T2K?2: The Twitter Top-K Keywords Benchmark

Ciprian-Octavian Truici>?, Jérome Darmont??
b

!Computer Science and Engineering Department, Faculty of Automatic Control and
Computers, University Politehnica of Bucharest, Bucharest, Romania
2Université de Lyon, Lyon 2, ERIC EA 3083, France
“ciprian.truica@cs.pub.ro, ®jerome.darmont@univ-lyon2.fr

Abstract. Information retrieval from textual data focuses on the con-
struction of vocabularies that contain weighted term tuples. Such vo-
cabularies can then be exploited by various text analysis algorithms to
extract new knowledge, e.g., top-k keywords, top-k documents, etc. Top-
k keywords are casually used for various purposes, are often computed
on-the-fly, and thus must be efficiently computed. To compare competing
weighting schemes and database implementations, benchmarking is cus-
tomary. To the best of our knowledge, no benchmark currently addresses
these problems. Hence, in this paper, we present a top-k keywords bench-
mark, T2K?, which features a real tweet dataset and queries with various
complexities and selectivities. T?K? helps evaluate weighting schemes
and database implementations in terms of computing performance. To
illustrate T2K?’s relevance and genericity, we show how to implement the
TF-IDF and Okapi BM25 weighting schemes, on one hand, and relational
and document-oriented database instantiations, on the other hand.

Keywords: Top-k keywords, Benchmark, Term weighting, Database systems

1 Introduction

Analyzing textual data is a current challenge, notably due to the vast amount
of text generated daily by social media. One approach for extracting knowledge
is to infer from texts the top-k keywords to determine trends [1,14], or to de-
tect anomalies or more generally events [7]. Computing top-k keywords requires
building a weighted vocabulary, which can also be used for many other purposes
such as topic modeling and clustering. Term weights can be computed at the
application level, which is inefficient when working with large data volumes be-
cause all information must be queried and processed at a layer different from
storage. A presumably better approach is to process information at the storage
layer using aggregation functions, and then return the result to the application
layer. Yet, the term weighting process remains very costly, because each time a
query is issued, at least one pass through all documents is needed.

To compare combinations of weighting schemes, computing strategies and
physical implementations, benchmarking is customary. However, to the best of
our knowledge, there exists no benchmark for this purpose. Hence, we propose

in this paper the Twitter Top-K Keywords Benchmark (T2?K?), which features
a real tweet dataset and queries with various complexities and selectivities. We
designed T?K? to be somewhat generic, i.e., it can compare various weighting
schemes, database logical and physical implementations and even text analytics
platforms [18] in terms of computing efficiency. As a proof of concept of T2K?’s
relevance and genericity, we show how to implement the TF-IDF and Okapi
BM25 weighting schemes, on one hand, and relational and document-oriented
database instantiations, on the other hand.

The remainder of this paper is organized as follows. Section 2 reviews text-
oriented benchmarks. Section 3 provides T2K?’s generic specification. Section 4
details T2K?’s proof of concept, i.e., its instantiation for several weighting schemes
and database implementations. Finally, Section 5 concludes this paper and hints
at future research.

2 Related Works

Term weighting schemes are extensively benchmarked in sentiment analysis
[15], semantic similarity [11], text classification and categorization [8,9,11,13],
and textual corpus generation [19]. Benchmarks for text analysis focus mainly
on algorithm accuracy, while either term weights are known before the algorithm
is applied, or their computation is incorporated with preprocessing. Thus, such
benchmarks do not evaluate weighting scheme construction efficiency as we do.

Other benchmarks evaluate parallel text processing in big data applications
in the cloud [4,5]. PRIMEBALL notably specifies several relevant properties
characterizing cloud platforms [4], such as scale-up, elastic speedup, horizon-
tal scalability, latency, durability, consistency and version handling, availabil-
ity, concurrency and other data and information retrieval properties. However,
PRIMEBALL is only a specification; it is not implemented.

3 T2K? Specification

Typically, a benchmark is constituted of a data model (conceptual schema
and extension), a workload model (set of operations) to apply on the dataset,
an execution protocol and performance metrics [3]. In this section, we provide a
conceptual description of T2K?2, so that it is generic and can cope with various
weighting schemes and database logical and physical implementations.

3.1 Data Model

The base dataset we use is a corpus of 2500000 tweets that was collected using
Twitter’s REST API to read and gather data. Moreover, we applied preprocess-
ing steps to the raw corpus to extract the additional information needed to build

a weighted vocabulary: 1) extract all tags and remove links; 2) expand contrac-
tions, i.e., shortened versions of the written and spoken forms of a word, syllable,
or word group, created by omission of internal letters and sounds [2], e.g., ”it’s”
becomes it is”; 3) extract sentences and remove punctuation in each sentence,
creating a clean text; 4) for each sentence, extract lemmas and create a lemma
text; 5) for each lemma ¢ in tweet d, compute the number of co-occurrences fi q
and term frequency T'F (¢, d), which normalizes f; 4.

T2K? database’s conceptual model (Figure 1) represents all the information
extracted after the text preprocessing steps. Information about tweet Author
are a unique identifier, first name, last name and age. Information about author
Gender is stored in a different entity to minimize the number of duplicates
of gender type. Documents are identified by the tweet’s unique identifier and
store the raw tweet text, clean text, lemma text, and the tweet’s creation date.
Writes is the relationship that associates a tweet to its author. Tweet location
is stored in the Geo_Location entity to avoid duplicates again. Word bears a
unique identifier and the actual lemma. Finally, weights f; 4 and TF(t,d) for
each lemma and each document are stored in the Vocabulary relationship.

Firstname Lastname RawText LemmaText) | CleanText
I L I
1D Age D Date 1D Lemma
| I A | L] |_'_|
1.M X 1.M 1.M 1.M
Author P Writes -———1¢ Document B———Vocabulary —¢ Word
Tm Tm ’—I—|
HasA HasA fit.d) TF(t.d)

1 11

D Type D x Y

Fig. 1: T?K? Conceptual Data Model

The initial 2 500 000 tweet corpus is split into 5 different datasets that all keep
an equal balance between the number of tweets for both genders, location and
date. These datasets contain 500 000, 1000 000, 1 500 000, 2 000 000 and 2 500 000
tweets, respectively. They allow scaling experiments and are associated to a scale
factor (SF) parameter, where SF € {0.5,1,1.5,2,2.5}, for conciseness sake.

3.2 Workload Model

The queries used in T2K? are designed to achieve two goals: 1) compute dif-
ferent term weighting schemes using aggregation functions and return the top-k
keywords; 2) test the performance of different database management systems.
T?K? queries are sufficient for achieving these goals, because they test the query
execution plan, internal caching and the way they deal with aggregation. More
precisely, they take different group by attributes into account and aggregate the
information to compute weighting schemes for top-k keywords.

T?K? features four queries Q1 to Q4 that compute top-k keywords w.r.t. con-
straint(s): ¢1(Q1), c1 Ac2(Q2), ¢c1 Acz(Q3), c1 Aca Aez(Q4). ¢1 is Gender. Type =
pGender, where parameter pGender € {male, female}. co is Document.Date €
[pStartDate, pEndDate], where pStartDate, pEndDate € [2015-09-17 20:41:35,
2015-09-19 04:05:45] and pStartDate < pEndDate. c3 is Geo_location. X € [
pStartX, pEndX] and Geo_location.Y € [pStartY, pEndY], where pStartX, pEndX
€ [15, 50], pStartX < pEndX, pStartY, pEndY € [-124, 120] and pStartY <
pEndY. Queries bear different levels of complexity and selectivity.

3.3 Performance Metrics and Execution Protocol

We use each query’s response time ¢(Q;) as metrics in T2K?2. Given scale factor
SF, all queries Q1 to Q4 are executed 40 times, which is sufficient according to
the central limit theorem. Average response times and standard deviations are
computed for ¢(Q;). All executions are warm runs, i.e., either caching mecha-
nisms must be deactivated, or a cold run of @1 to @4 must be executed once (but
not taken into account in the benchmark’s results) to fill in the cache. Queries
must be written in the native scripting language of the target database system
and executed directly inside said system using the command line interpreter.

4 T2K? Proof of Concept

In this section, we aim at illustrating how T2K? works and at demonstrating
that it can adequately benchmark what it is designed for, i.e., weighting schemes
and database implementations. For this sake, we first compare the TF-IDF and
Okapi BM25 weighting schemes in terms of computing efficiency. Second, we
seek to determine whether a document-oriented database is a better solution
than in a relational databases when computing a given term weighting scheme.

4.1 Weighting Schemes

Let D be the corpus of tweets, N = | D| the total number of documents (tweets)
in D and n the number of documents where some term t appears. The TF-IDF
weight is computed by multiplying the augmented term frequency TF(t,d) =

K+(1-K)- #) by the inverted document frequency IDF(t, D) =

maxt’ed(ft’,d)

1+ log %, ie., TFIDF(t,d,D) = TF(t,d) - IDF(t,D). The augmented form
of TF prevents a bias towards long tweets when the free parameter K is set
to 0.5 [12]. It uses the number of co-occurrences f; 4 of a word in a document,
normalized with the frequency of the most frequent term ¢, i.e., maxycq(fr.a).

The Okapi BM25 weight is given in Equation (1), where ||d|| is d’s length, i.e.,
the number of terms appearing in d. Average document length avgy cp(||d’]]) is
used to remove any bias towards long documents. The values of free parameters

k1 and b are usually chosen, in absence of advanced optimization, as k1 € [1.2,2.0]
and b =0.75 [10,16,17].

‘ TFIDF(t,d,D) - (k1 +1
Okapi(t,d, D) = (L H)dH M)
TF(t,d) + k1 - (1= b+b- oo

The sum S.TFIDF(t,d,D) = Zf\il TFIDF(t,d;, D) of all TF-IDFs and
the sum S_Okapi(t,d, D) = Zf\il Okapi(t,d;, D) of all Okapi BM25 weights

constitute the term’s weights that are used to construct the list of top-k key-
words.

4.2 Relational Implementations

Database The logical relational schema used in both relational databases man-

agement systems (Figure 2) directly translates the conceptual schema from Fig-
ure 1.

documents genders
vocabulary AP d integer -, /b ~ id integer
- \
o~ id_document integer el Ve id_geo_loc integer \,\ f type varchar(g)
- | id_word integer ! raw_text text \ |
/ - / = \ | |authers
count integer | lemma_text text \ AN
[| \ - id_gender integer
| 1 double clean_text text \
| \ A |2~ id integer
document_date timestamp \ i
| |/ firstname varchar(32)
|
I " '\, (lastname varchar(32)
\ 1
| \ _ \ age integer
\ \ geo_location 1
|\ |words \ \\
> [P 1 = \‘P L2 id integer ‘.Iﬂ.\ documents_authors
i integer \
- X double \™ | id_author integer
word varchar(256) \\
Y double - ¢~ id_document integer

Fig. 2: T?K? Relational Logical Schema

Queries Text analysis deals with discovering hidden patterns from texts. In
most cases, it is useful to determine such patterns for given groups, e.g., males
and females, because they have different interests and talk about disjunct sub-
jects. Moreover, if new events appear, depending on the location and time of day,

these subject can change for the same group of people. The queries we propose
aim to determine such hidden patterns and improve text analysis and anomaly
detection.

Let us express T2K?’s queries in relational algebra. ci, co and c3 are the
constraints defined in Section 3.2, adapted to the relational schema.

QI = ’YL(Trdocuments.id,words.wo’rd,fw(vocabularycount,'uocabulary.tf)(Ocl(doc-
uments <, documents_authors ., authors ., genders >, vocabulary <.,
words))), where ¢4 to cg are join conditions; f,, is the weighting function that
computes TF-IDF or Okapi BM25, which takes two parameters: vocabulary.count
= fr.qa and vocabulary.tf = TF(t,d); v is the aggregation operator, where
L = (F,G), with F' = sum(f,,(vocabulary.count, vocabulary.tf)) and G is the
words.word attribute that appears in the group by clause.

QQ =7L (ﬂ-documents.id,words.word,fw (vocabulary.count,vocabulary.tf) (001 Ac2 (doc-
uments <, documents_authors ., authors X, genders D, vocabulary <.,

words))).
= ocuments.id,words.word, f,, (vocabulary.count,vocabulary.t ci1/\c3 -

Q3 =1 (mq d,word d bul bul (o (doc
uments >, documents_authors ., authors ., genders >, vocabulary <.,
words X, geo_location))), where cg is the join condition between documents
and geo_location.

Q4 = ’YL(Wdocuments.id,words.word,fu,(vocabulary.count,vocabulary.tf)(061A52A63(
documents <., documents_authors >, authors ., genders <., vocabulary >,
words X, geo_location))).

4.3 Document-oriented Implementation

Database In a Document Oriented Database Management System (DODBMS),
all information is typically stored in a single collection. The many-to-many Vo-
cabulary relationship from Figure 1 is modeled as a nested document for each
record. The information about user and date become single fields in a docu-

ment, while the location becomes an array. Figure 3 presents an example of the
DODBMS document.

Queries In DODBMSs, user-defined (e.g., JavaScript) functions are used to
compute top-k keywords. The TF-IDF weight can take advantage of both native
database aggregation (NA) and MapReduce (MR). However, due to the multi-
tude of parameters involved and the calculations needed for the Okapi BM25
weighting scheme, the NA method is usually difficult to develop. Thus, we rec-
ommend to only use MR in benchmark runs.

5 Conclusion

Jim Gray defined four primary criteria to specify a ”good” benchmark [6].
Relevance: The benchmark must deal with aspects of performance that appeal
to the largest number of users. Considering the wide usage of top-k queries in

{ _id : 644626677310603264,
rawText : "Amanda’s car is too much for my headache” ,
cleanText : "Amanda is car is too much for my headache” ,
lemmaText : ”amanda car headache”
author : 970993142,
geoLocation : [32, 79],
gender : “male”
age : 23,
lemmaTextLength : 3,
words : [{ 7tf” : 1, 7count” : 1, "word” : 7amanda”},
{ 7tf” : 1, 7count” : 1, "word” : 7car” },
{ 7tf” : 1, "count” : 1, "word” : ”"headache”}],
date : ISODate(”72015—-09-17T23:39:1172") }

Fig. 3: Sample DODBMS Document

various text analytics tasks, we think T2K? fulfills this criterion. We also show
in Section 4 that our benchmark achieves what it is designed for.

Portability: The benchmark must be reusable to test the performances of
different database systems. We successfully instantiated T?K? within two types
of database systems, namely relational and document-oriented systems.

Simplicity: The benchmark must be feasible and must not require too many
resources. We designed T2K? with this criterion in mind (Section 3), which is
particularly important for reproducibility. We notably made up parameters that
are easy to setup.

Scalability: The benchmark must adapt to small or large computer architec-
tures. By introducing scale factor SF, we allow users to simply parameterize
T?K? and achieve some scaling, though it could be pushed further in terms of
data volume.

In future work, we plan to expand T?K?’s dataset significantly to aim at big
data-scale volume. We also intend to further our proof of concept and valida-
tion efforts by benchmarking other NoSQL database systems and gain insight
regarding their capabilities and shortcomings. We also plan to adapt T?K? so
that it runs in the Hadoop and Spark environments.

References

1. Bringay, S., Béchet, N., Bouillot, F., Poncelet, P., Roche, M., Teisseire, M.: Towards
an on-line analysis of tweets processing. In: International Conference on Database
and Expert Systems Applications (DEXA). pp. 154-161 (2011)

2. Cooper, J.D., Robinson, M.D., Slansky, J.A., Kiger, N.D.: Literacy: Helping stu-
dents construct meaning. Cengage Learning (2014)

3. Darmont, J.: Data Processing Benchmarks, pp. 146-152. Encyclopedia of Informa-
tion Science and Technology (3rd Edition), IGI Global, Hershey, PA, USA (2014)

4. Ferrarons, J., Adhana, M., Colmenares, C., Pietrowska, S., Bentayeb, F., Darmont,
J.: PRIMEBALL: a parallel processing framework benchmark for big data applica-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

tions in the cloud. In: 5th TPC Technology Conference on Performance Evaluation
and Benchmarking (TPCTC 2013). LNCS, vol. 8391, pp. 109-124 (2014)
Gattiker, A.E., Gebara, F.H., Hofstee, H.P., Hayes, J.D., Hylick, A.: Big data
text-oriented benchmark creation for Hadoop. IBM Journal of Research and De-
velopment 57(3/4), 10:1-10:6 (2013)

Gray, J.: The Benchmark Handbook for Database and Transaction Systems (2nd
Edition). Morgan Kaufmann (1993)

Guille, A., Favre, C.: Event detection, tracking, and visualization in twitter: a
mention-anomaly-based approach. Social Network Analysis and Mining 5(1), 18
(2015)

Kiling, D., Ozcift, A., Bozyigit, F., Yildirim, P., Yiicalar, F., Borandag, E.: TTC-
3600: A new benchmark dataset for turkish text categorization. Journal of Infor-
mation Science 43(2), 174-185 (2017)

Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research 5, 361-397
(2004)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

O’Shea, J., Bandar, Z., Crockett, K.A., McLean, D.: Benchmarking short text
semantic similarity. International Journal of Intelligent Information and Database
Systems 4(2), 103-120 (2010)

Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for
sentiment analysis. In: 48th Annual Meeting of the Association for Computational
Linguistics. pp. 1386-1395 (2010)

Partalas, 1., Kosmopoulos, A., Baskiotis, N., Artieres, T., Paliouras, G., Gaussier,
E., Androutsopoulos, 1., Amini, M., Gallinari, P.: LSHTC: A benchmark for large-
scale text classification. CoRR abs/1503.08581 (2015)

Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Top_keyword: an aggregation func-
tion for textual document OLAP. In: 10th International Conference on Data Ware-
housing and Knowledge Discovery (DaWakK). pp. 55-64 (2008)

Reagan, A.J., Tivnan, B.F., Williams, J.R., Danforth, C.M., Dodds, P.S.: Bench-
marking sentiment analysis methods for large-scale texts: A case for using
continuum-scored words and word shift graphs. CoRR abs/1512.00531 (2015)
Spérck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information
retrieval: development and comparative experiments: Part 1. Information Process-
ing & Management 36(6), 779 — 808 (2000)

Spérck Jones, K., Walker, S., Robertson, S.E.: A probabilistic model of information
retrieval: development and comparative experiments: Part 2. Information Process-
ing & Management 36(6), 809 — 840 (2000)

Truica, C.O., Darmont, J., Velcin, J.: A scalable document-based architecture for
text analysis. In: International Conference on Advanced Data Mining and Appli-
cations (ADMA). pp. 481494 (2016)

Wang, L., Dong, X., Zhang, X., Wang, Y., Ju, T., Feng, G.: TextGen: a realistic text
data content generation method for modern storage system benchmarks. Frontiers
of Information Technology & FElectronic Engineering 17(10), 982-993 (2016)

	T2K2: The Twitter Top-K Keywords Benchmark

