3 1 1 1 1 0
...

a1 : cust first name a2 : channelclass
a3: channeldesc a4: cust city

a5: channelclass

Table 1. Clustering context example

lar queries can be resolved by using only one mate-
rialized view. We define similarity and dissimilarity
measures that ensure that queries within a same clus-
ter are strongly related to each others whereas queries
from different clusters are significantly different.

3.2.1 Similarity and dissimilarity measures

A query is described by the attributes extracted in the
query analysis phase. We thus describe a queryqi by
a vectorqi={q1i, q2i, · · · , qpi}, wherep is the number
of attributes in the matrix. This description allows
query comparison.

We define similarity (respectively, dissimilarity)
between two queriesqi andqj regarding attributeak

(k = 1..p) in Formula 1 (respectively, Formula 2).

δsim(qki, qkj) =
{

1 if qki = qkj = 1
0 otherwise

(1)

δdissim(qki, qkj) =
{

1 if qki = qkj

0 if qki 6= qkj
(2)

Two queriesqi and qj are similar regarding at-
tribute ak if and only if qki = qkj = 1, i.e., ak is
present in both queries. They are dissimilar if and
only if qki 6= qkj , i.e., one of the two queries does
not contain attributeak.

These measures can be extended to a setA com-
posed ofp attributes such that we get the degree of
global similarity and dissimilarity between two que-
ries. We thus define the similarity (respectively, dis-
similarity) between two queriesqi andqj according
to all the matrix attributesak in Formula 3 (respec-
tively, Formula 4).

sim(qi, qj) =
p∑

j=1

δsim(qkj , qlj) (3)

0 ≤ sim(qi, qj) ≤ p

dissim(qi, qj) =
p∑

j=1

δdissim(qkj , qlj) (4)

4

0 ≤ dissim(qi, qj) ≤ p

Thus, the closersim(qi, qj) (respectively,dissim
(qi, qj)) is to p, the moreqi and qj are considered
similar (respectively, dissimilar).

We also define similarity (respectively, dissimilar-
ity) measures between two query sets and within a
query set. These measures are defined by Formu-
laes 5, 6, 7 and 8.

sim(Ca, Cb) =
∑

qk∈Ca,ql∈Cb

δsim(qk, ql) (5)

0 ≤ sim(Ca, Cb) ≤ card(Ca)× card(Ca)× p

dissim(Ca, Cb) =
∑

qk∈Ca,ql∈Cb

δdissim(qk, ql) (6)

0 ≤ dissim(Ca, Cb) ≤ card(Ca)× card(Ca)× p

sim(Ca) =
∑

qk∈Ca,ql∈Ca,k<l

δsim(qk, ql) (7)

0 ≤ sim(Ca) ≤ card(Ca)× card(Ca)× p

2

dissim(Ca) =
∑

qk∈Ca,ql∈Ca,k<l

δdissim(qk, ql) (8)

0 ≤ dissim(Ca) ≤ card(Ca)× card(Ca)× p

2

3.2.2 Clustering

Clustering consists in determining a so-called natural
partition Pnat composed of objects (here, queries)
that reflects the internal structure of data. This par-
tition must be such as its clusters are composed of
objects with high similarity and objects from differ-
ent clusters present a high dissimilarity.

Based on the previously defined functions, a clus-
tering quality measureQ(Ph) can be built, formula 9.

This measure permits to capture the natural aspect
of a partition. Hence,Q(Ph) measures simultane-
ously similarities between queries within the same
cluster of partitionPh and dissimilarities between
queries within different clusters. Thus, we can define
Q(Ph) as an homogeneity function for the same class
and an heterogeneity function for different classes.
Therefore, the partitions presenting a high intra-clu-
ster homogeneity and a high inter-cluster disparity
have a weak value ofQ(Ph) and thereby appear as
the most natural.

We have selected the Kerouac algorithm [15] for
the clustering phase. This algorithm indeed bears
several interesting properties:

1. its computational complexity is quite low (log
linear regarding the number of queries and lin-
ear regarding the number of attributes);

2. it can deal with a high number of objects (que-
ries);

3. it can deal with distributed data;

4. it allows to integrate constraints within the clus-
tering process.

This last characteristic is particularly interesting, since
it provides us with a way to integrate constraints con-
cerning the view merging process.

3.3 Cost models

The number of candidate views is generally as
high as the input workload is large. Thus, it is not
feasible to materialize all the proposed views because
of storage space constraints. To circumvent this lim-
itation, we propose to use cost models allowing to
keep only the most pertinent views.

Figure 5 shows the typical structure of an XML
view. In our context, it is composed ofCell elements.
EachCell is itself composed ofdimensionelements
that containGroup byattributes andfact elements
corresponding to the aggregate results. We propose
cost models that estimate the size and storage cost of
a given XML view.

Figure 5. XML view structure

We estimate the size of a view by its number of
elements. The number ofDimensionandFact ele-
ments in eachCell is the same. Indeed, the number
of elements in a given view is estimated by the num-
ber ofCell elements. To compute it, we first estimate
the maximum number ofCell elements (Formula 10).

ms(Cell) =

d∏
i=1

|di| (10)

|di| is the cardinality of the dimension character-
izing theCell element.d is the number of dimensions
in the documentDimensions.xml.

Let ms(v) be the maximum size of viewv that is
composed of dimensionsd1, ..., dk , wherek is the
number of dimensions in the view and|di| the cardi-
nality of dimensiondi. ms(v) is expressed in For-
mula 11.

5

Q(Ph) =
∑

a=1···z,b=1···z,a<b

(sim(Ca, Cb) +

z∑
a=1

dissim(Ca)) (9)

ms(v) =

k∏
i=1

|di| (11)

Golfarelli et al. [9] proposed to estimate the num-
ber of tuples in a given viewv by using Yao’s for-
mula [26]. We also use this formula to estimate the
number ofCell elements inv (Formula 12).

|v| = ms(v)×
[

1−
∏Cell

i=1

ms(Cell)×c−i+1
ms(Cell)−i+1

]
(12)

c = 1 − 1
ms(v) . If ms(Cell)

ms(v) is large enough, this
formula is well approximated by Cardena’s formula
[6]. Hence, we obtain Formula 13.

|v| = ms(v)×
(

1−
(

1− 1
ms(v)

)|Cell|
)

(13)

Cardenas and Yao’s formulaes are based on the
assumption that data are uniformly distributed. The
size, in bytes, of a viewv is equal to the number of
Cell elements multiplied by the average size needed
to store one element. Thus, we estimate the size of a
view as shown in Formula 14.

size(v) = |v| ×
k∑

i=1

size(di) (14)

size(di) represents the size, in bytes, of dimen-
siondi from v andk the number of dimensions.

3.4 Objective functions

We describe in this section three objective func-
tions that help evaluating the variation of query exe-
cution cost induced by adding a new view. The query
execution cost is assimilated to the number ofCell el-
ements in the documentFacts.xml, if no view is used;
or to the number ofCell elements in the view(s) if
they are exploited. The workload execution cost is
obtained by adding the execution costs of each query
within this workload.

The first objective function advantages the views
providing more profit while executing queries. The
second one advantages the views providing more ben-
efit while occupying the smallest storage space. The
third one combines the first two in order to first select
all the views providing more profit and then retain
only those occupying less storage space when this re-
source becomes critical. The first function is useful

when the space storage is not limited, the second one
is useful when storage space is small and the third
one is interesting when storage is reasonably large.

3.4.1 Profit objective function

Let V = {v1, ..., vm} be the candidate view set,S
the final view set andQ = {q1, ..., qn} a query set
(workload). The profit objective function, notedP ,
is defined in Formula 15.

P/S(vj) = (C/S(Q)− C/S∪vj
(Q)− βCupdate(vj) (15)

(vj /∈ S)
C/S(Q) denotes the query execution cost when

all the views inS are used. If this set is empty,
C/∅(Q) = |Q| × |F | because all the queries are
resolved by accessing factF . When a viewvi is
added toS, C/S∪vi

(Q) =
∑|Q|

k=0 C(qk, vj) denotes
the query execution cost for the views that are in
S ∪ vi. If queryqk exploitsvi, costC(qi, vj) is then
equal toCvj (number of tuples invj). Otherwise,
C(qi, vj) is equal to the maximum value between|F |
and value ofC(qi, v) (executing cost ofqi exploiting
v ∈ S with v 6= vj).

Coefficientβ = |Q|p(vi) estimates the number of
updates for viewsvi. The update probabilityp(vi) is
equal to 1

storage−space
%update
%query , where the ratio%update

%query
represents the proportion of updatingvs. querying
the data warehouse.

Cupdate(vj) represents the maintenance cost for
view vj .

3.4.2 Profit/space ratio objective function

If view selection is achieved under a space constraint,
the profit/space objective function from Formula 16
is used. This function computes the profit provided
by vj in regard to the storage spacesize(vj) it occu-
pies.

R/S(vj) =
P/S(vj)

size(vj)
(16)

3.4.3 Hybrid objective function

The constraint on storage space may be relaxed if
this space in relatively large. The hybrid objective
functionH does not penalize space-greedy views if
the ratio remaining−space

storage−space is lower or equal than a

6

given thresholdα (0 < α ≤ 1), where remain-
ing spaceandstoragespaceare respectively the re-
maining space after addingvi and the allotted space
needed for storing all the views. This function is
computed by combining the two functionsP andR
as shown in Formula 17.

H/S(vj) =

{
P/S(vj) if remaining−space

storage−space

R/S(vj) otherwise
(17)

3.5 View selection algorithm

Our view selection algorithm (Algorithm 1) is ba-
sed on a greedy search within the candidate view set
V . The objective functionF must be one of the func-
tionsP , R or H described in the previous section. If
R is used, we add to the algorithm’s input the storage
spaceM allotted for views. IfH is used, we also add
thresholdα as input.

Algorithm 1 View ConfigurationConstruction

S ← ∅
repeat

vmax ← ∅
Fmax ← 0
for all vj ∈ V − S do

if F/S(vj) > Fmax then
Fmax ← F/S(vj)
vmax ← vj

end if
end for
if F/S(vmax) > 0 then

S ← S ∪ {vmax}
end if

until (F/S(vmax) ≤ 0 or V − S = ∅)

In the first algorithm iteration, the values of the
objective function are computed for each view within
V . The view vmax that minimizesF , if it exists
(F/S(vmax)>0), is then added toS. If R or H is
used, the whole storage spaceM is decreased by the
amount of space occupied byvmax.

The function values ofF are then computed for
each remaining view inV − S, since they depend
on the selected views present inS. This helps tak-
ing into account the interactions that probably exist
between the views.

We repeat these iterations until there is no im-
provement (F/S(v) ≤ 0) or until all the views have
been selected(V − S = ∅). If functionsR or H are
used, the algorithm also stops when storage space is
full.

4 Experiments

In order to validate our approach for XML mate-
rialized view selection, we generated an XML data
warehouse, modeled according to the XCube speci-
fications. This classical test data warehouse is com-
posed ofsalesfacts characterized by theamountand
quantitymeasures. The facts are stored in the doc-
umentFacts.xml(4,92 MB). They are described by
five dimensions:channels, promotions, customers,
productsand times that are stored in the document
Dimensions.xml(3,77 MB). This data warehouse has
been implemented within the eXist native XML Data
base management system DBMS [17], which is a
free tool that allows the storage of large documents
and supports the XQuery language. We ran our tests
on a Pentium 2 Ghz PC with 1 GB main memory and
an IDE hard drive.

We executed on our data warehouse a workload
composed of ten XQuery decision-support queries
(Figure 6), with and without using our strategy. The
selected views are stored in an independent collec-
tion. This collection is targeted by rewritten queries
according to view data. We plotted in Figure 7 the
execution time of our query workload on the original
XML documents and on the materialized views we
generated. The X-axis represent the ten queries and
the Y-axis the corresponding execution time. The Y-
axis is represented in logarithmic scale to highlight
the difference between the execution costs. On an
average, our XML view materializing strategy im-
proves response time by a factor 24,700.

5 Conclusion and perspectives

In this paper, we have presented a strategy for ma-
terialized view selection in XML data warehouses.
Our strategy exploits the results of clustering applied
on a given workload to build a set of syntactically
relevant candidate views. With the help of cost mod-
els we specifically designed for the XML model, we
retain only the most advantageous candidate views.
These models estimate data access cost using mate-
rialized views and storage cost for these views.

We have also proposed three objective functions:
profit, profit/space ratio and hybrid that exploit our
cost models to evaluate the execution cost of the work-
load. These functions are themselves exploited by a
greedy algorithm that recommends a pertinent con-
figuration of materialized views. This allows our strat-
egy to respect the storage space constraint.

Finally, note that our strategy is independent from
the warehouse model and the DBMS it is stored in.
Though we used an XCube-based reference data wa-
rehouse, our strategy could easily be applied on any
other model. In the same way, any DBMS could

7

1 for $a in //dimensionData/classification/Level[@node=‘CHANNELS’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘CHANNELDESC’ and $a/attribute/@value=‘Internet’ and $x/dimension/@node=$a/@id
and $x/dimension/@id=‘CHANNELS’
group by(@CHANNELCLASS)
return sum(quantity)

2 for $a in //dimensionData/classification/Level[@node=‘TIMES’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘DAYNAME’ and $a/attribute/@value=‘Wednesday’ and $x/dimension/@node=$a/@id
and $x/dimension/@id=‘TIMES’
group by(@DAYNUMBER IN WEEK)
return sum(quantity)

3 for $a in //dimensionData/classification/Level[@node=‘TIMES’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘DAYNAME’ and $a/attribute/@value=‘Friday’ and $x/dimension/@node=$a/@id
and $x/dimension/@id=‘TIMES’
group by(@DAYNUMBER IN WEEK)
return sum(quantity)

4 for $a in //dimensionData/classification/Level[@node=‘TIMES’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘DAYNAME’ and $a/attribute/@value=‘Monday’ and $x/dimension/@node=$a/@id
and $x/dimension/@id=‘TIMES’
group by(@DAYNUMBER IN WEEK)
return sum(quantity)

5 for $b in //dimensionData/classification/Level[@node=‘CUSTOMERS’]/node, $x in //CubeFacts/cube/Cell
where $b/attribute/@name=‘CUSTCITY’ and $b/attribute/@value=‘Lyon’ and $x/dimension/@node=$b/@id
and $x/dimension/@id=‘CUSTOMERS’
group by(@CUSTPOSTAL CODE)
return sum(quantity)

6 for $b in //dimensionData/classification/Level[@node=‘CUSTOMERS’]/node, $x in //CubeFacts/cube/Cell
where $b/attribute/@name=‘CUSTCITY’ and $b/attribute/@value=‘Montpellier’ and $x/dimension/@node=$b/@id
and $x/dimension/@id=‘CUSTOMERS’
group by(@CUSTGENDER)
return sum(quantity)

7 for $a in //dimensionData/classification/Level[@node=‘PRODUCTS’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘PRODNAME’ and $a/attribute/@value=‘Coin Pocket Twill Cargo Trousers’
and $x/dimension/@node=$a/@id and $x/dimension/@id=‘PRODUCTS’
group by(@PRODLIST PRICE)
return sum(quantity)

8 for $a in //dimensionData/classification/Level[@node=‘PRODUCTS’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘PRODNAME’ and $a/attribute/@value=‘Coin Pocket Twill Cargo Trousers’
and $x/dimension/@node=$a/@id and $x/dimension/@id=‘PRODUCTS’
group by(@PRODLIST PRICE)
return sum(quantity)

9 for $a in //dimensionData/classification/Level[@node=‘TIMES’]/node, $x in //CubeFacts/cube/Cell
where $a/attribute/@name=‘DAYNAME’ and $a/attribute/@value=‘Wednesday’ and $x/dimension/@node=$a/@id
and $x/dimension/@id=‘TIMES’ group by(@DAYNUMBER IN WEEK)
return sum(quantity)

10 for $b in //dimensionData/classification/Level[@node=‘CUSTOMERS’]/node, $x in //CubeFacts/cube/Cell
where $b/attribute/@name=‘CUSTCITY’ and $b/attribute/@value=‘Paris’ and $x/dimension/@node=$b/@id
and $x/dimension/@id=‘CUSTOMERS’
group by(@CUSTGENDER)
return sum(quantity)

Figure 6. Experimental workload

be used instead of eXist, including relational, XML-
compatible DBMSs.

The first experimental results we achieved are very
encouraging, and show that our strategy guarantees a
substantial gain in performance. However, our first
perspective is to complement these results with other
tests, possibly on other systems than eXist, and to as-
sert in each configuration the gain in performancevs.
the overhead for generating and refreshing the mate-
rialized views.

This work also opens two other axes of research
perspectives. First, it is blatantly crucial to adapt
or develop highly efficient optimization techniques
in native XML DBMSs if they are to approach the
performances of relational systems. XML indices
are getting more and more efficient, but there is still
room for improvement (e.g., multi-document join in-
dices). The generalized exploitation of materialized
views could also be very beneficial. Thus, a rewrit-
ing query engine and refreshing strategies should be

devised.
Our second research axis is even more specific

to XML data warehouses. Decision-support queries
bear specific needs in terms of operators. For in-
stance, we had to extend XQuery to allow multiple
Group byclauses to be able to implement our decision-
oriented workload within eXist. Similar extensions
do exist already, but it could be interesting to further
extend XQuery to support OLAP operators such as
Cube, Rollupor Drill-down.

References

[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and
indexes in SQL databases. In26th International
Conference on Very Large Data Bases (VLDB
2000), Cairo, Egypt, pages 496–505, 2000.

8

0.001

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Figure 7. Experiment results

[2] K. Aouiche, P. E. Jouve, and J. Darmont. Se-
lection of views to materialize based on query
clustering. Technical report, University of Lyon
2, 2005.

[3] E. Baralis, S. Paraboschi, and E. Teniente. Ma-
terialized views selection in a multidimensional
database. In23rd International Conference on
Very Large Data Bases (VLDB 1997), Athens,
Greece, pages 156–165, 1997.

[4] X. Baril and Z. Bellahsene. Selection of materi-
alized views: a cost-based approach. In15th In-
ternational Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2003), Kla-
genfurt, Austria, pages 665–680, 2003.

[5] S. Boag, D. Chamberlin, M. Fernández, D. Flo-
rescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, April 2004.

[6] A. F. Cardenas. Analysis and performance of
inverted data base structures.Communications
of the ACM, 18(5):253–263, 1975.

[7] J. Darmont, O. Boussaid, F. Bentayeb,
S. Rabaseda, and Y. Zellouf.Web multiform
data structuring for warehousing, volume 22
of Multimedia Systems and Applications, pages
179–194. Kluwer Academic Publishers, 2003.

[8] J. Darmont, O. Boussaid, J.-C. Ralaivao, and
K. Aouiche. An architecture framework for
complex data warehouses. In7th International
Conference on Enterprise Information Systems
(ICEIS 05), Miami, USA, pages 370–373, May
2005.

[9] M. Golfarelli and S. Rizzi. A methodologi-
cal framework for data warehouse design. In
1st ACM international workshop on Data ware-
housing and OLAP (DOLAP 1998), New York,
USA, pages 3–9, 1998.

[10] H. Gupta. Selection of views to materialize in
a data warehouse. In6th International Confer-
ence on Database Theory (ICDT 1997), Delphi,
Greece, pages 98–112, 1997.

[11] H. Gupta and I. S. Mumick. Selection of views
to materialize in a data warehouse.IEEE Trans-
actions on Knowledge and Data Engineering,
17(1):24–43, 2005.

[12] R. Gupta, G. Shuqiao, and Y. Zhen. A report
on XML data indexing techniques. Technical
report, National University of Singapore.

[13] V. Harinarayan, A. Rajaraman, and J. D. Ull-
man. Implementing data cubes efficiently. In
ACM SIGMOD International Conference on
Management of data (SIGMOD 1996), Mon-
treal, Canada, pages 205–216, 1996.

[14] W. Hümmer, A. Bauer, and G. Harde. XCube:
XML for data warehouses. In6th ACM Inter-
national Workshop on Data warehousing and
OLAP (DOLAP 03), New Orleans, USA, pages
33–40, 2003.

[15] P. Jouve and N. Nicoloyannis. Kerouac: An al-
gorithm for clustering categorical data sets with
practical advantages. InInternational Work-
shop on Data Mining Learning for Actionable
Knowledge (DMAK 2003), 2003.

9

[16] Y. Kotidis and N. Roussopoulos. Dynamat:
A dynamic view management system for data
warehouses. InACM SIGMOD International
Conference on Management of Data (SIG-
MOD 1999), Philadelphia, USA, pages 371–
382, 1999.

[17] W. Meier. eXist: An Open Source Native XML
Database. InWeb, Web-Services, and Data-
base Systems, NODe 2002 Web and Database-
Related Workshops, Erfurt,Germany, volume
2593 ofLNCS, pages 169–183, 2002.

[18] T. P. Nadeau and T. J. Teorey. Achieving
scalability in OLAP materialized view selec-
tion. In 5th ACM International Workshop on
Data Warehousing and OLAP (DOLAP 2002),
McLean, USA, pages 28–34, 2002.

[19] B.-K. Park, H. Han, and I.-Y. Song. XML-
OLAP: A Multidimensional Analysis Frame-
work for XML Warehouses. In7th Interna-
tional Conference on Data Warehousing and
Knowledge Discovery (DaWaK 2005), Copen-
hagen, Denmark, pages 32–42, 2005.

[20] J. Pokorńy. Modelling Stars Using XML. In4th
ACM International Workshop on Data Ware-
housing and OLAP (DOLAP 2001), Atlanta,
USA, pages 24–31, 2001.

[21] J. Pokorńy. XML Data Warehouse: Modelling
and Querying. In5th International Baltic Con-
ference (BalticDB&IS 2002), Tallin, Estonia,
pages 267–280, 2002.

[22] A. Shukla, P. Deshpande, and J. F. Naughton.
Materialized view selection for multi-cube data
models. In7th International Conference on
Extending DataBase Technology (EDBT 2000),
Konstanz, Germany, pages 269–284, 2000.

[23] J. R. Smith, C.-S. Li, and A. Jhingran. A
wavelet framework for adapting data cube
views for OLAP.IEEE Transactions on Knowl-
edge and Data Engineering, 16(5):552–565,
2004.

[24] H. Uchiyama, K. Runapongsa, and T. J. Teo-
rey. A progressive view materialization algo-
rithm. In 2nd ACM International Workshop on
Data warehousing and OLAP (DOLAP 1999),
Kansas City, USA, pages 36–41, 1999.

[25] S. R. Valluri, S. Vadapalli, and K. Karla-
palem. View relevance driven materialized
view selection in data warehousing environ-
ment. In13th Australasian Database Technolo-
gies (ADC 2002), Melbourne, Australia, pages
187–196, 2002.

[26] S. Yao. Approximating block accesses in data-
base organizations. Communication of the
ACM, 20(4):260–261, 1977.

[27] C. Zhang, X. Yao, and J. Yang. An evolu-
tionary approach to materialized view selec-
tion in a data warehouse environment.IEEE
Transactions on Systems, Man, and Cybernet-
ics, 31(3):282–294, 2001.

10

