
Keywords: XML data warehouses, XML join index, XML materialized view selection, XQuery.

 Query Performance Optimization in

XML Data Warehouses

Hadj Mahboubi and Jérôme Darmont

Université de Lyon (ERIC Lyon 2)

5 avenue Pierre Mendès-France

69767 Bron Cedex

France

hadj.mahboubi@univ-lyon2.fr, jerome.darmont@univ-lyon2.fr

ABSTRACT

XML data warehouses form an interesting basis for decision-support applications that exploit

complex data. However, native-XML database management systems (DBMSs) currently bear

limited performances and it is necessary to research for ways to optimize them. In this chapter,

we present two such techniques. First, we propose a join index that is specifically adapted to the

multidimensional architecture of XML warehouses. It eliminates join operations while preserving

the information contained in the original warehouse. Second, we present a strategy for selecting

XML materialized views by clustering the query workload. To validate these proposals, we

measure the response time of a set of decision-support XQueries over an XML data warehouse,

with and without using our optimization techniques. Our experimental results demonstrate their

efficiency, even when queries are complex and data are voluminous.

INTRODUCTION

Decision-support applications aim at facilitating the decision-making process. They collect data

from operational databases and various sources, transform them into information available to

decision-makers in a consolidated and consistent manner (Kimball & Ross, 2002).

Furthermore, the development of the Web 2.0 and the proliferation of multimedia documents

contributed to the analysis of data are not only numerical nor symbolic. Indeed, such data can be

represented in various formats (databases, texts, images, sounds, videos...); diversely structured

(relational databases, XML document repositories...); originating from several different sources

(distributed databases, the Web...); described through several channels or points of view (x-ray

photographs and audio diagnosis of a physician, data expressed in different scales or

languages...); changing in terms of definition or value (temporal databases, periodical surveys...).

We term data that fall in several of the above categories complex data (Darmont et al., 2005).

In this context, XML proves a very interesting tool for integrating and warehousing complex data

for analysis thanks to its self-description (akin to warehouse metadata) and extensibility features

(Darmont et al., 2003). Moreover, XML has become a standard for representing complex

mailto:hadj.mahboubi@univ-lyon2.fr
mailto:jerome.darmont@univ-lyon2.fr

business data (Beyer et al., 2005). Hence, many efforts toward XML data warehousing have been

achieved in the past few years (Park et al., 2009; Pokorný, 2002).

However, decision-support queries are generally complex because they involve several join and

aggregation operations, while most XML-native database management systems (DBMSs) present

relatively poor performances when data volume is very large and/or queries are complex.

In classical (i.e., relational) data warehouses, these issues are customarily addressed by indexing

data and materializing views (Gupta & Mumick, 2005). Indexes and materialized views are

physical data structures that improve data access time. An index allows direct (vs. sequential)

access to data, while a materialized view precomputes query results and avoids accessing the

whole original data. Both these physical data structures require additional storage space and

induce some refreshing process overhead. It is thus crucial to select them wisely.

Several solutions have been proposed for XML data indexing in the literature. However, the

existing techniques support single-labeled path expressions within one single XML document

(Goldman & Widom, 1997; Chung et al., 2002). Such path expressions help explore an XML

document and extract a specific node (element) or sub-tree (subdocument). They cannot perform

join operations over several XML documents. In the context of XML data warehouses, decision-

support queries are complex and involve several path expressions. Data are also generally

distributed into several XML documents due to their large volume. Hence, XML queries should

use specific indexes to access these documents.

In the context of relational data warehouses, several studies address the materialized view

selection problem (Agrawal et al., 2000; Aouiche et al., 2006). Views that are relevant to

materialize are selected to minimize the processing time of a given workload under maintenance

cost and/or storage space constraints (Kotidis & Roussopoulos, 1999). Unfortunately, no such

view materialization approach exists for XML databases and XML data warehouses in particular.

In this chapter, we propose a new index structure that is specifically adapted to multidimensional

XML data warehouses. This structure is able to maintain a star schema1 of several XML

documents and to preserve the information contained in these documents. It is actually a join

index that ensures faster execution of decision-support XQueries by eliminating join costs.

Our second contribution consists in adapting Aouiche et al.’s (2006) query clustering-based

relational view selection approach to the XML context. We cluster queries and build candidate

XML views that can resolve multiple similar queries belonging to the same cluster. Our approach

exploits XML-specific cost models to select XML views that are pertinent to materialize.

The remainder of this chapter is organized as follows. We first discuss previous research related

to XML indexing and materialized view selection, respectively. Then, we introduce the technical

context of our studies, namely the XML data warehouse model we use, before detailing our join

1 A star schema is the simplest data warehouse schema. It consists of a single, central fact table

linked to peripheral dimensions, an analyzed fact thus being described by a combination of

dimensions (or analysis axes).

index for XML data warehouses and our XML materialized view selection strategy. To validate

our proposals, we also present some experimental results. Finally, we conclude this chapter and

hint at future research issues.

RELATED WORK

In this section, we discuss the state-of-art XML related to index and materialized view selection

approaches.

XML data indexes

In the following, we assume that an XML document is defined as a labeled graph whose nodes

represent document elements or attributes, and edges represent element-subelement (or parent-

child) relationships. Edges are labeled with element or attribute names.

Several studies address the issue of XML data indexing (Goldman & Widom, 1997; Milo &

Suciu, 1999; Cooper et al., 2001; Chung et al., 2002). They are more particularly devoted to

optimize XML path expressions. Generally, they help traverse XML document hierarchies by

referencing structural information about these documents. These techniques extract structural

information directly from data and create a structural summary that is a labeled, directed graph.

Graph schemas can be used as indexes for path queries. In practice, an XML index is a new XML

document that is accessed instead of the original document.

Dataguide is a summary structure for semi-structured and XML data (Goldman & Widom, 1997).

Its structure describes by one single label all the nodes (elements) whose labels (names) are

identical. Its definition is based on targeted path sets, i.e., the set of nodes that are reached by

traversing a given path. 1-index clusters nodes that share the same path in the XML data graph

(Milo & Suciu, 1999). This process is performed through a bi-similarity relationship. To select

labels or express path expressions, a hash table or a B-tree structure is used to index graph labels.

Dataguide and 1-index code all the paths from the root node. Hence, their size may become larger

than the original XML document when XML data are represented as graphs (cyclic XML

document), which dramatically degrades query performance. A(k)-index, a variant of 1-index,

addresses this issue (Kaushik et al., 2002). It is based on the notion of k-bisimilarity2 and builds

an approximate index that reduces index graph size. An A(k)-index can retrieve, without referring

to the original data graph, path expressions of length of at most k, where k controls the resolution

of the index and influences its size in a proportional manner. However, for large values of k,

index size may still become very large. For small values of k, index size is substantially smaller,

but the index cannot handle long path expressions.

2 K-bisimilarity groups nodes with respect to local structure, i.e., the incoming paths of length up

to k.

To accommodate path expressions of various lengths, without unnecessarily increasing the size of

the whole index, D(k)-index assigns different values of k to different index nodes (Qun et al.,

2003). These values conform to a given set of frequently-used path expressions (FUPs). Large

values of k are assigned to parts of the index corresponding to parts of the data graph targeted by

long path expressions; while small values of k are assigned to parts of the index corresponding to

data targeted by short path expressions. To facilitate the evaluation of path expressions with

branching, a variant called UD(k, l)-index also imposes downward similarity (Wu et al., 2003).

APEX is an adaptive index that searches for a trade-off between size and effectiveness (Chang et

al., 2002). Instead of indexing all the paths from the root, APEX only indexes FUPs and preserves

the source data structure in a tree. However, since FUPs are stored in the index, path query

processing is quite efficient. APEX is also workload-aware, i.e., it can be dynamically updated

according to changes in the query workload. A data mining method is used to extract FUPs from

the workload for incremental update (Agrawal & Srikant, 1995).

Unfortunately, all these indexing techniques are ill-suited to decision-support queries. Data

structures such as Dataguide, 1-index and its variants, and APEX are indeed applicable only on

XML data that are targeted by simple path expressions. However, in the context of XML data

warehouses, queries are complex and include several path expressions that compute join

operations. Moreover, these indexes operate on one XML document only, whereas in XML

warehouses, data are managed in several XML documents and decision-support queries are

performed over these documents.

Finally, other techniques such as extended inverted lists (Zhang et al., 2001) and Fabric (Cooper

et al., 2001) process containment queries over XML data stored in relational databases. Extended

inverted lists includes a text index (T-index; Milo & Suciu, 1999) that is similar to traditional

indexes in information retrieval systems, and an element index (E-index) that maps elements into

inverted lists. Fabric indexes several XML documents by encoding paths, from root to leaf nodes,

with indicators that code path labels. These codes are then inserted in a Patricia trie (Cooper et al.,

2001) that processes them like simple characters. However, Fabric is not adapted to XML data

warehouses either, because it does not take into account the relationships that exist between XML

documents in a warehouse (facts and dimensions). This index is thus not beneficial to decision-

support queries.

Materialized view selection

The view selection problem has received significant attention in the literature, in the relational

database context. To the best of our knowledge, no such view materialization approach exists in

XML databases and XML data warehouses in particular. Researches about it differ by several

points:

1. the way of determining candidate views;

2. the frameworks used to capture relationships between candidate views;

3. the use of mathematical cost models vs. calls to the query optimizer;

4. the context of view selection (relational vs. multidimensional);

5. the way optimization is performed (over multiple or single queries);

6. the nature of solutions (theoretical or technical).

Uchiyama et al. (1999) and Kotidis et al. (1999) introduce a lattice framework that models and

captures dependency (ancestor or descendent) among aggregate views in a multidimensional

context. This lattice is greedily browsed with the help of cost models to select the best views to

materialize. This approach has also been used in one data cube and then extended to multiple

cubes (Shukla et al., 2000). Valluri et al. (2002) propose another theoretical framework, AND-OR

view graphs, to capture relationships between views. Though conceptually nice, these theoretical

solutions are not truly scalable.

Most recent approaches are workload-driven. They syntactically analyze the query workload to

enumerate relevant candidate views. A representative workload helps predict future queries,

which are likely to belong to it or be syntactically close to current queries. Thus, extracting

candidate materialized views from the workload ensures that they will probably be exploited

when processing future queries. By calling to the DBMS’ query optimizer (Agrawal et al., 2000)

or by using maintenance cost and/or storage space constraints (Kotidis et al., 1999), workload-

driven approaches greedily build a configuration of the most pertinent views. Clustering

algorithms are also used to select pertinent views to materialize. Aouiche et al. (2006) indeed

cluster similar queries together, and then merge queries in each cluster to build a set of candidate

views. A greedy algorithm guided by cost models (for data access and storage) finally helps select

the final set of views to materialize. In opposition to previous proposals, this approach is scalable

thanks to the low complexity of clustering.

STUDY CONTEXT

Although XML data warehouse architectures from the literature share a lot of concepts (mostly

originating from classical data warehousing), they are nonetheless all different. Hence, we present

in this section the XML data warehouse model that we choose and on which we base our query

performance optimization techniques. We also present a sample XML decision-support query.

XML data warehouse specification

When designing and building XML data warehouses, XML documents are used to manage or

represent facts and/or dimensions. This allows natively storing documents and easily

interrogating them with XML query languages.

Some XML warehousing approaches are user-driven. They are applied when an organization has

fixed warehouse requirements. Nassis et al. (2005) propose methods to conceptually design and

build an XML repository, based on object-oriented concepts and a view-driven approach,

respectively. This repository represents the warehouse analysis context. Baril & Bellahsène

(2003) envisage XML data warehouses as collections of views represented by XML documents.

Zhang et al. (2005) propose an approach to materialize XML data warehouses based on the

frequent query patterns discovered from historical queries issued by users. Finally, Vrdoljak et al.

(2003) propose a design approach for Web warehouses that is based on XML schemas describing

data sources. All these approaches assume that the warehouse is composed of XML documents

representing facts.

Other approaches are explicitly based on classical data warehouse logical models. For instance,

Pokornỷ (2003) models a star schema in XML by defining dimension hierarchies as sets of

logically connected collections of XML data, and facts as XML data elements. Park et al. (2005)

propose an XML multidimensional model in which each fact is described by a single XML

document, and dimension data are grouped into a repository of XML documents. Rusu et al.

(2005) build facts and dimensions from XML documents generated through XQueries.

Eventually, Hümmer et al. (2003) propose a family of templates, called XCube, to describe a

multidimensional structure (dimension and fact data) for integrating several data warehouses into

a virtual or federated data warehouse. All these approaches assume that the warehouse is

composed of XML documents that represent both facts and dimensions. They are used when

dimensions are dynamic and allow the support of end-user analytical tools.

All these studies more or less converge toward a unified XML warehouse model. They mostly

differ in the way dimensions are handled and the number of XML documents that are used to

store facts and dimensions. In this chapter, we select the XCube specification, which is the most

explicit, to model a reference XML data warehouse. However, since other models from the

literature are quite similar, this is not a binding choice.

The advantage of XCube is its simple structure for representing facts and dimensions in a star

schema. One XML document is used to represent dimensions and another one to represent facts.

Hence, our reference data warehouse is composed of the following XML documents: Schema.xml

specifies data warehouse metadata; Dimensions.xml defines all dimensions, each characterized by

attributes their values; and Facts.xml specifies facts, i.e., sets of dimension identifiers and

measure descriptions and values.

The tree structure of Facts.xml is described in Figure 1(a). Root node CubeFact has one child,

cube, which is itself composed of Cell nodes defining facts, i.e., fact nodes (measures) and

dimension references. A fact node has two attributes, @id and @value, which define the

measure’s name and value, respectively. A dimension node has two attributes, @id and @value,

which define the dimension’s name and its identifier's value, respectively.

The tree structure of Dimensions.xml is described in Figure 1(b). Root node dimensionData has

one child, classification, which is itself composed of Level nodes. A Level node is composed of

node nodes defining dimension instances. A node is composed of attribute nodes that define a

dimension’s attributes (@name) and their values (@value).

Figure 1: Structure of dimension and fact documents

XML data warehouse interrogation

We select the XQuery language (Boag et al., 2004) to formulate decision-support queries

because, unlike simpler languages such as XPath, it allows complex queries, including join

queries over multiple XML documents, to be expressed with the FLWOR syntax.

However, XQuery does not support well the type of queries that are common in business analysis

(Beyer et al., 2004). XQuery does indeed not include an explicit grouping construct comparable

to the group by clause in SQL. Hence, several papers propose to extend XQuery to formulate

decision-oriented queries (Borkar & Carey, 2004; Beyer et al., 2005). In our implementation, we

acknowledge this effort by adding to FLWOR expressions explicit group by clauses. More

precisely, we added two functions: group by (attribute-list) and aggregation (aggregation-

operations, measure-list), to the XQuery syntax. Figure 2 provides an example of decision-

support query with a multiple group by clause that exploits these functions.

for $a in //dimensionData/classification/Level
[@node=’customers’]/node,
$x in //CubeFacts/cube/Cell

let $q := $b/attribute[@name=’cust name’]/@value
let $z := $b/attribute[@name=’cust zip code’]/@value
where $a/attribute/@name=’cust city’
and $a/attribute/@value=’Lyon’
and $x/dimension /@id=$a/@id
and $x/dimension/@id=’customers’
group by(cust name,@cust zip code)

return name=’cust name’, aggregation(sum, quantity)

Figure 2: Sample decision-support XQuery

JOIN INDEX FOR XML DATA WAREHOUSES

In this section, we present our join index structure and show how it allows indexing several

related XML documents, which classical XML database indexes fail to do. We also present a

theoretical study that to demonstrate our index’ effectiveness.

Join index structure

Building actual XML indexes on an XML warehouse causes a loss of information in decision-

support query resolution. Indeed, clustering (1-index) or merging (Dataguide) identical labels

causes the disappearance of relationships between fact measures and dimensions. We illustrate

this problem in the following example.

The Facts.xml document is composed of Cell elements, each cell being characterized by

dimension identifiers and one or more measures. Figure 3 shows the structures of Facts.xml and

of its corresponding 1-index (which we selected as an example). 1-index represents cells linearly,

i.e., all labels for the same source are represented by only one label. Hence, recovering a cell

characterized by its measures and their dimension identifiers is impossible.

Figure 3: Facts.xml structure (a) and corresponding 1-index (b)

An index should be able to preserve the relationships between dimensions and fact measures.

Thus, our index’ structure is similar to that of the Facts.xml document, except for the attribute

element. Moreover, XML indexes usually summarize or reorganize the structure of the indexed

XML documents into new XML documents that are then accessed instead of original data. Our

index structure is similar. It is stored in an XML document named Index.xml, whose structure is

showed in Figure 4. Each Cell element is composed of dimensions and one or more facts. A Fact

element has two attributes, @id and @value, which respectively represent measure names and

values. Each dimension element is composed of two attributes: @id, which stores the dimension’s

name, and @node, which stores the dimension identifier’s value. A dimension element also has

children attribute elements. They are obtained from the Dimensions.xml document. An attribute

element is composed of two attributes, @name and @value, which respectively store its name

and value.

Figure 4: XML join index structure

Data migration from Dimensions.xml and Facts.xml to Index.xml helps store facts, dimensions

and their attributes in the same cell. This feature wholly eliminates join operations since all the

information that is necessary for a join operation is stored in the same cell. Queries need to be

rewritten to exploit our index, though. The rewriting process consists in preserving selection

expressions and aggregation operations. We illustrate query execution by an example in Figure 5.

Further details are provided in the experiment section.

Figure 5: Query executions over our join index

Theoretical validation

Queries defined over an XML warehouse modeled according to the XCube specification perform

several join operations between facts stored in Facts.xml and dimensions from Dimensions.xml.

Thus, they must satisfy the following constraints.

document(Facts.xml)/CubeFact/cube/Cell/dimension[@id =

document(Dimensions.xml)/classification/Level/@id]

and

document(Facts.xml)/CubeFact/cube/Cell/dimension/[@value =

document(Dimension.xml)/classification/Level/node/@id]

The first equality checks whether the dimension composing a cell (fact) is indeed the dimension

expressed in the query. The second equality checks whether the node of a dimension (equivalent

to a primary key) corresponds (can be joined) to the node, from the same dimension, defined in a

cell (equivalent to a foreign key in the fact table).

Query execution without using our index may proceed as follows. For each dimension

defined by @node='name of dimension', identifiers @id verifying the Where clause are

searched for. Dimensions.xml is traversed in depth first, down to the Level node. Child

nodes of the Level node are then traversed in breadth first until @node is equal to

dimension name. The cost of this traversal cost is equal to the number of Level nodes in

Dimensions.xml, denoted |dimension|. If several dimensions are defined in the query, all Level

nodes are traversed for each dimension. Each node's child is traversed in depth first, until a list of

@id attributes verifying the conditions @name='name of the attribute' and @value='value of the

attribute' is found. The cost of this traversal is equal to the number of attribute children. Thus,

dimension cost traversal equals
ii da * , where ia is the number of attributes in each

dimension and
id the number of node elements, i.e., the number of children in each dimension.

To join dimensions from Dimensions.xml and facts from Facts.xml, @id values found when

processing dimensions are searched for in facts. Facts.xml is then traversed in depth first, down to

the Cell level. Cells are then traversed in breadth first until dimensions whose child @id equals

@node in Dimensions.xml and @node equals @id in Dimensions.xml are found. The traversal

cost of Facts.xml is cell , where cell is the number of cells. Finally, query execution cost

without our index is defined by Formula 1.

 iinoindex addimensiondimensioncellE *** (1)

Query execution when using our index may proceed as follows. For each dimension defined by

@node='name of dimension', identifiers @id verifying the Where clause are searched for.

Index.xml is traversed in depth first, down to the Cell level. The cost of this traversal is equal to

the number of cells in Index.xml. Dimension child nodes are then traversed until the node whose

@id value equals dimension name in the query is reached. The cost of this traversal is equal to the

number of dimension nodes in Index.xml, i.e., the number of dimensions in the warehouse

schema. This cost is denoted |dimension|. The children of each found node are traversed in depth

first, down to the attribute node verifying the conditions @name='name of the attribute' and

@value='value of the attribute'. The cost of this traversal is equal to the number of attribute

children, denoted ia . Finally, query processing cost over our index structure is defined by

Formula 2.

 iindex adimensioncellE * (2)

Figure 6 shows the cost variation between Enoindex and Eindex with respect to the number of cells

(facts) from Facts.xml. These facts are described by five dimensions that are stored in

Dimensions.xml. Table 1 displays the characteristics of these dimensions. We use a logarithmic

scale on the Y axis to better visualize cost differences. Using our index induces a performance

gain factor of 14,000 on an average.

Figure 6: Join index efficiency

XML MATERIALIZED VIEW SELECTION STRATEGY

In this section, we present our second contribution: an XML materialized view selection strategy.

This strategy only materializes pertinent views, and hence addresses both storage and

maintenance cost problems. It is workload-based (i.e., based on a set of queries representing user

requirements) and exploits knowledge about how views can be used to resolve a set of workload

queries to cluster them together.

The principle of our materialized view selection strategy is depicted in Figure 7. We assume that

we dispose of a workload composed of representative queries (similar to the query from

Figure 2). Our objective is to select a configuration of materialized views that reduces its

execution time. The first step is to build, from the workload, a clustering context. Then, we define

similarity and dissimilarity measures that help cluster together similar queries. For each cluster,

we build a set of candidate views. The last step exploits cost models that evaluate the cost of

accessing data using views and the cost of their storage, to build a final materialized view

configuration. We detail these steps in the following sections.

Figure 7 Materialized view selection strategy

Query workload analysis

The workload we consider is a set of selection, join and aggregation queries. This first

step consists in extracting from the workload representative attributes for each query. We

mean by representative attributes those are present in Where (selection predicate

attributes) and Group by clauses. We store the relationships between workload queries and the

extracted attributes in a so-called “query-attribute” matrix. Matrix lines are queries and columns

are extracted attributes. A query
iq is then seen as a line in the matrix that is composed of cells

corresponding to representative attributes. The general term ijq of this matrix is set to one if

extracted attribute
ia is present in query

iq , and to zero otherwise. This matrix represents our

clustering context.

Building the candidate view configuration

In practice, it is hard to search all the syntactically relevant candidate views because the search

space is very large (Agrawal et al., 2000). To reduce the problem’s size, we propose to cluster

workload queries. Hence, we group in a same cluster all the queries that are similar. Similar

queries are the one having a close binary representation in the query-attribute matrix. Two similar

queries can be resolved by using only one materialized view. We define similarity and

dissimilarity measures that ensure that queries within a same cluster are strongly related to each

other, whereas queries from different clusters are significantly different from one another.

Similarity and dissimilarity measures

A query is described by the attributes extracted in the query analysis phase. We thus describe a

query
iq by vector piiii qqqq ,...,, 11 , where p is the number of attributes in the matrix. This

description allows query comparison. We define similarity (respectively, dissimilarity) between

two queries
iq and jq with respect to attribute)..1(pkak in Formula 1 (respectively,

Formula 2).

(3)
otherwise 0

1 if 1
),(

kjki

kjkisim

qq
qq

(4)
 if 0

 if 1
),(

kjki

kjki

kjkidissim
qq

qq
qq

Two queries
iq and jq are similar with respect to attribute

ka if and only if 1 kjki qq , i.e.,

ka is present in both queries. They are dissimilar if and only if kjki qq , i.e., one of the two

queries does not contain attribute
ka .

These measures can be extended to a set A composed of p attributes such that we get the degree

of global similarity and dissimilarity between two queries. We thus define the similarity

(respectively, dissimilarity) between two queries
iq and jq with respect to all attributes in

Formula 5 (respectively, Formula 6).

pqqsim

qqqqsim

ji

p

j

kjkisimji

),(0

(5)),(),(
1

pqqdissim

qqqqdissim

ji

p

j

kjkidissimji

),(0

(6)),(),(
1

Thus, the closer),(ji qqsim (respectively,),(ji qqdissim) is to p, the more
iq and jq are

considered similar (respectively, dissimilar). We also define similarity (respectively,

dissimilarity) measures between two query sets and within a query set. These measures are

defined by Formulas 7, 8, 9 and 10, respectively.

pCcardCcardCCsim

qqCCsim

baba

CqCq

lksimba

blak

)()(),(0

(7)),(),(
,

pCcardCcardCCdissim

qqCCdissim

baba

CqCq

lkdissimba

blak

)()(),(0

(8)),(),(
,

2

)()(
),(0

(9)),()(
1,,

pCcardCcard
CCsim

qqCsim

ba

ba

kCqCq

lksima

blak

2

)()(
),(0

(10)),()(
1,,

pCcardCcard
CCdissim

qqCdissim

ba

ba

kCqCq

lkdissima

blak

Clustering

Clustering consists in determining a so-called natural partition
natP composed of objects (here,

queries) that reflect the internal structure of data. This partition must be such as its clusters are

composed of objects with high similarity and objects from different clusters present a high

dissimilarity. Based on the previously defined functions, a clustering quality measure)(hPQ can

be built (Formula 11).

bazbza

z

a

abah CdissimCCsimPQ
,..1,..1 1

(11)))(),(()(

This measure permits to capture the natural aspect of a partition. Hence,)(hPQ measures

simultaneously similarities between queries within the same cluster of partition
hP and

dissimilarities between queries within different clusters. Thus, we can define)(hPQ as a

homogeneity function for the same class and a heterogeneity function for different classes.

Therefore, partitions presenting high intra-cluster homogeneity and a high inter-cluster disparity

have a low)(hPQ value and thereby appear as the most natural.

We have selected the Kerouac clustering algorithm (Jouve & Nicoloyannis, 2003). Kerouac

indeed bears several interesting properties:

1. its computational complexity is low (log linear with respect to the number of queries and

linear with respect to the number of attributes);

2. it can deal with a high number of objects (queries);

3. it can deal with distributed data;

4. it allows integrating constraints within the clustering process. This last characteristic is

particularly interesting, since it provides us with a way to integrate constraints concerning

the view merging process.

Cost models

The number of candidate views is generally as high as the input workload is large. Thus, it is not

feasible to materialize all the proposed views because of storage space constraints. To circumvent

this limitation, we propose to use cost models that retain the most pertinent views only.

Figure 8 shows the typical structure of an XML view. In our context, it is composed of Cell

elements. Each Cell is itself composed of Dimension elements that contain Group by attributes

and Fact elements corresponding to aggregate results. We propose cost models that estimate the

size and storage cost of a given XML view.

Figure 8: XML view structure

We estimate the size of a view by its number of elements. The number of Dimension and Fact

elements in each Cell is the same. Indeed, the number of elements in a given view is estimated by

the number of Cell elements. To compute it, we first estimate the maximum number of Cell

elements (Formula 12).

d

i

idCellms
1

)((12)

id is the cardinality of the dimension characterizing the Cell element. d is the number of

dimensions in Dimensions.xml. Let ms(v) be the maximum size of view v that is composed of

dimensions
kdd ...1

, where k is the number of dimensions in the view and id the cardinality of

dimension
id (Formula 13).

k

i

idvms
1

)((13)

Golfarelli & Rizzi (1998) proposed to estimate the number of tuples in a given view v by using

Yao’s (1977) formula. We also use this formula to estimate the number of Cell elements in v

(Formula 14).

(14)
1)(

1)(
1)(

1

Cell

i iCellms

icCellms
vmsv

)(

1
1

vms
c . If

)(

)(

vms

Cellms
 is large enough, this formula is well approximated by Cardenas’

(1975) formula (Formula 15).

(15)
)(

1
11)(

Cell

vms
vmsv

Cardenas and Yao’s formulas are based on the assumption that data are uniformly distributed.

The size, in bytes, of a view v is equal to the number of Cell elements multiplied by the average

size needed to store one element. Thus, we estimate the size of a view as shown in Formula 16.

(16))()(
1

k

i

idsizevvsize
.

)(idsize represents the size, in bytes, of dimension
id from v and k the number of dimensions.

Objective functions

We describe in this section three objective functions that help evaluate the variation of query

execution cost induced by adding a new view. Query execution cost is assimilated either to the

number of Cell elements in Facts.xml, if no views are used; or to the number of Cell elements in

the views if they are exploited. Workload execution cost is obtained by adding the execution costs

of each query within this workload.

The first objective function, “profit”, favors views providing more profit while executing queries.

The second function, “profit/space ratio”, favors views providing more benefit while occupying

the smallest possible storage space. The third function, “hybrid”, combines the first two in order

to first select all the views providing more profit and then retain only those occupying less storage

space when this resource becomes critical. The profit function is useful when storage space is not

limited, the profit/space ratio function is useful when storage space is small, and the hybrid

function is interesting when storage space is reasonably large.

Profit objective function

Let mvvV ,...,1 be the candidate view set, S the final view set and nqqQ ,...,1 a query

set (workload). The profit objective function, noted P, is defined in Formula 17.

S)(v

vCQCQCvP

j

jupdatevjSSjS

 (17))()()()(///

)(/ QC S is the query execution cost when all views in S are used. If this set is empty,

FQQC)(Ø/ because all queries are resolved by accessing fact F. When a view
iv is

added to S,
Q

k jkvjS vqCQC
0/),()(is the query execution cost for views in ivS . If

query kq exploits iv , cost),(jk vqC is then equal to vjC (number of instances in iv).

Otherwise,),(jk vqC is equal to the maximum value between F and),(vqC k (executing cost of

iq exploiting Sv with jvv). Coefficient)(ivpQ estimates the number of updates for

view
iv . The update probability)(ivp equals

query

update

spacestorage %

%1

, where ratio

query

update

%

%
represents the proportion of update vs. interrogation queries. Finally,)(jupdate vC

represents the maintenance cost of view jv .

Profit/space ratio objective function

If view selection is achieved under a space constraint, the profit/space objective function from

Formula 18 is used. This function R computes the profit provided by jv with respect to storage

space)(jvsize it occupies.

)(

)(
)(

/

/

j

jS

jS
vsize

vP
vR (18)

Hybrid objective function

The constraint on storage space may be relaxed if storage space in relatively large. The

hybrid objective function H does not penalize space-greedy views if ratio

spacestorage

spaceremaining

 is lower or equal than a storage-space given threshold α, 0 < α ≤ 1,

where remaining-space and storage-space are respectively the remaining space after

adding jv and the allotted space needed for storing all the views. This function is

computed by combining functions P and R as shown in Formula 19.

(19)

)(

)(
)(

/

/

/

otherwisevR

spacestorage

spaceremaining
ifvP

vH

jS

jS

jS

View selection algorithm

Our view selection algorithm (Algorithm 1) is based on a greedy search within the candidate view

set V. Objective function F must be one of among functions P, R or H described in the previous

section. If R is used, we add to the algorithm’s input the storage space M allotted for views. If H

is used, we also add threshold α as input.

__

if end

thenif

for end

if end

thenif

doallfor

repeat

max

/

max

/max

max/

max

max

 0)(

)(

)(

0

Ø

Ø

vSS

vF

vv

vFF

FvF

DVv

F

v

S

jS

j

jS

jS

j

 SVvF jS 0)((/ oruntil Ø)

__

Algorithm 1: Greedy view configuration construction

In the first iteration, the values of the objective function are computed for each view within V.

The view
maxv that minimizes F, if it exists (0)(max/ vF S

), is then added to S. If R or H is used,

the whole storage space M is decreased by the amount of space occupied by
maxv . Values of F

are then computed for each remaining view in V − S, since they depend on the selected views

present in S. This helps take into account the interactions that probably exist between views. This

process reiterates either until there is no performance improvement (0)(/ vF S
) or until all the

views have been selected (Ø SV). If functions R or H are used, the algorithm also stops

when storage space is full.

VALIDATION EXPERIMENTS

Experimental conditions

In order to validate our proposals experimentally, we exploit an XML data warehouse modeled

according to the XCube specifications. Actual data have been transferred from an existing,

relational data warehouse derived from an Oracle example (Oracle, 2006).This classical test data

warehouse is modeled as a star schema composed of sale facts characterized by the amount (of

purchased products) and quantity (of purchased products) measures. Facts are stored in the

Facts.xml document. They are described by five dimensions: channels, promotions, customers,

products and times that are stored in the Dimensions.xml document. Table 1 displays the

characteristics of our test XML data warehouse.

We implemented this data warehouse within two native XML DBMSs: eXist (Meier, 2002)

and X-Hive (Waldt, 2005). Both these DBMSs allow the native storage of large documents and

support the XQuery language. They also provide APIs (Application Programming Interfaces) for

storing, querying, retrieving, transforming and publishing XML data. We also implemented our

XML data warehouse in a relational, XML-compatible DBMS: SQL Server (Rys, 2004). SQL

Server 2005 handles XML data through an XML type field. It integrates XQuery queries with the

help of a function called query that is embedded into SQL Select clauses (Figure 9).

Facts Number of cells

Sales 16 260 336

Dimensions Number of occurrences

Customers 50 000

Products 10 000

Times 1 461

Promotions 501

Channels 5

Documents Size (MB)

Facts.xml 4.92

Dimensions.xml 3.77

Schema.xml 0.001

Table 1: Test data warehouse characteristics

Figure 9: Sample SQL-XQuery

Join index evaluation

This experiment measure the execution time of the typical decision-support query from Figure 2

over our test data warehouse, with and without exploiting our join index, on all the DBMSs we

consider (Figure 10). We also vary warehouse size. Note that, in SQL Server 2005, XML data are

stored in a table field. Thus, SQL-XQuery queries must be processed for each record. This

process does not allow joining XML data from different records. Hence, we only perform our

experiment with our join index on SQL Server since it is not possible with the original, multi-

document warehouse. We ran our tests on a Pentium 2 GHz PC with 1 GB of main memory and

an IDE hard drive. Also note that we do not consider index construction time here, since an XML

index is actually a new warehouse structure that is built once and queried thereafter. Finally, in

Figure 10, the X axis represents warehouse size and the Y axis the corresponding execution time.

The Y axis is in logarithm scale to highlight the differences in execution costs.

Select XML-DOC.Query(’for $a in //dimensionData
/classification/Level[@node=’customers’]/node,
where $a/attribute/@name=”cust city”
and $a/attribute/@value=”Lyon”
return name=”cust name”’)

From DIMENSION

Figure 10: Join index experimental results

The results we obtain show that using our index structure significantly improves response time.

On an average, the gain factor is indeed 25,669for eXist and 8,411 for X-Hive. Though this is not

plotted on Figure 10, we also pushed our ”with/without index” tests further on the totality of the

cells from Facts.xml. We achieve execution times of less than two seconds with our join index.

Without index, X-Hive responds in about four minutes and eXist proves unable to answer in a

reasonable time. Finally, this experiment shows that, properly indexed, native XML DBMSs can

compete with, and even best relational DBMSs in terms of performance when XML documents

are bulky. eXist running on our join index indeed outperforms SQL-Server by a 31.5 factor, on an

average. This is because relational DBMS engines combine XQuery to SQL and must convert the

result from relations to XML. XML native DBMSs, on the other hand, preserve the hierarchical

structure of XML data, which allows path scans to be efficiently processed by XQuery engines.

Our experiment also shows that eXist's query engine performs better then X-hive when using

simple path expressions. We think this is because, eXist implements a specific numbering scheme

that helps easily evaluate parent/child node relationships (Meier, 2002).

Materialized view selection evaluation

To validate our materialized view selection strategy, we executed on our test data warehouse a

workload composed of ten decision-support XQueries, with and without building materialized

views. The selected views are stored in an independent collection that is targeted by rewritten

queries. We plot in Figure 11 the execution time of our query workload on the original XML

documents and on the materialized views we generate. The X-axis represents the ten queries and

the Y-axis the corresponding execution time. The Y-axis is represented in logarithmic scale to

highlight the difference between the execution costs. On an average, our XML view materializing

strategy improves response time by a factor 24,700.

These results show that query response time significantly decreases using our strategy.

Indeed, queries exploiting views obtained with our strategy are rewritten and join operations

are avoided.

Figure 11 Materialized view selection experimental results

CONCLUSION AND PERSPECTIVES

In this paper, we presented both a new join index and a strategy for materializing views in

XML data warehouses. Our join index allows optimizing access time to several XML documents

by eliminating join costs, while preserving the information contained in the initial warehouse.

Our materialized view selection strategy exploits the results of clustering applied on a given

workload to build a set of syntactically relevant candidate views. With the help of cost models we

specifically designed for XML warehouses, we retain only the most advantageous candidate

views through a greedy process that operates under storage space constraint.

To validate our join index, we performed both a complexity study and experiments. We

implemented our reference warehouse with two native XML DBMSs and one relational, XML-

compatible DBMS. Our tests showed that using our index structure significantly improves the

response time of a typical decision-support query expressed in XQuery. Furthermore, they also

demonstrate that native XML DBMSs can compete with relational DBMSs. The experimental

results we achieved to validate our materialized view selection strategy are very encouraging, and

show that it guarantees a substantial gain in performance. However, our first perspective is to

complement these results with other tests, on other systems than eXist, and to assert in each

configuration the gain in performance vs. the overhead for generating and refreshing materialized

views.

This work also opens broader axes of research perspectives. First, our indexing strategy could be

better integrated into a host native XML DBMS. This would certainly help develop an

incremental strategy for the maintenance of the join index data structure. Moreover, the

mechanism for rewriting queries would also be more efficient if it was part of the system. XML

indexes are getting more and more efficient, but there is still room for improvement (e.g., multi-

document join indexes). The generalized exploitation of materialized views would also be very

beneficial. Thus, a rewriting query engine and refreshing strategies should be devised.

REFERENCES

Agrawal, R. & Srikant, R. (1995). Mining Sequential Patterns. In: 11th International Conference

on Data Engineering (ICDE 95), Taipei, Taiwan, IEEE Computer Society. pp. 3–14

Agrawal, S., Chaudhuri, S. & Narasayya, V. R. (2000). Automated selection of materialized

views and indexes in SQL databases. In: 26th International Conference on Very Large Data Bases

(VLDB 00), Cairo, Egypt. pp. 496–505.

Aouiche, K., Jouve, P.E. & Darmont, J. (2006). Clustering-Based Materialized View Selection in

Data Warehouses. In : 10th East European Conference on Advances in Databases and

Information Systems (ADBIS 06). Vol. 4152 LNCS Springer. pp. 81-95.

Baril, X. & Bellahsène, Z. (2003). XML Data Management: Native XML and XML-enabled

Database Systems. In: Designing and Managing an XML Warehouse. Addison Wesley. pp. 455–

473

Beyer, K. S., Chamberlin, D. D., Colby, L. S., Ozcan, F., Pirahesh, H. & Xu, Y. (2005).

Extending XQuery for Analytics. In: ACM SIGMOD International Conference on Management

of Data (SIGMOD’05), Baltimore, USA. ACM, 503–514.

Beyer, K.S., Cochrane, R., Colby, L.S., Ozcan, F. & Pirahesh, H. (2004). XQuery for Analytics:

Challenges and Requirements. In: 1st International Workshop on XQuery Implementation,

Experience and Perspectives <XIME-P/>, Paris, France. pp. 3–8

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J. & Siméon, J. (2004). XQuery

1.0: An XML Query Language. W3C Working Draft, http://www.w3.org/TR/xquery/

Borkar, V. & Carey, M. (2004). Extending XQuery for Grouping, Duplicate Elimination, and

Outer Join. In: <XML 2004> Conference & Exhibition, Washington DC, USA. pp. 1–11

Cardenas, A. F. (1975). Analysis and performance of inverted data base structures.

Communications of the ACM, Vol. 18, No. 5, , pp. 253–263.

Chung, C. W., Park, M.J. & Shim, K. (2002). APEX: an Adaptive Path Index of XML data. In:

ACM SIGMOD International Conference on Management of Data (SIGMOD 02). pp. 121-132.

Chung, C.W., Min, J.K. & Shim, K. (2002). APEX: an adaptive path index for XML data. In:

ACM SIGMOD International Conference on Management of Data (SIGMOD 02), Madison,

Wisconsin, ACM. pp. 121–132

Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R. & Shadmon, M. (2001). A Fast Index

for Semistructured Data. In: 27th International Conference on Very Large Data Bases (VLDB

01), Roma, Italy, Morgan Kaufmann. pp. 341–350

Darmont, J., Boussaïd, O., Bentayeb, F., Rabaseda, S., & Zellouf, Y. (2003). Web multiform data

structuring for warehousing. In: Multimedia Systems and Applications. Vol. 22 Kluwer pp. 179–

194

Darmont, J., Boussaïd, O., Ralaivao, J.C., & Aouiche, K. (2005). An Architecture Framework for

Complex Data Warehouses. In: 7th International Conference on Enterprise Information Systems

(ICEIS 05), Miami, USA. pp. 370–373

Goldman, R. & Widom, J. (1997) DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases. In: 23rd International Conference on Very Large Data Bases (VLDB

97), Athens, Greece, Morgan Kaufmann pp. 436–445

Golfarelli, M. & Rizzi, S. (1998). A methodological framework for data warehouse design. In 1st

ACM international workshop on Data warehousing and OLAP (DOLAP 1998), New York, USA,

pp 3–9.

Gupta, H. & Mumick, I. S. (2005). Selection of Views to Materialize in a Data Warehouse. IEEE

Transactions on Knowledge and Data Engineering, Vol. 17, No. 1. pp24–43.

Hümmer, W., Bauer, A. & Harde, G. (2003). XCube: XML for data warehouses. In: 6th

International Workshop on Data Warehousing and OLAP (DOLAP 03), New Orleans, USA,

ACM. pp. 33–40

Jouve, P. & Nicoloyannis, N. (2003). Kerouac: An algorithm for clustering categorical data sets

with practical advantages. In International Workshop on Data Mining Learning for Actionable

Knowledge (DMAK 2003).

Kaushik, R., Shenoy, P., Bohannon, P. & Gudes, E. (2002). Exploiting Local Similarity for

Indexing Paths in Graph-Structured Data. In: 18th International Conference on Data Engineering

(ICDE 02), San Jose, CA, IEEE Computer Society. pp. 129–140

Kimball, R., & Ross, M. (2002). The Data Warehouse Toolkit: The Complete Guide To

Dimensional Modeling, 2nd Edition. John Wiley.

Kotidis, Y. & Roussopoulos, N. (1999). Dynamat: A dynamic view management system for data

warehouses. In ACM SIGMOD International Conference on Management of Data (SIGMOD

1999), Philadelphia, USA, pp 371– 382.

Meier, W., (2002). eXist: An Open Source Native XML Database. In: Web, Web-Services, and

Database Systems, NODe 2002 Web and Database-Related Workshops, Erfurt, Germany. Vol.

2593 of Lecture Notes in Computer Science. Springer, 169–183.

Milo, T. & Suciu, D. (1999). Index Structures for Path Expressions. In: 7th International

Conference on Database Theory (ICDT 99), Jerusalem, Israel. Volume 1540 of Lecture Notes in

Computer Science., Springer. pp. 277–295

Nassis, V., Rajugan, R., Dillon, T.S. & Rahayu, J.W. (2005). Conceptual and Systematic Design

Approach for XML Document Warehouses. International Journal of Data Warehousing & Mining

1(3). pp. 63–86

Oracle Corporation. (2006). Oracle9i Data Warehousing Guide Release 2 (9.2).

http://downloadwest.oracle.com/docs/cd/B10501 01/server.920/a96520/toc.htm

Park, B.K., Han, H. & Song, I.Y. (2005). XML-OLAP: A Multidimensional Analysis Framework

for XML Warehouses. In: 7th International Conference on Data Warehousing and Knowledge

Discovery, (DaWaK 05), Copenhagen, Denmark. Volume 3589 of Lecture Notes in Computer

Science., Springer. pp. 32–42

Pokornỷ, J. (2002). XML Data Warehouse: Modelling and Querying. In: 5th International Baltic

Conference (BalticDB&IS 02), Tallin, Estonia, Tallin Technical University. pp. 267–280

Qun, C., Lim, A. & Ong, K.W. (2003). D(k)-Index: An Adaptive Structural Summary for Graph-

Structured Data. In: 2003 ACM SIGMOD International Conference on Management of Data

(SIGMOD 03), San Diego, USA, ACM. pp. 134–144

Rusu, L.I., Rahayu, J.W. & Taniar, D. (2005). A Methodology for Building XML Data

Warehouse. International Journal of Data Warehousing & Mining 1(2). pp. 67–92

Rys, M. (2004). XQuery in Relational Database Systems. In XML 2004 Conference and

Exposition Proceedings (XML 2004), Washington, USA.

Shukla, A. Deshpande, P. & Naughton, J. F. (2000). Materialized view selection for multi-cube

data models. In 7th International Conference on Extending DataBase Technology (EDBT 2000),

Konstanz, Germany, pages 269-284.

Uchiyama, H., Runapongsa, K., & Teorey, T. J. (1999). A progressive view materialization

algorithm. In 2nd ACM International Workshop on Data warehousing and OLAP (DOLAP

1999), Kansas City, USA, pp. 36–41.

Valluri, S. R., Vadapalli, S. & Karlapalem, K. (2002). View relevance driven materialized view

selection in data warehousing environment. In 30th Australasian conference on Database

technologies, Melbourne, Australia, pages 187-196.

Vrdoljak, B., Banek, M. & Rizzi, S. (2003). Designing Web Warehouses from XML Schemas. In:

5th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 03),

Prague, Czech Republic. Volume 2737 of Lecture Notes in Computer Science., Springer. pp. 89–

98

Waldt, D. (2005). Using XML and Databases: W3C Standards in Practice. White Paper, The

Gilbane Report, http://www.x-hive.com Wu, H., Wang, Q., Yu, J.X., Zhou, A. & Zhou, S. (2003).

UD(k, l)-Index: An Efficient Approximate Index for XML Data. In: 4th International Conference

on Advances in Web-Age Information Management (WAIM 03), Chengdu, China. Volume 2762

of Lecture Notes in Computer Science, Springer. pp. 68–79

Yao, S. (1997). Approximating block accesses in database organizations. Communication of the

ACM, Vol. 20, No. 4, pp 260–261.

Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q. & Lohman, G.M. (2001). On Supporting

Containment Queries in Relational Database Management Systems. In: ACM SIGMOD

International Conference on Management of Data (SIGMOD 01), Santa Barbara, USA, ACM. pp.

425–436

Zhang, J., Wang, W., Liu, H. & Zhang, S. (2005). X-warehouse: building query pattern driven

data. In: 14th International Conference on World Wide Web (WWW 05), Chiba, Japan, ACM.

pp. 896–897

KEY TERMS & DEFINITIONS

Database management system (DBMS): software set that handles structuring, storage,

maintenance, update and querying of data stored in a database.

XML-native DBMS (NXD): database system in which XML data are natively stored and queried

as XML documents. An NXD provides XML schema storage and implements an XML query

engine (typically supporting XPath and XQuery).

XML data warehouse: XML database that is specifically modeled (i.e., multidimensionally, with

a star-like schema) to support XML decision-support and analytic queries.

Complex data: data that present several axes of complexity for analysis, e.g., data represented in

various formats, diversely structured, from several sources, described through several points of

view, and/or versioned.

Structural summary based-index: labeled graph structure that summarizes XML graph structural

information.

Clustering: unsupervised machine learning method that consists in assigning a set of

observations into subsets (clusters) so that observations in the same cluster are similar.

XML graph: data model representing the hierarchical nature of XML data. In a XML

graph, nodes represent elements or attributes.

