
S4: A New Secure Scheme for Enforcing Privacy
in Cloud Data Warehouses

Somayeh Sobati Moghadam, Jérôme Darmont, and Gérald Gavin

Université de Lyon, Lyon 2, Lyon 1, ERIC EA3083
5 avenue Pierre Mendès France – 69676 Bron Cedex – France

ssobati@eric.univ-lyon2.fr, jerome.darmont@univ-lyon2.fr,

gerald.gavin@univ-lyon1.fr

Abstract. Outsourcing data into the cloud becomes popular thanks
to the pay-as-you-go paradigm. However, such practice raises privacy
concerns. The conventional way to achieve data privacy is to encrypt
sensitive data before outsourcing. When data are encrypted, a trade-
off must be achieved between security and efficient query processing.
Existing solutions that adopt multiple encryption schemes induce a heavy
overhead in terms of data storage and query performance, and are not
suited for cloud data warehouses. In this paper, we propose an efficient
additive encryption scheme (S4) based on Shamir’s secret sharing for
securing data warehouses in the cloud. S4 addresses the shortcomings
of existing approaches by reducing overhead while still enforcing good
data privacy. Experimental results show the efficiency of S4 in terms of
computation and storage overhead with respect to existing solutions.

1 Introduction

Data warehouses (DWs) provide a consolidated view of organizations and busi-
nesses’ data, optimized for reporting and analysis. greatly enhance decision mak-
ing. DWs consolidate historical data from different sources and allow on-line ana-
lytical processing (OLAP). Nowadays, data outsourcing scenarios tremendously
grow with the advent of cloud computing that offers both cost savings and service
benefits. One of the most notable cloud outsourcing services is Database-as-a-
Service, where individuals and organizations outsource data storage and man-
agement to a Cloud Service Provider (CSP) [19]. Naturally, such services allow
outsourcing a DW and running OLAP queries [1]. Yet, data outsourcing brings
out privacy concerns since sensitive data are stored, maintained and processed
by an external third party that may not be fully trusted.

A typical solution to preserve data privacy is encrypting data locally be-
fore sending them to an external server. Secure database management systems
(SDBMSs) such as CryptDB [13] implement cryptographic schemes. Paillier’s
partially homomorphic encryption scheme [12] is notably used in CryptDB to
provide high security. However, it induces a high storage and computation over-
head. Hence, in this paper, we propose a new Secure Secret Splitting Scheme
(S4) that aims at replacing Paillier’s scheme in systems such as CryptDB. S4 is



based on the idea of secret sharing [16] and is efficient both in terms of storage
and computing, without sacrificing privacy too much.

In the remainder of this paper, Section 2 discusses related works about
SDBMSs, homomorphic encryption and secret sharing. Section 3 details and
discusses S4. Section 4 provides an experimental validation of S4 against Pail-
lier’s scheme. Finally, section 5 concludes the paper and hints as future research.

2 Related Works

2.1 Secure Database Management Systems

CryptDB brings together powerful cryptographic tools to handle query process-
ing on encrypted data without decryption [13]. Encryption in CryptDB is like
onion layers that store multiple ciphertexts, i.e., encrypted data, within each
other. Each onion layer enables certain kind of query processing and a given
security level provided by one encryption scheme. For instance, order-preserving
encryption (OPE) enables range queries and additive homomorphic encryption
enables addition over encrypted data. Yet, CryptDB is not perfectly secure since
schemes such as OPE reveal some statistical information about plaintext [11].

MONOMI builds upon CryptDB to allow the execution of analytical work-
loads over encrypted data outsourced to the cloud [18]. MONOMI aims at im-
proving CryptDB’s query processing capability and efficiency based on split
client/server execution. A designer also optimizes physical data layout.

Eventually, using a local trusted hardware at the CSP’s, such as TrustedDB
[3] and CipherBase [2], is an alternative approach to query encrypted data. How-
ever, trusted hardware is limited in computation ability and memory capacity,
and also very expensive.

2.2 Homomorphic Encryption

Fully homomorphic encryption (FHE) allows performing arbitrary arithmetic
operations over encrypted data without decryption [7]. FHE provides semantic
security, i.e., it is computationally impossible to distinguish two ciphertexts en-
crypted from the same plaintext. However, FHE requires so much computing
power that it cannot be used in practice.

Partially homomorphic encryption (PHE) is more efficient than FHE. Pail-
lier’s [12] the most efficient additive FHE. With Paillier’s scheme, multiplying
the encryption of two values results in an encryption of the sum of the values,
i.e., Enck(x) × Enck(y) = Enck(x + y), where the multiplication is performed
modulo some public-key k [13]. Paillier’s scheme is, however, still computation-
ally intensive and induces as large ciphertext sizes as 2048 bits. Additionally,
modular multiplications become computationally expensive on a large number
of records, such as in the fact table of a DW [18, 17].



2.3 Secret Sharing

Secret sharing divides a secret piece of data into so-called shares that are stored
at n participants’. A subset of k ≤ n participants is required to reconstruct the
secret. In Shamir’s, the first secret sharing scheme [16], to share a secret vj , a
random polynomial Pvj (x) of degree k− 1 is first built. The owner of the secret
chooses a prime p > vj and k − 1 random numbers a1, a2, ..., ak−1 from Fp; and
sets a0 = vj (Equation 1). Pvj

(x) passes through the point (0, vj).

Pvj (x) = ak−1x
k−1 + ... + a1x + a0 mod p (1)

To build n points over Pvj (x), a set of n distinct elements in Fp, X =
{x1, x2, . . . , xn}, is chosen such that xi 6= 0 ∀i = 1, ..., n. For each participant i,
the corresponding share is vi,j = Pvj (xi). For each secret vj , there are n points
(xi, vi,j) through which the polynomial Pvj (x) passes [8]. Any k shares form k
points (xi, vi,j) i = 1, . . . k, from which polynomial Pvj (x) can be reconstructed
using Lagrange interpolation [5] (Equation 2).

Pvj (x) =

k∑
i=1

vi,j`i(x) mod p (2)

`i(x) =
∏

1≤j≤k,j 6=i

(x− xj)(xi − xj)
−1 mod p

where (xi − xj)
−1 is the multiplicative inverse of (xi − xj) modulo p [5].

Eventually, the secret is the constant term of the polynomial:

vj = Pvj (0) =

k∑
i=1

vi,j`i(0) mod p. (3)

3 S4

S4’s driving idea is based on secret sharing, but instead of sharing secrets to
n participants’ or CSPs’, they are stored at one single CSP’s. Thus, we avoid
the high storage overhead of secret sharing. In S4, each secret vj is divided into
n = k splits v1,j , ..., vk,j . k− 1 splits, v1,j , ..., vk−1,j , are stored at the CSP’s and
vk,j is stored in a trusted machine, e.g., at the user’s (Figure 1). In order to
reduce storage overhead at the user’s, vk,j is set to be the same for all secrets.

3.1 Splitting and Reconstruction Processes

First, xk and vk are randomly set up from Fp, where p is a big prime number,
i.e., greater than the greatest possible query answer. For any secret vj , a random
polynomial Pvj (x) is built that passes through (0, vj) and (xk, vk). To this end,



Fig. 1: S4 secret splitting

k−2 points (ai, bi), i = 1, ..., k−2 are chosen randomly from Fp such that ai 6= xk
and ai 6= 0 ∀i = 1, ..., k−2. Given k points (a1, b1), (a2, b2), ..., (ak−2, bk−2), (0, vj)
and (xk, vk), polynomial Pvj (x) is built using Equation 2. Storing the k− 2 ran-
dom points is unnecessary because they are not needed for secret reconstruction.

To divide vj into k − 1 splits (since (xk, vk) is already fixed), a set of k − 1
distinct elements X = {x1, x2, . . . , xk−1} is chosen from Fp such that xi 6= 0
and xi 6= xk ∀i = 1, ..., k − 1. Then, splits are vi,j = Pvj (xi). K=(X, (xk, vk)) is
considered as a private key for S4 and must be kept hidden from the CSP. To
reconstruct secret vj , its k−1 splits must be retrieved from the CSP. Given points
(xi, vi,j), i = 1, ..., k − 1 and (xk, vk), which is stored at the user’s, polynomial
Pvj (x) can be reconstructed using Equation 2. Its constant term is vj .

3.2 Summation Queries

Let a relational table T consist of one attribute A (additional attributes, if any,
can be processed similarly). Suppose T has m records. We denote by vj the jth

value of A. For attribute A in T , k− 1 attributes Ai, i = 1, ..., k− 1 are created
in table T ′ at the CSP’s, where each attribute Ai stores the ith splits. Without
loss of generality, we assume integer data type for A. Other data types can be
transformed into integers before splitting. S4 allows summation queries to be
computed directly at the CSP’s. Consider a query that sums q values of A.

SUM=
∑

1≤j≤q

vj , vj ∈ dom(A) ∀j = 1, ..., q.

The CSP computes the sum of the splits stored in Ai as SUMi ∀i =
1, . . . k − 1 such that

SUMi =
∑

1≤j≤q,1≤i≤k−1

vi,j mod p.

Then, SUM1, SUM2,..., SUMk−1 are shipped back to the user and polynomial
PSUM(x) is built using Equation 2 using k points



(xi, SUMi)i=1,...,k−1, (xk,

q∑
j=1

vk = q × vk).

PSUM(x)’s constant term is SUM. S4 does not alter the number of records.
Hence, COUNT queries can be processed normally, thus also allowing AVG queries.

3.3 Security Analysis

Paillier’s PHE is semantically secure, but it is too expensive in terms of cipher-
text storage space and query response time. S4 proposes a classical trade-off
with a lower level of security, but better storage and response time efficiency
[16]. Let us consider a scenario where the CSP is said honest but curious, which
is a widely used adversary model for cloud data outsourcing [15]. Such a CSP
faithfully complies to any service-level agreement and, in our particular case,
stores data, runs queries and provides results without alteration, malicious or
otherwise. Yet, the CSP may access data and infer information from queries and
results.

Privacy in S4 relies on the fact that a secret value is only retrievable by the
user via private key K. As in secret sharing, it is indeed guaranteed that at least
k splits and X are necessary to reconstruct a secret, while the CSP has access
to only k − 1 splits. Both X and the kth split, i.e., K, are stored at the user’s.
However, the CSP still has access to linear combinations of splits (Equation 2),
which provide some information. Still, the higher k is, the more difficult it is to
interpret linear combinations of splits. Thus, k is the prime security parameter
in S4. Experiments in Section 4 provide hints for choosing k.

Moreover, if some secrets are known by the CSP, e.g., through public commu-
nication of a company to its shareholders, solving Equation 3 becomes possible.
For example, if the CSP knows secrets v1, ..., vk−1. Also knowing the correspond-
ing splits v1,j , ..., vk−1,j ∀j ∈ [1, k − 1], the CSP can recover the Lagrange basis
polynomials `i(0) ∀i ∈ [1, k] and solve Equation 3 to recover all secrets. However,
the CSP must know at least k − 1 secrets to do so. Moreover, we also propose
leads to address this problem in Section 5.

4 Experimental Evaluation

4.1 Experimental Setup

We implement S4 in C using compiler gcc 4.8.2. S4’s source code is freely available
on-line1. Experiments related to Paillier’s PHE exploit the libpaillier standard
C library [4]. All mathematical computations use the GNU Multiple Precision
Arithmetic Library (GMP) [6]. Eventually, we conduct our experiments on an
Intel Core i7 3.10 GHz PC with 16 GB of RAM running Linux Ubuntu 15.05.

1 http://eric.univ-lyon2.fr/download/libS4.zip



We compare S4 and Paillier’s PHE using simple synthetic datasets, i.e., 32-
bit unsigned integers generated uniformly at random from the integer range
[103, 104[. We scale up the number of records m such that m ∈ (103, 104, 105,
106), forming four distinct datasets.

In S4, we vary k from 8 to 64, higher values of k inducing too long execution
times. Prime p must be greater than the greatest query answer, e.g., p >

∑m
j=1 vj .

In Paillier’s PHE, we use a key size of 1024 bits, which induces ciphertexts of
2048 bits. Such key size is the absolute minimum to achieve security [9, 20].

4.2 Encryption and Decryption Time

Figure 2 plots the time of secret splitting in S4 and secret encryption in Paillier’s
scheme with respect to m. It shows that encryption time in S4 is lower than
Paillier’s when k ≤ 16, and then becomes higher when k ≥ 16. Secret splitting
consists in building a random polynomial by randomly choosing k − 2 points.
Hence, splitting time increases with k. Figure 2 actually illustrates the tradeoff
between S4’s security and encryption efficiency with respect to Paillier’s PHE.

Figure 3 plots the time of secret reconstruction in S4 and secret decryption
in Paillier’s scheme with respect to m. With the selected values of k, decryption
is faster with S4 than with Paillier’s PHE. This is mainly because Paillier’s
scheme needs m expensive modular multiplications of large, 2048-bit numbers for
decryption, while secret reconstruction in S4 works by polynomial interpolation
over k points and evaluating the polynomial in one single point.

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1000 10000 100000 1000000

Ti
m

e
 (

s)
 

Number of records 

S4(k=8)

S4(k=16)

S4(k=32)

S4(k=64)

Paillier

T
im

e
 (

s)
 

Number of records 

Fig. 2: Splitting/encryption time

T
im

e
 (

s)
 

Number of records 

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1000 10000 100000 1000000

S4(k=8)

S4(k=16)

S4(k=32)

S4(k=64)

Paillier

Fig. 3: Reconstruction/decryption time

4.3 Space Overhead

Figure 4 plots the storage required by S4 and Paillier’s PHE with respect to m.
With the selected values of k, S4’s storage overhead is always much smaller than
that of Paillier’s PHE since Figure 4’s y axis follows a logarithmic scale. Paillier’s
scheme indeed produces 2048-bit ciphertexts. Thus, its storage overhead is m×
2048. With S4, each value is split into k− 1 values. Thus, S4’s storage overhead
is m× (k − 1) times plaintext size.



4.4 Query Processing Time

Figure 5 plots summation query processing times over all records in each dataset,
for both S4 and Paillier’s PHE, with respect to m. It shows that, with the selected
values of k, query execution time in S4 is lower than that of Paillier’s scheme.
This is because Paillier’s scheme requires m expensive modular multiplications
to compute a sum, while S4 computes only (k−1)×m simple modular additions.

0/01

0/1

1

10

100

1000

1000 10000 100000 1000000

S
to

ra
g

e
 (

M
B

) 

Number of records 

S4(k=8)

S4(k=16)

S4(k=32)

S4(k=64)

Paillier

Fig. 4: Storage overhead

1/00E-05

1/00E-04

1/00E-03

1/00E-02

1/00E-01

1/00E+00

1/00E+01

1000 10000 100000 1000000

Ti
m

e 
(s

) 

Number of records 

S4(k=8)

S4(k=16)

S4(k=32)

S4(k=64)

Paillier

Fig. 5: Summation execution time

5 Conclusion

In this paper, we introduce S4, a new cryptographic scheme that supports sum-
mation queries in cloud-based OLAP. We experimentally show that S4 is much
more efficient than Paillier’s PHE in terms of query response time and space
overhead. Thus, replacing Paillier’s scheme with S4 in secure DBMSs such as
CryptDB and MONOMI can improve analytical query processing in cloud DWs.
Moreover, we also plan a variant of S4 for computing multiplications.

However, we achieve performance gains through a slight degradation of se-
curity, especially when an adversary has knowledge of secret values. Although
it is definitely acceptable in some cloud DW and OLAP scenarios, e.g., pub-
lic aggregate data might not actually yield secrets, i.e., fine-grained data, we
will devote future research to strengthen S4 against such threats. More pre-
cisely, we plan to introduce noise, as in many cryptographic problems such as
approximate-GCD [10] or LWE [14]. For instance, instead of sharing vj , we could
share 10r × vj + noise. By doing so, security is intuitively enhanced while the
whole process remains correct, provided r is sufficiently large and noise suffi-
ciently small.

References

1. Amanatidis, G., Boldyreva, A., O’Neill, A.: Provably-secure schemes for basic query
support in outsourced databases. In: 21st IFIP WG 11.3 Working Conference on
Data and Applications Security, Redondo Beach, CA, USA. pp. 14–30 (2007)



2. Arasu, A., Eguro, K., Joglekar, M., Kaushik, R., Kossmann, D., Ramamurthy,
R.: Transaction processing on confidential data using cipherbase. In: 31st IEEE
International Conference on Data Engineering, ICDE, Seoul, South Korea. pp.
435–446 (2015)

3. Bajaj, S., Sion, R.: TrustedDB: a trusted hardware based database with privacy
and data confidentiality. In: International Conference on Management of Data,
SIGMOD, Athens, Greece. pp. 205–216 (2011)

4. Bethencourt, J.: Paillier library. http://acsc.cs.utexas.edu/libpaillier/ (last ac-
cessed: 2016)

5. Dautrich, J.L., Ravishankar, C.V.: Security limitations of using secret sharing for
data outsourcing. In: 26th IFIP WG 11.3 Conference in Data and Applications
Security and Privacy, Paris, France. pp. 145–160 (2012)

6. Free Software Foundation: GNU Multiple Precision Arithmetic library .
https://gmplib.org/ (last accessed: 2016)

7. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

8. Hadavi, M.A., Jalili, R., Damiani, E., Cimato, S.: Security and searchability in se-
cret sharing-based data outsourcing. International Journal of Information Security
14(6), 513–529 (2015)

9. Jost, C., Lam, H., Maximov, A., Smeets, B.J.M.: Encryption Performance Improve-
ments of the Paillier Cryptosystem. IACR Cryptology ePrint Archive 864 (2015),
http://eprint.iacr.org/2015/864

10. Liu, D.: Practical Fully Homomorphic Encryption without Noise Reduction. IACR
Cryptology ePrint Archive 468 (2015), http://eprint.iacr.org/2015/468

11. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA. pp. 644–655 (2015)

12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Application of Crypto-
graphic Techniques, EUROCRYPT, Prague, Czech Republic. LNCS, vol. 1592,
pp. 223–238 (1999)

13. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: 23rd ACM Symposium on
Operating Systems Principles, SOSP, Cascais, Portugal. pp. 85–100 (2011)

14. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM 56(6) (2009)

15. Sanamrad, T., Kossmann, D.: Query log attack on encrypted databases. In: 10th
VLDB Workshop on Secure Data Management, SDM, Trento, Italy. pp. 95–107
(2013)

16. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

17. Sion, R.: Towards Secure Data Outsourcing, pp. 137–161. Springer (2008)
18. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries

over encrypted data. Proceedings of the VLDB Endowment 6(5), 289–300 (2013)
19. Xiong, L., Chitti, S., Liu, L.: Preserving data privacy in outsourcing data aggre-

gation services. ACM Transactions on Internet Technology 7(3) (2007)
20. Yildizli, C., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Distributed privacy

preserving clustering via homomorphic secret sharing and its application to (verti-
cally) partitioned spatio-temporal data. International Journal of Data Warehousing
and Mining 7(1), 46–66 (2011)


