

Abstract—In this paper, we present a new learning algorithm for

anomaly based network intrusion detection using improved self
adaptive naïve Bayesian tree (NBTree), which induces a hybrid of
decision tree and naïve Bayesian classifier. The proposed approach
scales up the balance detections for different attack types and keeps
the false positives at acceptable level in intrusion detection. In
complex and dynamic large intrusion detection dataset, the detection
accuracy of naïve Bayesian classifier does not scale up as well as
decision tree. It has been successfully tested in other problem
domains that naïve Bayesian tree improves the classification rates in
large dataset. In naïve Bayesian tree nodes contain and split as
regular decision-trees, but the leaves contain naïve Bayesian
classifiers. The experimental results on KDD99 benchmark network
intrusion detection dataset demonstrate that this new approach scales
up the detection rates for different attack types and reduces false
positives in network intrusion detection.

Keywords—Detection rates, false positives, network intrusion

detection, naïve Bayesian tree.

I. INTRODUCTION

N intrusion detection system (IDS) is a security tools used
to detect unauthorized activities of a computer system or

network. In other words, intrusion detection is the process of
identifying actions that attempt to compromise the
confidentiality, integrity or availability of a computer system
or network. It was first introduced by James P. Anderson in
1980 [1]. In his report, Anderson presents a threat model that
classifies intrusions to develop a security monitoring
surveillance system based on detecting anomalies in user
behavior. Later in 1986, Dr. Dorothy Denning proposed
several models for IDS based on statistics, Markov chains,
time-series, etc [2]. IDS were first implemented for host-based
that located in servers to examine the internal interfaces [3],
but with the evolution of computer networks the focus
gradually shifted toward network-based. Network-based

Dewan Md. Farid is with the ERIC Laboratory, University Lumière Lyon 2
– 5 av. Pierre Mendes, France – 69676 BRON Cedex, France (phone: +33
0648882531; fax: +33 478772375; e-mail: dewanfarid@gmail.com).

Nguyen Huu Hoa is with the Labratoire ERIC, University Lumière Lyon 2
–France (e-mail: nhhoa@eric.univ-lyon2.fr).

Jerome Darmont is with the ERIC Laboratory, University Lumière Lyon
2–France (e-mail: jerome.darmont@univ-lyon2.fr).

Nouria Harbi is with the ERIC Laboratory, University Lumière Lyon 2–
France (e-mail: nouria.harbi@univ-lyon2.fr).

Mohammad Zahidur Rahman is with the Department of Computer Science
and Engineering, Jahangirnagar University, Bangladesh (e-mail:
rmzahid@juniv.edu).

intrusion detection system (NIDS) performs packet logging,
real-time traffic analysis of IP network, and tries to discover if
an intruder is attempting to break into the network. Normally,
IDS are classified into three systems such as misuse-based
system, anomaly-based system, and hybrid system. Misuse-
based IDS performs simple pattern matching techniques to
match an attack pattern corresponding to known attack
patterns in the database and produces very low false positives
(FP). It requires regular updates of rules or signatures and not
capable to detects unknown attacks. Anomaly-based IDS
identifies new attacks by analyzing the anomalous behaviors
from normal behaviors [4], and achieves high detection rates
(DR) for both known as well as unknown attacks, but produces
many false positives (FP). Anomaly-based IDS generate rules
by observing collected audit data. Audit data is the records of
activities generated by the operating system that are logged to
a file in chronologically sorted order. On the other hand, a
hybrid IDS combines the techniques of both misuse-based and
anomaly-based detection systems. Currently adaptive intrusion
detection aims to solve the problems of analyzing the huge
volumes of audit data and realizing performance optimization
of detection rules.

Anomaly network intrusion detection based on data mining
techniques such as decision tree (DT), naïve Bayesian
classifier (NB), neural network (NN), support vector machine
(SVM), k-nearest neighbors (KNN), fuzzy logic model, and
genetic algorithm have been widely used by researchers to
improve the process of intrusion detection [5]-[11]. However,
there exist various problems that induce the complexity of
detection systems. Some of these problems are low detection
accuracy, unbalanced detection rates for different attack types,
and high false positives. In this paper, a new learning
algorithm for anomaly based network intrusion detection using
improved self adaptive naïve Bayesian tree is presented, which
scales up the balance detections for different attack types and
keeps the false positives at acceptable level. The experimental
results by using on KDD99 benchmark network intrusion
detection dataset prove that the proposed algorithm has
achieved both high detection rates (DR) for different attacks,
and the significant reduction of false positives (FP) in
comparison with existing methods.

The remainders of the paper are organized as follows.
Section II presents some anomaly based intrusion detection
methods. The proposed algorithm is introduced in Section III.
Then, the experimental results are expressed in Section IV.

Scaling up Detection Rates and Reducing False
Positives in Intrusion Detection using NBTree

Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, and Mohammad Zahidur Rahman

A

mailto:dewanfarid@gmail.com
mailto:nhhoa@eric.univ-lyon2.fr
mailto:jerome.darmont@univ-lyon2.fr
mailto:nouria.harbi@univ-lyon2.fr
mailto:rmzahid@juniv.edu

Finally, our conclusions and future works are mentioned in
Section V.

II. ANOMALY BASED INTRUSION DETECTION TECHNIQUES

A. Statistical Anomaly Detection
In statistical based intrusion detection, the IDS capture the

network traffics or system activities, and generate profiles to
represent their behavior. These profiles is based on metrics
such as the traffic rate, the number of packets for each
protocol, the rate of connections, the number of different IP
addresses, etc. Typically, two types of profiles are considered
during the intrusion detection process: the currently observed
profile over time, and the previously trained or stored profile.
As the network or system event occur, the IDS updates the
profile and periodically calculates an anomaly score by
comparing the current profile with the stored profile using a
function of abnormality of all measures within the profile. If
the anomaly score is higher than a certain threshold the IDS
generates an alert. Statistical based IDS do not require prior
knowledge of attacks and capable to detect the very latest
attacks, but skilled attackers can train a statistical anomaly
based IDS to accept abnormal behavior as normal. Also it is
difficult to determine the threshold point that balances the
likelihood of false positives (no attack but alarm raised by
IDS) with the likelihood of false negatives (attack occur but no
alarm rose by IDS).

In the early 1980’s, an Intrusion Detection Expert System
(IDES) was developed by Stanford Research Institute (SRI)
that continuously monitored user behavior and detected
suspicious events [12]. Later SRI developed an improved
version of IDES called the Next-Generation Intrusion
Detection Expert System (NIDES) [13], [14] that could
operate in real time for continuous monitoring of user activity
or could run in a batch mode for periodic analysis of the audit
data. NIDES enable the system to compare the current
activities of the user/system/network with the audited intrusion
detection variables stored in the profile and then raise an alarm
if the current activity is sufficiently far from the stored audited
activity. In 1988, a statistical anomaly-based IDS was
proposed by Haystack [15], which used both user and group-
based anomaly detection strategies. In this system, a range of
values were considered normal for each attribute and during a
session if an attribute fell outside the normal range then an
alarm raised. It was designed to detect six types of intrusions:
attempted break-ins by unauthorized users, masquerade
attacks, penetration of the security control system, leakage,
denial of service, and malicious use. Statistical Packet
Anomaly Detection Engine (SPADE) [16] is a statistical
anomaly detection system that is available as a plug-in for
SNORT. SNORT is an open source network intrusion
detection and prevention system (NIDPS) developed by
Sourcefire [17], [18]. SNORT performs protocol analysis,
content searching/matching, and commonly blocks a variety of
intrusions such as buffer overflows, stealth port scans, web
application attacks, SMB probes, and OS fingerprinting

attempts.

B. Data Mining Based Anomaly Detection
Recently, to build an effective and efficient real time IDS

researchers are increasingly looking at using of data mining
algorithms for adaptive intrusion detection [19], [20]. Some of
the data mining algorithms are cited below.

1. Naïve Bayesian Classifier: NB classifier provides a
probabilistic approach for performing supervised learning. It
provides an optimal way to predict the class of an unknown
example and widely used in many field of data mining. In NB
classifier class conditional probabilities for each attribute
value are calculated from the given dataset and then these
probabilities are used to classify the known or unknown
examples. Several researchers have adapted ideas from NB
classifier to create models for anomaly detection [21], [22].
Valdes et al. [23] developed an anomaly detection system that
employed NB classifier to perform intrusion detection.

2. Decision Tree: DT is powerful and popular tools for
classification and prediction [7]. It can be constructed from
dataset with many attributes. A decision tree has three main
components: nodes, leaves, and edges. Each node is labeled
with an attribute by which the data is to be partitioned. Each
node has a number of edges, which are labeled according to
possible values of the attribute. An edge connects either two
nodes or a node and a leaf. Leaves are labeled with a decision
value for categorization of the data. To make a decision using
a decision Tree, start at the root node and follow the tree down
the branches until a leaf node representing the class is reached.
Each decision tree represents a rule set, which categorizes data
according to the attributes of dataset.

3. Neural Network: NN based IDS focus on detecting
deviations in program behavior as a sign of an intrusion. NN
learns to predict the behavior of the various users in the
computer system. Ghosh et al. used the feed-forward back
propagation algorithm for classifying system-call sequence to
detect anomalies and misuses [24]. In another paper, Ramadas
et al. [25] present the Anomalous Network-Traffic Detection
with Self Organizing Maps (ANDSOM) an anomaly intrusion
detection model for the network based IDS that creates a two
dimensional Self Organizing Map for each network service. In
this paper, neurons are trained with normal network traffic
during the training phase to capture characteristic patterns.
When real time data is fed to the trained neurons, then an
anomaly is detected if the distance of the incoming traffic is
more than a preset threshold.

4. K Nearest Neighbors: KNN is a classification algorithm
based on the use of distance measures. It finds k examples in
dataset that are closest to the classifying example and assigns
the most frequent label among these examples to the new
example. When a classification is to be made for a new
example, its distance to each attribute in the dataset must be
determined. Only the k closest examples in the dataset are
considered further. The new example is then placed to the
class that contains the most examples from this set of K closest
examples.

III. PROPOSED NBTREE FOR INTRUSION DETECTION

Naïve Bayesian tree (NBTree) algorithm is similar to the
classical recursive partitioning schemes, except that the leaf
nodes created are naïve Bayesian classifier instead of node
predicting a single class [26]. NBTree is a hybrid approach
that attempts to utilize the advantage of both decision trees and
naïve Bayesian classifier. It splits the dataset by applying
entropy based algorithm and used standard naïve Bayesian
classifiers at the leaf node to handle attributes. NBTree applies
strategy to construct decision tree and replaces leaf node with
NB classifier.

A. Improved Self Adaptive Naïve Bayesian Tree
In a given training data, D = {A1, A2,…,An} of attributes,

where each attribute Ai = {Ai1, Ai2,…,Aik} contains attribute
values and a set of classes C = {C1, C2,…,Cn}, where each class
Cj = {Cj1, Cj2,…,Cjk} has some values. Each example in the
training data contains weight, W = {W1, W2…, Wn}. Initially,
all the weights for examples of training data have equal unit
value that set to Wi = 1/n. Where n is the total number of the
training examples. Estimates the prior probability P(Cj) for
each class by summing the weights and how often each class
occurs in the training data. For each attribute, Ai, the number
of occurrences of each attribute value Aij can be counted by
summing the weights to determine P(Aij). Similarly, the
conditional probability P(Aij | Cj) can be estimated by summing
the weights how often each attribute value occurs in the class
Cj in the training data. The conditional probabilities P(Aij | Cj)
are estimated for all values of attributes. The algorithm then
uses the prior and conditional probabilities to update the
weights. This is done by multiplying the probabilities of the
different attribute values from the examples. Suppose the
training example ei has independent attribute values {Ai1,
Ai2,…,Aip}. We already know the prior probabilities P(Cj) and
conditional probabilities P(Aik | Cj), for each class Cj and
attribute Aik. We then estimate P(ei | Cj) by

 P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj) (1)

To update the weight of training example ei, we can
estimate the likelihood of ei for each class. The probability that
ei is in a class is the product of the conditional probabilities for
each attribute value. The posterior probability P(Cj | ei) is then
found for each class. Then the weight of the example is
updated with the highest posterior probability for that example
and also the class value is updated according to the highest
posterior probability. Now, for each attribute Ai, evaluate the
utility, u(Ai), of a spilt on attribute Ai. Let j = argmaxi(ui), i.e.,
the attribute with the highest utility. If uj is not significantly
better than the utility of the current node, create a NB classifier
for the current node. Partition the training data D according to
the test on attribute Ai. If Ai is continuous, a threshold split is
used; if Ai is discrete, a multi-way split is made for all possible
values. For each child, call the algorithm recursively on the
portion of D that matches the test leading to the child. The
main procedure of proposed improved self adaptive naïve
Bayesian algorithm is described as follows.

Algorithm Improved Self-adaptive NBTree (ISANBT)
Input: a training dataset D of labeled examples.
Output: a hybrid decision tree with naïve Bayesian classifier
at the leaves.
Procedure:

1. Initialize all the weights in D, Wi=1/n.
2. Calculate the prior probabilities P(Cj) for each class Cj

in D. P(Cj) =

∑

∑

=

n

i
i

Ci
i

W

W

1

3. Calculate the conditional probabilities P(Aij | Cj) for

each attribute values in D. P(Aij | Cj) =
∑

iC
i

ij

W

AP)(

4. Calculate the posterior probability for each example in
D. P(ei | Cj) = P(Cj) ∏ P(Aij | Cj).

5. Update all the weights in D with Maximum Likelihood
(ML) of posterior probability P(Cj|ei); Wi= PML(Cj|ei)
and change the class value of examples associated
with maximum posterior probability, Cj = Ci→
PML(Cj|ei).

6. For each attribute Ai, evaluate the utility, u(Ai), of a
spilt on attribute Ai.

7. Let j = argmaxi(ui), i.e., the attribute with the highest
utility.

8. If uj is not significantly better than the utility of the
current node, create a naïve Bayesian classifier for
the current node and return.

9. Partition the training data D according to the test on
attribute Ai. If Ai is continuous, a threshold split is
used; if Ai is discrete, a multi-way split is made for all
possible values.

10. For each child, call the algorithm recursively on the
portion of D that matches the test leading to the child.

IV. EXPERIMENTAL ANALYSIS

A. Intrusion Detection Data Stream
The KDD cup 1999 dataset was used in the 3rd International

Knowledge Discovery and Data Mining Tools Competition for
building a network intrusion detector, a predictive model
capable of distinguishing between intrusions and normal
connections [27]. In 1998, DARPA intrusion detection
evaluation program, a simulated environment was set up to
acquire raw TCP/IP dump data for a local-area network (LAN)
by the MIT Lincoln Lab to compare the performance of
various intrusion detection methods. It was operated like a real
environment, but being blasted with multiple intrusion attacks
and received much attention in the research community of
adaptive intrusion detection. The KDD99 dataset contest uses
a version of DARPA98 dataset. In KDD99 dataset, each
example represents attribute values of a class in the network
data flow, and each class is labeled either normal or attack.
The classes in KDD99 dataset categorized into five main
classes (one normal class and four main intrusion classes:
probe, DOS, U2R, and R2L).

1) Normal connections are generated by simulated daily
user behavior such as downloading files, visiting web pages.

2) Denial of Service (DoS) attack causes the computing
power or memory of a victim machine too busy or too full to
handle legitimate requests. DoS attacks are classified based on
the services that an attacker renders unavailable to legitimate
users like apache2, land, mail bomb, back, etc.

3) Remote to User (R2L) is an attack that a remote user
gains access of a local user/account by sending packets to a
machine over a network communication, which include send-
mail, and Xlock.

4) User to Root (U2R) is an attack that an intruder begins
with the access of a normal user account and then becomes a
root-user by exploiting various vulnerabilities of the system.
Most common exploits of U2R attacks are regular buffer-
overflows, load-module, Fd-format, and Ffb-config.

5) Probing (Probe) is an attack that scans a network to
gather information or find known vulnerabilities. An intruder
with a map of machines and services that are available on a
network can use the information to look for exploits.

In KDD99 dataset these four attack classes (DoS, U2R,
R2L, and probe) are divided into 22 different attack classes
that tabulated in Table I.

TABLE I.
DIFFERENT TYPES OF ATTACKS IN KDD99 DATASET

4 Main Attack Classes 22 Attack Classes
Denial of Service (DoS) back, land, neptune, pod, smurt, teardrop

Remote to User (R2L) ftp_write, guess_passwd, imap, multihop, phf,
spy, warezclient, warezmaster

User to Root (U2R) buffer_overflow, perl, loadmodule, rootkit
Probing ipsweep, nmap, portsweep, satan

There are 41 input attributes in KDD99 dataset for each
network connection that have either discrete or continuous
values and divided into three groups. The first group of
attributes is the basic features of network connection, which
include the duration, prototype, service, number of bytes from
source IP addresses or from destination IP addresses, and
some flags in TCP connections. The second group of attributes
in KDD99 is composed of the content features of network
connections and the third group is composed of the statistical
features that are computed either by a time window or a
window of certain kind of connections. The list of the input
attributes in KDD99 dataset for each network connections is
shown in the Table II.

TABLE II.
INPUT ATTRIBUTES IN KDD99 DATASET

No Input Attribute Type No Input Attribute Type
1 Duration Con. 22 is_guest_login Dis.
2 protocol_type Dis. 23 Count Con.
3 Service Dis. 24 srv_count Con.
4 Flag Dis. 25 serror_rate Con.
5 src_bytes Con. 26 srv_serror_rate Con.
6 dst_bytes Con. 27 rerror_rate Con.
7 Land Dis. 28 srv_rerror_rate Con.
8 wrong_fragment Con. 29 same_srv_rate Con.
9 Urgent Con. 30 diff_srv_rate Con.

10 Hot Con. 31 srv_diff_host_rate Con.
11 num_failed_logins Con. 32 dst_host_count Con.
12 logged_in Dis. 33 dst_host_srv_count Con.

13 num_compromised Con. 34 dst_host_same_srv_rate Con.
14 root_shell Con. 35 dst_host_diff_srv_rate Con.
15 su_attempted Con. 36 dst_host_same_src_port_rate Con.
16 num_root Con. 37 dst_host_srv_diff_host_rate Con.
17 num_file_creations Con. 38 dst_host_serror_rate Con.
18 num_shells Con. 39 dst_host_srv_serror_rate Con.
19 num_access_files Con. 40 dst_host_rerror_rate Con.
20 num_outbound_cmds Con. 41 dst_host_srv_rerror_rate Con.
21 is_host_login Dis. - - -

Table III shows the number of examples of 10% training
data and 10% testing data in KDD99 dataset. There are some
new attack examples in testing data, which is no present in the
training data.

TABLE III.
NUMBER OF EXAMPLES IN TRAINING AND TESTING KDD99 DATA

Attack Types Training Examples Testing Examples
Normal 97277 60592

Denial of Service 391458 237594
Remote to User 1126 8606

User to Root 52 70
Probing 4107 4166

Total Examples 494020 311028

B. Experimental Analysis
In order to evaluate the performance of proposed algorithm

for network intrusion detection, we performed 5-class
classification using KDD99 network intrusion detection
benchmark dataset. All experiments were performed using an
Intel Core 2 Duo Processor 2.0 GHz processor (2 MB Cache,
800 MHz FSB) with 1 GB of RAM. The results of the
comparison of proposed improved self adaptive naïve
Bayesian algorithm (ISANBT) with C4.5 and with naive
Bayesian classifier (NB) are tabulated in Table IV and Table
V.

TABLE IV.
COMPARISON OF THE RESULTS USING 41 ATTRIBUTES

Method Normal Probe DOS U2R R2L
ISANBT (DR %) 99.76 99.21 99.65 99.11 99.16
ISANBT (FP %) 0.07 0.44 0.05 0.12 6.85

NB (DR %) 99.27 99.11 99.69 64.00 99.11
NB (FP %) 0.08 0.45 0.05 0.14 8.02

C4.5 (DR %) 98.73 97.85 97.51 49.21 91.65
C4.5 (FP %) 0.10 0.55 0.07 0.14 11.03

TABLE V.
COMPARISON OF THE RESULTS USING 19 ATTRIBUTES

Method Normal Probe DOS U2R R2L
ISANBT (DR %) 99.79 99.65 99.76 99.43 99.25
ISANBT (FP %) 0.06 0.48 0.04 0.10 6.32

NB (DR %) 99.65 99.35 99.71 64.84 99.15
NB (FP %) 0.06 0.49 0.04 0.12 6.87

C4.5 (DR %) 98.81 98.22 97.63 56.11 91.79
C4.5 (FP %) 0.08 0.51 0.05 0.12 8.34

We tested the performance of ISANBT algorithm using the
reduced dataset of 12 and 17 attributes in KDD99, which
increase the detection rate that are summarized in Table VI.

TABLE VI.
PERFORMANCE OF PROPOSED ALGORITHM USING REDUCED DATASET

Class Value 12 Attributes 17 Attributes
Normal 99.89 99.82
Probe 99.42 99.39
DoS 99.79 99.78
U2R 99,38 99.44
R2L 99.23 99.29

V. CONCLUSION

This paper introduced a new learning algorithm for anomaly
based network intrusion detection using improved self
adaptive naive Bayesian tree, which analyzes the large volume
of network data and considers the complex properties of attack
behaviors to scaling up detection rates and reducing false
positives in intrusion detection. In this paper, we have
concentrated on the development of the performance of
decision tree and naïve Bayesian classifier for network
intrusion detection. It has been successfully tested that
proposed ISANBT algorithm maximized the balance detection
rates on the 5 classes of KDD99 benchmark network intrusion
detection dataset, as well as minimized false positives at
acceptable level. The attacks of KDD99 dataset detected with
99% accuracy using proposed algorithm. The future work
focus on apply this detection model into real computer
network.

ACKNOWLEDGMENT

Support for this research received from ERIC Laboratory,
University Lumière Lyon 2 – France, and Department of
Computer Science and Engineering, Jahangirnagar University,
Bangladesh.

REFERENCES
[1] James P. Anderson, “Computer security threat monitoring and

surveillance,” Technical Report 98-17, James P. Anderson Co., Fort
Washington, Pennsylvania, USA, April 1980.

[2] Dorothy E. Denning, “An intrusion detection model,” IEEE Transaction
on Software Engineering, SE-13(2), 1987, pp. 222-232.

[3] D. Y. Yeung, and Y. X. Ding, “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern Recognition, 36, 2003,
pp. 229-243.

[4] Lazarevic, A., Ertoz, L., Kumar, V., Ozgur,. A., Srivastava, and J., “A
comparative study of anomaly detection schemes in network intrusion
detection,” In Proc. of the SIAM Conference on Data Mining, 2003.

[5] Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack, Leonard, Wu,
and Ningning, “ADAM: Detecting intrusion by data mining,” IEEE
Workshop on Information Assurance and Security, West Point, New
York, June 5-6, 2001.

[6] Lee W., Stolfo S., and Mok K., “Adaptive Intrusion Detection: A data
mining approach,” Artificial Intelligence Review, 14(6), December
2000, pp. 533-567.

[7] N.B. Amor, S. Benferhat, and Z. Elouedi, “Naïve Bayes vs. decision
trees in intrusion detection systems,” In Proc. of 2004 ACM Symposium
on Applied Computing, 2004, pp. 420-424.

[8] Mukkamala S., Janoski G., and Sung A.H., “Intrusion detection using
neural networks and support vector machines,” In Proc. of the IEEE
International Joint Conference on Neural Networks, 2002, pp.1702-
1707.

[9] J. Luo, and S.M. Bridges, “Mining fuzzy association rules and fuzzy
frequency episodes for intrusion detection,” International Journal of
Intelligent Systems, John Wiley & Sons, vol. 15, no. 8, 2000, pp. 687-
703.

[10] YU Yan, and Huang Hao, “An ensemble approach to intrusion detection
based on improved multi-objective genetic algorithm,” Journal of
Software, vol. 18, no. 6, June 2007, pp. 1369-1378.

[11] Shon T., Seo J., and Moon J., “SVM approach with a genetic algorithm
for network intrusion detection,” In Proc. of 20th International
Symposium on Computer and Information Sciences (ISCIS 2005),
Berlin: Springer-Verlag, 2005, pp. 224-233.

[12] Dorothy E. Denning, and P.G. Neumann “Requirement and model for
IDES- A real-time intrusion detection system,” Computer Science

Laboratory, SRI International, Menlo Park, CA 94025-3493, Technical
Report # 83F83-01-00, 1985.

[13] D. Anderson, T. Frivold, A. Tamaru, and A. Valdes, “Next generation
intrusion detection expert system (NIDES),” Software Users Manual,
Beta-Update Release, Computer Science Laboratory, SRI International,
Menlo Park, CA, USA, Technical Report SRI-CSL-95-0, May 1994.

[14] D. Anderson, T.F. Lunt, H. Javitz, A. Tamaru, and A. Valdes,
“Detecting unusual program behavior using the statistical component of
the next generation intrusion detection expert system (NIDES),”
Computer Science Laboratory, SRI International, Menlo Park, CA,
USA, Technical Report SRI-CSL-95-06, May 1995.

[15] S.E. Smaha, and Haystack, “An intrusion detection system,” in Proc. of
the IEEE Fourth Aerospace Computer Security Applications
Conference, Orlando, FL, 1988, pp. 37-44.

[16] N. Ye, S.M. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical
analysis of audit trails for host-based intrusion detection,” IEEE
Transactions on Computers 51, 2002, pp. 810-820.

[17] Martin Roesch, “SNORT: The open source network intrusion system,”
Official web page of Snort at http://www.snort.org/

[18] L. C. Wuu, C. H. Hung, and S. F. Chen, “Building intrusion pattern
miner for sonrt network intrusion detection system,” Journal of Systems
and Software, vol. 80, Issue 10, 2007, pp. 1699-1715.

[19] W. Lee, R.A. Nimbalkar, K.K. Yee, S.B. Patil, P.H. Desai, T.T. Tran,
and S.J. Stolfo, “A data mining and CIDF based approach for detecting
novel and distributed intrusions,” In Proc. of the 3rd International
Workshop on Recent Advances in Intrusion Detection (RAID 2000),
Toulouse , France, 2000, pp. 49-65.

[20] W. Lee, and S.J. Stolfo, “Data mining approach for intrusions
detection,” In Proc. of the 7th USENIX Security Symposium
(SECURITY-98), Berkeley, CA, USA, 1998, pp. 79-94.

[21] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian event
classification for intrusion detection,” In Proc. of the 19th Annual
Computer Security Applications Conference, Las Veges, NV, 2003.

[22] N. Ye, M. Xu, and S.M. Emran, “Probabilistic networks with undirected
links for anomaly detection,” In Proc. of the IEEE Systems, Man, and
Cybernetics Information Assurance and Security Workshop, West Point,
NY, 2000.

[23] A. Valdes, and K. Skinner, “Adaptive model-based monitoring for cyber
attack detection,” In Recent Advances in Intrusion Detection Toulouse,
France, 2000, pp. 80-92.

[24] A.K. Ghosh, and A. Schwartzbart, “A study in using neural networks for
anomaly and misuse detection,” In Proc. of the Eighth USENIX Security
Symposium, Washington, DC, 1999, pp. 141-151.

[25] M. Ramadas, and S.O.B. Tjaden, “Detecting anomalous network traffic
with self-organizing maps,” In Proc. of the 6th International Symposium
on Recent Advances in Intrusion Detection, Pittsburgh, PA, USA, 2003,
pp. 36-54.

[26] R. Kohavi, “Scaling up the accuracy of naïve Bayes classifiers: A
Decision Tree Hybrid,” In Proc. of the 2nd International Conference on
Knowledge Discovery and Data Mining, Menlo Park, CA:AAAI
Press/MIT Press, 1996, pp. 147-149.

[27] The KDD Archive. KDD99 cup dataset, 1999.
 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://www.snort.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	I. INTRODUCTION
	II. Anomaly Based Intrusion Detection Techniques
	A. Statistical Anomaly Detection
	B. Data Mining Based Anomaly Detection

	III. Proposed NBTree for Intrusion Detection
	A. Improved Self Adaptive Naïve Bayesian Tree

	IV. Experimental Analysis
	A. Intrusion Detection Data Stream
	B. Experimental Analysis

	V. Conclusion

