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Abstract. Clustering is an extensive research area in data science. The
aim of clustering is to discover groups and to identify interesting patterns
in datasets. Crisp (hard) clustering considers that each data point be-
longs to one and only one cluster. However, it is inadequate as some data
points may belong to several clusters, as is the case in text categorization.
Thus, we need more flexible clustering. Fuzzy clustering methods, where
each data point can belong to several clusters, are an interesting alter-
native. Yet, seeding iterative fuzzy algorithms to achieve high quality
clustering is an issue. In this paper, we propose a new linear and effi-
cient initialization algorithm MaxMin Linear to deal with this problem.
Then, we validate our theoretical results through extensive experiments
on a variety of numerical real-world and artificial datasets. We also test
several validity indices, including a new validity index that we propose,
Transformed Standardized Fuzzy Difference (TSFD).

Keywords: Clustering, Fuzzy C-Means, Seeding, Initialization, Maxmin
Linear Method, Validity Indices

1 Introduction

Clustering is a useful technique for grouping a set of unlabelled data points
(instances) described by attributes (variables), such that points belonging to the
same cluster (group) have similar characteristics, while points in different clusters
have dissimilar characteristics. There are several types of clustering schemes,
such as crisp, overlapping or fuzzy partitions, and hierarchies. Crisp clustering
considers that each data point belongs to one and only one cluster. Contrary to
crisp clustering, fuzzy clustering [1] considers that a data point can belong to
more than one cluster. There are some situations where fuzzy clustering is very
useful. For instance, let us consider three clusters achieved when categorizing
textual documents: an economy cluster (topic), an energy cluster, and a politics
cluster. Then a document containing the keyword “petrol” could belong to all



three clusters. Moreover, fuzzy clustering helps opening a discussion with domain
experts regarding clustering results.

The primary objective of our paper is to avoid using highly complex clustering
methods. One solution is to use iterative fuzzy methods such as Fuzzy C-Means
(FCM) and Fuzzy K-Medoids. Both methods adapt the principle of the K-Means
algorithm [2]. FCM, proposed by [3] and extended by [4], applies on numerical
data, while Fuzzy K-Medoids [5] applies on categorical data. Since numerical
data are the most common case, we choose to experiment our proposals with
FCM.

The aim of the FCM algorithm is to minimize the fuzzy within-inertia FW
(see Equation 1). Fuzzy inertia FI (see Equation 2) composes of the FW and
the fuzzy between-inertia FB (see Equation 3). FW , FI, and FB are computed
from a membership matrix U , which stores the membership coefficients uik of
data point i to cluster k. Note that FI = FW + FB. Moreover, FI is not
constant because it depends on uik value. When FW changes, the values of FI
and FB also change.

FW =
n∑

i=1

K∑
k=1

umikd
2(xi, ck) (1)

FI =

n∑
i=1

K∑
k=1

umikd
2(xi, x) (2)

FB =

n∑
i=1

K∑
k=1

umikd
2(ck, x) (3)

where n is the number of instances, K is the number of clusters, m is the
fuzziness coefficient (by default, m = 2. If m = 1, clustering is crisp. If m > 1,
clustering becomes fuzzy), ck is the center of the kth cluster ∀ k, 1 ≤ k ≤ K, x is
the grand mean (the arithmetic mean of all data, see Equation 4), and function
d2() computes the squared Euclidean distance.

x =
1

n

n∑
i=1

xi (4)

FCM starts by choosing K data points as initial centroids of the clusters.
Then, membership matrix values uik (see Equation 5) are assigned to each data
point in the dataset. Centroids of clusters ck are updated based on Equation 6
until a termination criterion is reached successfully. In FCM, this criterion can
be a fixed number of iterations t, e.g., t = 100. Alternatively, a threshold ε can
be used, e.g., ε = 0.0001. Then, the algorithm stops when the relative difference
of objective function < ε.

uik =
1∑K

j=1(‖xi−ck‖2
‖xi−cj‖2 )

1
m−1

(5)



ck =

∑n
i=1(umik)xi∑n
i=1(umik)

(6)

When using FCM, an important point is the way of choosing K data points
as initial centroids (seeds). An efficient initialization method should be linear, so
that the FCM algorithm stays linear, too. Then, the initialization method must
be evaluated using validity indices that are well suited to the fuzzy case.

To obtain a good validated clustering result, one has to minimize intra-cluster
distance (compactness) and at the same times, one has to maximize inter-cluster
distance (separability). The more often, proposed clustering validity indices as-
sociate a compactness index with a separability index.

Thence, we propose in this paper (1) a linear and efficient initialization
method for FCM clustering called MaxMin Linear. Moreover, to compare our
proposal with several initialization methods from the literature, we also pro-
pose (2) a new clustering validity index called Transformed Standardized Fuzzy
Difference (TSFD), which is tailored to the fuzzy case. We perform validation
experiments on several numerical real-world and artificial datasets.

The remainder of this paper is organized as follows. Section 2 presents ini-
tialization methods for iterative clustering and several clustering validity meth-
ods proposed in the literature. Sections 3 and 4 detail our contributions, i.e.,
the MaxMin Linear initialization method and the TSFD validity index, respec-
tively. Section 5 deals with the experimental evaluation of the MaxMin Linear
initialization method on several datasets, using several validity indices, includ-
ing TSFD. Finally, we conclude this paper and provide some perspectives in
Section 6.

2 Related Works

Most initialization methods are studied through K-Means clustering [2] concepts.
We have reviewed various works from the literature, including much-cited papers
[6,7,8]. In our study, we make use of commonly mentioned linear methods from
these three papers.

The first initialization method by [2] uses the first K data points as centroids.
This method is sensitive to the order of data. It is used by default in SPSS [9].
The second method by MacQueen (MacQueen2 ) takes K random data points as
centroids. Moreover, [10] proposes to perform multiple relaunches of MacQueen2.
Among the different relaunches, the one that optimizes FW (Equation 1) is
considered the best candidate. This method is the standard way for initializing
clusters. Its main disadvantage is that already selected points are not considered
when a new seed is chosen. The second disadvantage is that outliers can be
chosen. On the other hand, multiple runs ensure to improve the quality of the
chosen sample.

Hand et al. [11], propose an extension of Faber’s method that starts with a
random set of seeds. It suggests iteratively modifying the partition by randomly
moving some points to other clusters. The partition minimizing FW is chosen



as the best candidate. To move each data point to another random cluster, a
probability α, e.g., α = 0.3, must be set. The method is only interesting if
parameter α is fixed for different datasets.

Bradley and Fayyad’s method [12] starts by randomly partitioning the dataset
into J subsets. Then, each subset is clustered with the K-Means algorithm using
MacQueen2 initialization. MacQueen2 produces J sets of centers, each contain-
ing K points. The centers of clusters are combined into a superset. Then, the
superset is clustered by K-Means J times. Each time, K-Means is initialized with
a different center set, and members of the center set that give the smallest FW
are selected as final centers.

The PCA-Part method [13] uses a divisive hierarchical approach based on
Principal Component Analysis (PCA) [14]. The method starts with a single
cluster containing the whole dataset. Then, it iteratively divides clusters with
respect to FW . Clusters are divided into two sub-clusters by using a hyperplane
that is orthogonal to the principal eigenvector of the cluster covariance matrix.
The division process ends after K clusters are obtained.

The K-Means++ method [15] selects centroids based on a distance proba-
bility to the nearest center. First, it randomly selects an initial center c1 = x
from the data point set X. Then, d(x) is denoted as the shortest euclidean dis-
tance from x to its closest center. The next center ci is randomly selected as
ci = x′ ∈ X with probability d(x′)2/

∑
d(x)2.

Finally, in the literature, there are other methods having quadratic com-
plexity [16,17]. Among quadratic methods, MaxMin (also called Maximin) [18]
is particularly interesting. MaxMin first calculates all the paired distances be-
tween data points. Then, it chooses two centroids from the data points, which
have the greatest distance to each other. Finally, the next centroid is the data
point that is the farthest from its centroid. This approach helps decrease FW ,
which improves the homogeneity of clusters.

To summarize, Hand and Krzanowski [11] rely on user-defined parameters
that may not be easy to set. MacQueen2, though easy to understand and im-
plement, uses only one random sample. Faber improves the MacQueen2 ’s ran-
dom sample through relaunches. In K-Means++, the random choice is replaced
by a probabilistic choice and cluster homogeneity is taken into account. How-
ever, since the probabilistic selection does not always select sufficiently the large
enough distance, several probabilistic samples are required and the best centers
are selected from all relaunches.

In contrast, MaxMin constructs only one sample by decreasing FW and is
thus deterministic. Thus, we can be sure that a chosen center is the best. Yet,
it can be less effective than K-Means++ in the presence of outliers.

To evaluate initialization methods, we need to use fuzzy validity indices.
According to [19], there are two groups of validity indices. The first group is
only based on membership values and includes the partition coefficient index
VPC [20] (see Equation 7; 1

K ≤ VPC ≤ 1; to be maximized) and the Chen and
Linkens index VCL [21] (see Equation 8; 0 ≤ VCL ≤ 1; to be maximized).



VPC =
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where c =
∑K−1

k=1 k.

VCL takes in consideration both compactness (first term of VCL) and sep-
arability (second term of VCL). The second group of fuzzy validity indices is
based on associating membership values to cluster centers and data. It includes
the adaptation of the Ratio index VFRatio to fuzzy clustering [22] (see Equa-
tion 9; 0 ≤ VFRatio ≤ +∞; to be maximized), the penalized version of VFRatio

index which is the Calinski and Harabasz index VFCH [22] (see Equation 10;
0 ≤ VFCH ≤ +∞; to be maximized), the Fukuyama and Sugeno index VFS [23]
(see Equation 11; −FI ≤ VFS ≤ FI; to be minimized), and the Xie and Beni
index VXB [24,25] (see Equation 12; 0 ≤ VXB ≤ FI/n ∗min‖xj − vk‖2; to be
minimized).

VFRatio = FB/FW (9)

VFCH =
FB/(K − 1)

FW/(n−K)
=
n−K
K − 1

FB

FW
(10)

VFS = FW − FB (11)

VXB =

∑K
k=1

∑n
i=1 u

m
ik‖xi − vk‖2

n ∗minj,k‖vj − vk‖2
(12)

Among all the above stated validity indices, there is no single validity index
that gives the best result for any dataset. Thus, there is room for a new validity
index that is specifically tailored for fuzzy validation. This is why we propose
the Transformed Standardized Fuzzy Difference index.

3 MaxMin Linear Fuzzy Clustering Initialization Method

MaxMin’s simplicity and ability to build homogeneous clusters sounds very in-
teresting. Yet, considering all paired distance between data points makes the
method quadratic with respect to the number of data points. Thus, we present
in this section an enhancement of MaxMin that makes it linear. Before introduc-
ing our changes, we first detail how MaxMin works in Algorithm 1 (see Section 2
for MaxMin’s principle).

In MaxMin Linear, we first calculate grand mean x (see Equation 4). Then,
we choose as first centroid the data point that is nearest to x. The second



Algorithm 1 MaxMin

Require: Set of data points X = {x1, ..., xn}
Require: Number of clusters K
{Select the first two centroids c1 and c2}
c1, c2 ← argmax(d2(xi, xj)) i, j = 1, ..., n
K∗ ← 2 {Number of seeds}
{Find the remaining seeds}
while K∗ < K do

for all xi 6= ck∗ i = 1, ..., n, k∗ = 1, ...,K∗ do
d2m(xi)← min(d2(xi, ck∗))

end for
K∗ ← K∗ + 1
cK∗ ← argmax(d2m(xi)) i = 1, ..., n

end while
return {ck∗} k∗ = 1, ...,K∗

centroid is the data point that has the largest distance to the first centroid. Thus,
complexity remains linear with respect to the number of data points. Afterwards,
the choice of the remaining centroids remains the same as in MaxMin. MaxMin
Linear is formalized in Algorithm 2.

As a final note, the use of MaxMin Linear is not limited to use with FCM
on numerical data, but also with Fuzzy K-Medoids [26] for categorical data
clustering. Thus, MaxMin Linear can also be applied with heterogeneous data
to construct fuzzy clustering ensemble. This makes of MaxMin Linear a simple
but noteworthy contribution, in our opinion.

4 Transformed Standardized Fuzzy Difference Validity
Index

Several problems must be cleaned up to obtain a good clustering, including
evaluation of the validity of the clusters and choosing the number of clusters.
However, it is not an easy process. Compactness and separation level might raise
problems. Firstly, if the chosen number of clusters is larger than optimal one,
some clusters are broken while they could be more compact. Secondly, if the
chosen number of clusters is smaller than optimal one, some clusters are merged
and while they could be more separated. When it comes to addressing resolve
those problems, many cluster validity indices are proposed for fuzzy clustering
algorithms. The objective is to find the optimal number of clusters that can
validate the best description of the data structure.

The optimal number of the cluster can be determined by considering the
variation of clustering validity index. It is distinguished into two cases: The first
case, if the index is not monotonic with the number of clusters, we choose the
value of the number of clusters which optimizes the index. The second case, if
the index is monotonic, one can prefer to use a penalized version of the index.



Algorithm 2 MaxMin Linear

Require: Set of data points X = {x1, ..., xn}
Require: Number of clusters K
{Select the first two centroids c1 and c2}
x← 1

n

∑n
i=1 xi

for i← 1 to n do
d2m(xi)← min(d2(x, xi))

end for
c1 ← argmin(d2m(xi)) i = 1, ..., n
for i← 1 to n do

d2m(xi)← max(d2(c1, xi))
end for
c2 ← argmax(d2m(xi)) i = 1, ..., n
K∗ ← 2 {Number of seeds}
{Find the remaining seeds}
while K∗ < K do

for all xi 6= ck∗ i = 1, ..., n, k∗ = 1, ...,K∗ do
d2m(xi)← min(d2(xi, ck∗))

end for
K∗ ← K∗ + 1
cK∗ ← argmax(d2m(xi)) i = 1, ..., n

end while
return {ck∗} k∗ = 1, ...,K∗

In building TSFD, we first consider the difference FB−FW , which is similar
to FS except for the sign). Unfortunately, FI = FB + FW is not constant and
FB − FW ∈ [−FI,+FI]. To take this particularity of fuzzy clustering into
account, we propose to standardize FB−FW by considering Standardized Fuzzy
Difference SFD = (FB − FW )÷ FI instead. SFD ∈ [−1,+1].

Finally, to obtain an index belonging to the [0, 1] interval, we linearly trans-
form SFD as TSFD (see Equation 13; equal to FB/FI; ∈ [0, 1]; to be maxi-
mized)

TSFD =
1 + SFD

2
=
FB

FI
(13)

5 Experimental Validation

In this section, we aim to compare MaxMin Linear to state of the art initial-
ization methods for FCM-like clustering algorithms, i.e., MacQueen2, Faber’s,
K-Means++, and repeated K-Means++ (retaining the best result). These meth-
ods are indeed the most common linear methods and are good representatives for
random, probability, and distance-based methods. Moreover, they do not require
any parameterization. To achieve our comparison of initialization methods, we
use the indices mentioned in Section 2.



5.1 Datasets

Initialization methods are compared on 15 commonly used real-life datasets from
the UCI Machine Learning Repository1 and seven artificial datasets. Their char-
acteristics are featured in Table 1.

Table 1: Dataset features

ID Datasets
# of

data points
# of

variables
# of

clusters
Sources

1 Wine 178 13 3 UCI

2 Iris 150 4 3 UCI

3 Seeds 210 7 3 UCI

4
Original Wisconsin

Breast Cancer (WBCD)
683 9 2 UCI

5
Wisconsin Diagnostic

Breast Cancer (WDBC)
569 30 2 UCI

6 BUPA Liver Disorder (BUPA) 345 6 2 UCI

7 Pima 768 8 2 UCI

8 Glass 214 9 6 UCI

9 Vehicle 846 18 4 UCI

10 Segmentation 2310 19 7 UCI

11 Parkinson 150 22 2 UCI

12 Movement Libras 360 90 15 UCI

13 Ecoli 336 7 8 UCI

14 Yeast 1484 8 10 UCI

15 WineQuality-Red 1599 11 6 UCI

16 Bensaid 49 2 3 [27]

17 E1071-3 150 3 3 [28]

18 Ruspini original 75 2 4 [1]

19 E1071-3-overlapped 150 3 3 [28]

20 Ruspini noised 95 2 4 [1]

21 E1071-5 250 3 5 [28]

22 E1071-5-overlapped 250 3 5 [28]

In the case of real-life datasets, the true number of clusters in each dataset is
assimilated to the number of labels. Although using the number of labels as the
number of clusters is debatable, it is acceptable if the set of descriptive variables
explain the labels well. In artificial datasets, the number of clusters is known by
construction.

In addition, we created new artificial datasets by introducing overlapping and
noise to some of the existing artificial datasets such as E1071-3, Ruspini original,
and E1071-5 datasets (see Table 1, ID 17, 18, and 21).

To create the dataset, new data points are introduced and each must be
labeled. To obtain a dataset with overlapping, we modified the construction of

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/


the E1071 artificial datasets [28]. In the original datasets, there are three or
five clusters of equal size (50). Cluster i is generated according to a Gaussian
distribution N(i; 0.3). To increase overlapping while retaining the same cluster
size, we only change the standard deviation from 0.3 to 0.4. Then, there is no
labeling problem.

Noise is introduced in each cluster by adding noisy points generated by a
Gaussian variable around each label gravity center. First, for each label, we
calculate the coordinates of centers, and the mean and standard deviation of
each variable. With Gaussian variables, points mainly lie between “center +/-
two standard deviations”.

Noisy data are often generated by distributions with positive skewness. For
example, in a two-dimensional dataset, for each label, we add points that are far
away from the corresponding gravity center, especially on the right hand side,
which generally contains the most points. Then, we draw a random number r
between 0 and 1. If r ≤ 0.25, the point is attributed to the left hand side.
Otherwise, the point is attributed to the right hand side. This method helps
obtain noisy data that are 1/4 times smaller and 3/4 times greater, respectively,
than the expected value for the considered label. We apply this process to the
Ruspini dataset [1].

5.2 Experimental Settings

In our experiments, we parameterize the FCM algorithm as follows: default ter-
mination criterion ε = 0.0001 and default fuzziness coefficient value m = 2. We
used these default settings as we are only interested in improving the initializa-
tion of FCM algorithm. All initialization methods and clustering validity indices
are written in Python version 2.7.4. Repeated K-Means++ runs are performed
ten times.

5.3 Experimental Results

In our experiments, we compare our method MaxMin Linear to all initialization
methods from Section 2, on all datasets. We account for the following comparison
criteria: number of iterations, VPC , VCL, FB, FW , FI, VFRatio, VTSFD, VFS ,
and VXB . We also rank the initialization methods with respect to all criteria.

Since presenting all results would take too much space, we only present three
real-life datasets i.e., WineQuality-Red (Tables 2, 3, and 4), Glass (Tables 5, 6,
and 7), and Segmentation (Tables 8, 9, and 10), as well as two of the artificial
datasets we modified to introduce noise and overlapping, i.e., Ruspini noised
(Tables 11, 12, and 13), and E1071-5-overlapped (Tables 14, 15, and 16), respec-
tively. Finally, the average ranking of initialization methods on all datasets is
presented in Table 17.

From these experimental results, several observations can be drawn. In regard
to the number of iterations, recall that Faber’s and K-Means++ ×10 meth-
ods are relaunches of two stochastic initialization methods: MacQueen2 and
K-Means++, respectively. With an average ranking of 1.68 (Table 17), MaxMin



Table 2: Experiment results on WineQuality-Red (1/2)
Initialization Method # of iteration VPC VCL FB FW

MacQueen2 45 0.664 0.7455 110972.7 1224079.7

Faber 430 0.664 0.7455 101440.4 1224079.7

K-Means++ 37 0.616 0.7029 101440.5 1089058.1

K-Means++ ×10 393 0.664 0.7455 101440.4 1224073.7

MaxMin Linear 34 0.665 0.7458 110972.7 1224384.8

Table 3: Experiment results on WineQuality-Red (2/2)
Initialization Method FI VFRatio VTSFD VFS VXB

MacQueen2 1335052.363 11.0305 0.9169 -1113107.01 0.1621

Faber 1335052.363 11.0305 0.9148 -1113107.01 0.1621

K-Means++ 1190498.537 10.7359 0.9148 -987617.57 0.2388

K-Means++ ×10 1335046.425 11.0304 0.9148 -1113101.04 0.1621

MaxMin Linear 1335357.554 11.0332 0.9169 -1113412.13 0.1611

Table 4: Ranking of initialization methods on WineQuality-Red

Initialization Method
# of

iteration
VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 3 2 2 4 2 2 2 2 2 2

Faber 5 2 2 2 2 2 2 5 2 2

K-Means++ 2 5 5 3 5 5 5 3 5 5

K-Means++ ×10 4 4 4 1 4 4 4 4 4 4

MaxMin Linear 1 1 1 5 1 1 1 1 1 1

Table 5: Experiment results on Glass (1/2)

Initialization Method
# of

iteration
VPC VCL FB FW

MacQueen2 44 0.493 0.570 452.6 154.1

Faber 456 0.493 0.570 452.6 154.1

Kmeans++ 56 0.493 0.570 452.6 154.1

K-Means++ ×10 366 0.493 0.570 452.6 154.1

MaxMin Linear 68 0.555 0.645 508.3 162.9

Table 6: Experiment results on Glass (2/2)
Initialization Method FI VFRatio VTSFD VFS VXB

MacQueen2 606.8 2.94 0.74596 -298.5 2.358

Faber 606.8 2.94 0.74597 -298.5 2.358

Kmeans++ 606.7 2.94 0.74593 -298.4 2.358

K-Means++ ×10 606.7 2.94 0.74604 -298.4 2.358

MaxMin Linear 671.2 3.12 0.75725 -345.4 0.453



Table 7: Ranking of initialization methods on Glass

Initialization method
# of

iteration
VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 1 2 2 2 1 2 2 4 2 5

Faber 5 3 3 3 2 3 3 3 3 2

Kmeans++ 2 5 5 5 4 5 5 5 5 4

K-Means++ ×10 4 4 4 4 3 4 4 2 4 3

MaxMin Linear 3 1 1 1 5 1 1 1 1 1

Table 8: Experiment results on Segmentation (1/2)

Initialization Method
# of

iteration
VPC VCL FB FW

MacQueen2 103 0.381 0.476 12384361.4 5781042.6

Faber 731 0.398 0.488 14157566.6 5680259.6

Kmeans++ 146 0.381 0.476 12388277.9 5781061.6

K-Means++ ×10 930 0.399 0.490 14254025.9 5666840.5

MaxMin Linear 54 0.430 0.526 19234921.0 6344612.7

Table 9: Experiment results on Segmentation (2/2)
Initialization Method FI VFRatio VTSFD VFS VXB

MacQueen2 18165404.0 2.14 0.6818 -6603318.7 0.363

Faber 19837826.2 2.49 0.7137 -8477307.1 0.464

Kmeans++ 18169339.6 2.14 0.6818 -6607216.3 0.361

K-Means++ ×10 19920866.4 2.52 0.7136 -8587185.5 0.341

MaxMin Linear 25579533.7 3.03 0.7520 -12890308.3 0.656

Table 10: Ranking of initialization methods on Segmentation

Initialization method
# of

iteration
VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 2 4 5 5 3 5 5 5 5 3

Faber 4 3 3 3 2 3 3 2 3 4

Kmeans++ 3 5 4 4 4 4 4 3 4 2

K-Means++ ×10 5 2 2 2 1 2 2 4 2 1

MaxMin Linear 1 1 1 1 5 1 1 1 1 5

Table 11: Experiment results on Ruspini noised (1/2)

Initialization Method
# of

iteration
VPC VCL FB FW

MacQueen2 9 0.775121 0.806518 219099.6 23421.0260

Faber 130 0.775125 0.806517 219100.8 23421.0258

Kmeans++ 13 0.775122 0.806521 219101.1 23421.0258

K-Means++ ×10 105 0.775128 0.806518 219102.3 23421.0256

MaxMin Linear 7 0.775128 0.806523 219105.4 23421.0268



Table 12: Experiment results on Ruspini noised (2/2)
Initialization Method FI VFRatio VTSFD VFS VXB

MacQueen2 242520.7 9.3548 0.903427 -195678.6 0.063680

Faber 242521.9 9.3549 0.903427 -195679.8 0.063681

Kmeans++ 242522.1 9.3549 0.903427 -195680.0 0.063676

K-Means++ ×10 242523.3 9.3549 0.903426 -195681.3 0.063681

MaxMin Linear 242526.4 9.3551 0.903429 -195684.4 0.063672

Table 13: Ranking of initialization methods on Ruspini noised

Initialization Method
# of

iteration
VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 2 5 3 5 4 5 5 4 5 3

Faber 5 3 5 4 2 4 4 3 4 5

Kmeans++ 3 4 2 3 3 3 3 2 3 2

K-Means++ ×10 4 1 4 2 1 2 2 5 2 4

MaxMin Linear 1 2 1 1 5 1 1 1 1 1

Table 14: Experiment results on E1071-5-overlapped (1/2)

Initialization Method
# of

iteration
VPC VCL FB FW

MacQueen2 8 0.735646 0.762681 219.7337 48.715631

Faber 103 0.735645 0.762683 219.7358 48.715630

Kmeans++ 12 0.735651 0.762685 219.7408 48.715632

K-Means++ ×10 113 0.735645 0.762683 219.7363 48.715629

MaxMin Linear 7 0.735652 0.762688 219.7445 48.715629

Table 15: Experiment results on E1071-5-overlapped (2/2)
Initialization Method FI VFRatio VTSFD VFS VXB

MacQueen2 268.4494 4.5105 0.818530 -171.0181 0.11574

Faber 268.4514 4.5106 0.818535 -171.0202 0.11569

Kmeans++ 268.4565 4.5107 0.818534 -171.0252 0.11575

K-Means++ ×10 268.4519 4.5106 0.818530 -171.0207 0.11569

MaxMin Linear 268.4601 4.5108 0.818537 -171.0288 0.11572

Table 16: Ranking of initialization methods on E1071-5-overlapped

Initialization method
# of

iteration
VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 2 3 5 5 4 5 5 5 5 4

Faber 4 5 4 4 3 4 4 2 4 1

Kmeans++ 3 2 2 2 5 2 2 3 2 5

K-Means++ ×10 5 4 3 3 1 3 3 4 3 2

MaxMin Linear 1 1 1 1 2 1 1 1 1 3



Table 17: Average ranking of initialization methods on all datasets

Initialization method
# of

iteration
VPC VCL FB FW FI VFRatio VTSFD VFS VXB

MacQueen2 1.95 3.36 3.55 3.86 3.41 3.41 3.41 3.04 3.41 3.55

Faber 4.45 2.73 2.82 1.73 2.73 2.73 2.73 3.27 2.73 2.91

K-Means++ 1.95 3.86 3.68 3.86 3.86 3.86 3.86 3.54 3.86 3.36

K-Means++ ×10 4.41 2.68 2.55 1.64 2.86 2.86 2.86 3.22 2.86 2.82

MaxMin Linear 1.68 2.27 2.32 3.82 2.05 2.05 2.05 1.86 2.05 2.27

Linear outperforms all other methods, including single-run methods MacQueen2
(average ranking: 1.95) and K-Means++ (average ranking: 1.95).

Regarding clustering result quality, MaxMin Linear obtains the best average
ranking for eight of the nine experimented quality indices (Table 17). Only the
FB index yields a better result for the two multiple-runs methods, while the
result of Maxmin Linear is similar to those of MacQueen2 and K-Means++.
However, Maxmin Linear achieves the best trade-off between FB and FW , and
thus maximizes the indices that take both FB and FW into account (VFRatio,
VTSFD, VFS and VXB). The best result for MaxMin Linear is obtained with
VTSFD (average ranking of 1.86; Table 17), the new index specially tailored for
fuzzy clustering that we propose.

In conclusion, the results obtained with MaxMin Linear are a little better
than those obtained with multiple-runs methods, but they require ten times
fewer iterations. Moreover, MaxMin Linear is deterministic, whereas multiple-
runs methods are stochastic.

6 Conclusion and Perspectives

In this paper, we propose a new, fast, and easy to implement initialization
method for FCM called MaxMin Linear. MaxMin Linear is compared to sev-
eral initialization methods from the literature. It is experimentally shown that
MaxMin Linear outperforms existing methods on 22 datasets. Moreover, we also
propose an appropriate fuzzy validity index, TSFD, to evaluate initialization
methods.

In addition, MaxMin Linear can be applied to algorithms other than FCM,
such as Fuzzy K-Modes and Fuzzy K-Medoids, which apply on categorical. In
particular, MaxMin Linear allows decreasing the complexity of Park’s Fuzzy
K-Medoids implementation.

In consequence, an immediate perspective to our work is to propose a new
clustering ensemble method for heterogeneous datasets composed of both nu-
merical and categorical data.
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