
1

DATA WAREHOUSE BENCHMARKING WITH DWEB

Jérôme Darmont

University of Lyon (ERIC Lyon 2)

5 avenue Pierre Mendès-France

69676 Bron Cedex

France

jerome.darmont@univ-lyon2.fr

ABSTRACT

Performance evaluation is a key issue for designers and users of Database Management Sys-

tems (DBMSs). Performance is generally assessed with software benchmarks that help, e.g.,

test architectural choices, compare different technologies or tune a system. In the particular

context of data warehousing and On-Line Analytical Processing (OLAP), although the Trans-

action Processing Performance Council (TPC) aims at issuing standard decision-support

benchmarks, few benchmarks do actually exist. We present in this chapter the Data Ware-

house Engineering Benchmark (DWEB), which allows generating various ad-hoc synthetic

data warehouses and workloads. DWEB is fully parameterized to fulfill various data ware-

house design needs. However, two levels of parameterization keep it relatively easy to tune.

We also expand on our previous work on DWEB by presenting its new Extract, Transform,

and Load (ETL) feature as well as its new execution protocol. A Java implementation of

DWEB is freely available on-line, which can be interfaced with most existing relational

DMBSs. To the best of our knowledge, DWEB is the only easily available, up-to-date

benchmark for data warehouses.

KEYWORDS

Benchmarking, Performance evaluation, Data warehouses, OLAP.

INTRODUCTION

Performance evaluation is a key issue for both designers and users of Database Management

Systems (DBMSs). It helps designers select among alternate software architectures, perfor-

mance optimization strategies, or validate or refute hypotheses regarding the actual behavior

of a system. Thus, performance evaluation is an essential component in the development pro-

2

cess of efficient and well-designed database systems. Users may also employ performance

evaluation, either to compare the efficiency of different technologies before selecting one, or

to tune a system. In many fields including databases, performance is generally assessed with

the help of software benchmarks. The main components in a benchmark are its database mod-

el and workload model (set of operations to execute on the database).

Evaluating data warehousing and decision-support technologies is a particularly intricate task.

Though pertinent, general advice is available, notably on-line (Pendse, 2003; Greenfield,

2004a), more quantitative elements regarding sheer performance, including benchmarks, are

few. In the late nineties, the OLAP (On-Line Analytical Process) APB-1 benchmark has been

very popular. Henceforth, the Transaction Processing Performance Council (TPC) (1), a non-

profit organization, defines standard benchmarks (including decision-support benchmarks)

and publishes objective and verifiable performance evaluations to the industry.

Our own motivation for data warehouse benchmarking was initially to test the efficiency of

performance optimization techniques (such as automatic index and materialized view selec-

tion techniques) we have been developing for several years. None of the existing data ware-

house benchmarks suited our needs. APB-1’s schema is fixed, while we needed to test our

performance optimization techniques on various data warehouse configurations. Furthermore,

it is no longer supported and somewhat difficult to find. The TPC currently supports the TPC-

H decision-support benchmark (TPC, 2006). However, its database schema is inherited from

the older and obsolete benchmark TPC-D (TPC, 1998), which is not a dimensional schema

such as the typical star schema and its derivatives that are used in data warehouses (Inmon,

2002; Kimball & Ross, 2002). Furthermore, TPC-H’s workload, though decision-oriented,

does not include explicit OLAP queries either. This benchmark is implicitly considered obso-

lete by the TPC that has issued some draft specifications for its successor: TPC-DS (TPC,

2007). However, TPC-DS, which is very complex, especially at the ETL (Extract, Transform,

and Load) and workload levels, has been under development since 2002 and is not completed

yet.

Furthermore, although the TPC decision-support benchmarks are scalable according to Gray’s

(1993) definition, their schema is also fixed. For instance, TPC-DS’ constellation schema

cannot easily be simplified into a simple star schema. It must be used “as is”. Different ad-hoc

configurations are not possible. Furthermore, there is only one parameter to define the data-

base, the Scale Factor (SF), which sets up its size (from 1 to 100,000 GB). Users cannot con-

trol the size of dimensions and fact tables separately, for instance. Finally, users have no con-

trol on workload definition. The number of generated queries directly depends on SF.

3

Eventually, in a context where data warehouse architectures and decision-support workloads

depend a lot on application domain, it is very important that designers who wish to evaluate

the impact of architectural choices or optimization techniques on global performance can

choose and/or compare among several configurations. The TPC benchmarks, which aim at

standardized results and propose only one configuration of warehouse schema, are ill-adapted

to this purpose. TPC-DS is indeed able to evaluate the performance of optimization tech-

niques, but it cannot test their impact on various choices of data warehouse architectures.

Generating particular data warehouse configurations (e.g., large-volume dimensions) or ad-

hoc query workloads is not possible either, whereas it could be an interesting feature for a

data warehouse benchmark.

For all these reasons, we decided to design a full data warehouse benchmark that would be

able to model various configurations of database and workload: DWEB, the Data Warehouse

Engineering Benchmark (Darmont et al., 2005; Darmont et al., 2007). In this context (varia-

ble architecture, variable size), using a real-life benchmark is not an option. Hence, DWEB

helps generate ad-hoc synthetic data warehouses (modeled as star, snowflake, or constellation

schemas) and workloads, mainly for engineering needs. DWEB may thus be viewed more as a

benchmark generator than an actual, single benchmark.

This chapter presents the full specifications of DWEB’s database and workload models, and

expands our previous work with a new ETL process and a new execution protocol that have

recently been included into DWEB. All models, parameters and pseudo-code algorithms are

provided. The remainder of this chapter is organized as follows. We first present the state of

the art decision-support benchmarks, with a particular focus on the current and future stand-

ards TPC-H and TPC-DS. Then, we detail DWEB’s specifications: database model, workload

model, ETL process and execution protocol. We present a short tutorial to illustrate DWEB’s

usage, and finally conclude this chapter and provide future research directions.

STATE OF THE ART DECISION-SUPPORT BENCHMARKS

To the best of our knowledge, relatively few decision-support benchmarks have been de-

signed out of the TPC. Some do exist, but their specification is sometimes not fully published

(Demarest, 1995). The most notable is presumably the OLAP APB-1 benchmark, which was

issued in 1998 by the OLAP council, a now inactive organization founded by four OLAP

vendors. APB-1 has been quite extensively used in the late nineties. Its data warehouse sche-

ma is architectured around four dimensions: Customer, Product, Channel and Time. Its work-

4

load of ten queries is aimed at sale forecasting. APB-1 is quite simple and proved limited,

since it is not “differentiated to reflect the hurdles that are specific to different industries and

functions” (Thomsen, 1998). Finally, some OLAP datasets are also available on-line (2), but

they do not qualify as benchmarks, being only raw databases (chiefly, no workload is provid-

ed).

In the remainder of this section, we focus more particularly on the TPC benchmarks. The

TPC-D benchmark (Ballinger, 1993; Bhashyam, 1996; TPC, 1998) appeared in the mid-

nineties, and forms the base of TPC-H and TPC-R that have replaced it (Poess & Floyd,

2000). TPC-H and TPC-R are actually identical, only their usage varies. TPC-H (TPC, 2006)

is for ad-hoc querying (queries are not known in advance and optimizations are forbidden),

while TPC-R (TPC, 2003) is for reporting (queries are known in advance and optimizations

are allowed). TPC-H is currently the only decision-support benchmark supported by the TPC.

Its designated successor, TPC-DS (Poess et al., 2002; TPC, 2007), is indeed still currently

under development and only available as a draft.

TPC-H

TPC-H exploits the same relational database schema as TPC-D: a classical product-order-

supplier model (represented as a UML class diagram in Figure 1); and the workload from

TPC-D supplemented with five new queries. This workload is constituted of twenty-two

SQL-92 parameterized, decision-oriented queries labeled Q1 to Q22; and two refresh func-

tions RF1 and RF2 that essentially insert and delete tuples in the ORDER and LINEITEM

tables.

5

Figure 1: TPC-D, TPC-H, and TPC-R database schema

The query parameters are substituted with the help of a random function following a uniform

distribution. Finally, the protocol for running TPC-H includes a load test and a performance

test (executed twice), which is further subdivided into a power test and a throughput test.

Three primary metrics describe the results in terms of power, throughput, and a composition

of the two. Power and throughput are respectively the geometric and arithmetic average of

database size divided by execution time.

TPC-DS

TPC-DS more clearly models a data warehouse than TPC-H. TPC-DS' database schema,

whose fact tables are represented in Figure 2, models the decision-support functions of a retail

product supplier as several snowflake schemas. Catalog and web sales and returns are interre-

lated, while store management is independent. This model also includes fifteen dimensions

that are shared by the fact tables. Thus, the whole model is a constellation schema.

6

Figure 2: TPC-DS data warehouse schema

TPC-DS' workload is made of four classes of queries: reporting queries, ad-hoc decision-

support queries, interactive OLAP queries, and data extraction queries. A set of about five

hundred queries is generated from query templates written in SQL-99 (with OLAP exten-

sions). Substitutions on the templates are operated using non-uniform random distributions.

The data warehouse maintenance process includes a full ETL process and a specific treatment

of dimensions. For instance, historical dimensions preserve history as new dimension entries

are added, while non-historical dimensions do not store aged data any more. Finally, the exe-

cution model of TPC-DS consists of four steps: a load test, a query run, a data maintenance

run, and another query run. A single throughput metric is proposed, which takes the query and

maintenance runs into account.

DWEB SPECIFICATIONS

We present in this section the fullest specifications of DWEB as of today. The main compo-

nents in a benchmark are its database and workload models, but we also detail DWEB’s new

ETL capability and new execution protocol, which were previously assumed to be similar to

TPC-DS’s.

Database Model

Schema

Our design objective for DWEB is to be able to model the different kinds of data warehouse

architectures that are popular within a ROLAP (Relational OLAP) environment: classical star

schemas, snowflake schemas with hierarchical dimensions, and constellation schemas with

multiple fact tables and shared dimensions. To achieve this goal, we propose a data ware-

7

house metamodel (represented as a UML class diagram in Figure 3) that can be instantiated

into these different schemas.

We view this metamodel as a middle ground between the multidimensional metamodel from

the Common Warehouse Metamodel (CWM) (OMG, 2003; Poole et al., 2003) and the even-

tual benchmark model. Our metamodel may actually be viewed as an instance of the CWM

metamodel, which could be qualified as a meta-metamodel in our context. The upper part of

Figure 3 describes a data warehouse (or a datamart, if a datamart is viewed as a small, dedi-

cated data warehouse) as constituted of one or several fact tables that are each described by

several dimensions. Each dimension may also describe several fact tables (shared dimen-

sions). Each dimension may be constituted of one or several hierarchies made of different

levels. There can be only one level if the dimension is not a hierarchy. Both fact tables and

dimension hierarchy levels are relational tables, which are modeled in the lower part of Fig-

ure 3. Classically, a table or relation is defined in intention by its attributes and in extension

by its tuples or rows. At the intersection of a given attribute and a given tuple lies the value of

this attribute in this tuple.

Figure 3: DWEB data warehouse metaschema

Our metamodel is quite simple. It is sufficient to model the data warehouse schemas we aim

at (star, snowflake, and constellation schemas), but it is limited and cannot model some par-

ticularities that are found in real-life warehouses, such as many-to-many relationships be-

tween facts and dimensions, or hierarchy levels shared by several hierarchies. This is current-

ly a deliberate choice, but the metamodel might be extended in the future.

8

Parameterization

DWEB's database parameters help users select the data warehouse architecture they need in a

given context. They are aimed at parameterizing metaschema instantiation to produce an actu-

al data warehouse schema. When designing them, we try to meet the four key criteria that

make a “good” benchmark, according to Gray (1993):

- relevance, the benchmark must answer our engineering needs (cf. Introduction);

- portability, the benchmark must be easy to implement on different systems;

- scalability, it must be possible to benchmark small and large databases, and to scale up the

benchmark;

- simplicity, the benchmark must be understandable; otherwise it will not be credible nor used.

We further propose to extend Gray’s scalability criterion to adaptability. A performance eval-

uation tool must then propose different database or workload configurations that help run tests

in various experimental conditions. Such tools might be qualified as benchmark generators,

though we term them, possibly abusively, tunable or generic benchmarks. Aiming at adapta-

bility is mechanically detrimental to simplicity. However, this criterion is fundamental and

must not be neglected when designing a generic tool. It is thus necessary to find means to

ensure good adaptability while not sacrificing simplicity; in short, to find a fair tradeoff be-

tween these criteria.

Relevance and adaptability on one hand, and simplicity on the other hand, are clearly two

orthogonal goals. Introducing too few parameters reduces the model's expressiveness, while

introducing too many parameters makes it difficult to apprehend by potential users. Further-

more, few of these parameters are likely to be used in practice. In parallel, the generation

complexity of the instantiated schema must be mastered. To solve this dilemma, we capitalize

on the experience of designing the OCB object-oriented database benchmark (Darmont &

Schneider, 2000). OCB is generic and able to model all the other existing object-oriented da-

tabase benchmarks, but it is controlled by too many parameters, few of which are used in

practice. Hence, we propose to divide the parameter set into two subsets.

The first subset of so-called low-level parameters allows an advanced user to control every-

thing about data warehouse generation (Table 1). However, the number of low-level parame-

ters can increase dramatically when the schema gets larger. For instance, if there are several

fact tables, all their characteristics, including dimensions and their own characteristics, must

be defined for each fact table.

9

Parameter name Meaning

NB_FT Number of fact tables

NB_DIM(f) Number of dimensions describing fact table #f

TOT_NB_DIM Total number of dimensions

NB_MEAS(f) Number of measures in fact table #f

DENSITY(f) Density rate in fact table #f

NB_LEVELS(d) Number of hierarchy levels in dimension #d

NB_ATT(d,h)
Number of attributes in hierarchy level #h

of dimension #d

HHLEVEL_SIZE(d)
Cardinality of the highest hierarchy level

of dimension #d

DIM_SFACTOR(d)
Size scale factor in the hierarchy levels

of dimension #d

Table 1: DWEB warehouse low-level parameters

Thus, we designed a layer above with much fewer parameters that may be easily understood

and set up (Table 2). More precisely, these high-level parameters are average values for the

low-level parameters. At database generation time, the high-level parameters are exploited by

random functions (following a Gaussian distribution) to automatically set up the low-level

parameters. Finally, unlike the number of low-level parameters, the number of high-level pa-

rameters always remains constant and reasonable (less than ten parameters).

Parameter name Meaning Default value

AVG_NB_FT Average number of fact tables 1

AVG_NB_DIM
Average number of dimensions

per fact table
5

AVG_TOT_NB_DIM
Average total number

of dimensions
5

AVG_NB_MEAS
Average number of measures

in fact tables
5

AVG_DENSITY
Average density rate

in fact tables
0.6

AVG_NB_LEVELS
Average number of hierarchy

levels in dimensions
3

AVG_NB_ATT
Average number of attributes

in hierarchy levels
5

AVG_HHLEVEL_SIZE
Average cardinality

of the highest hierarchy levels
10

DIM_SFACTOR
Average size scale factor

within hierarchy levels
10

Table 2: DWEB warehouse high-level parameters

Users may choose to set up either the full set of low-level parameters, or only the high-level

parameters, for which we propose default values that correspond to a snowflake schema. Note

that these parameters control both schema and data generation.

10

Remarks:

- Since shared dimensions are possible, 



FTNB

i

iDIMNBDIMNBTOT
_

1

)(___ .

- The cardinal of a fact table is usually lower or equal to the product of its dimensions' cardi-

nals. This is why we introduce the notion of density. A density rate of one indicates that all

the possible combinations of the dimension primary keys are present in the fact table, which is

very rare in real-life data warehouses. When density rate decreases, we progressively elimi-

nate some of these combinations (cf. Workload Generation).

- This parameter helps control the size of the fact table, independently of the size of its dimen-

sions, which are defined by the HHLEVEL_SIZE and DIM_SFACTOR parameters (see be-

low).

- Within a dimension, a given hierarchy level has normally a greater cardinality than the next

level. For example, in a town-region-country hierarchy, the number of towns must be greater

than the number of regions, which must be in turn greater than the number of countries. Fur-

thermore, there is often a significant scale factor between these cardinalities (e.g., one thou-

sand towns, one hundred regions, ten countries). Hence, we model the cardinality of hierarchy

levels by assigning a “starting” cardinality to the highest level in the hierarchy

(HHLEVEL_SIZE), and then by multiplying it by a predefined scale factor (DIM_SFACTOR)

for each lower-level hierarchy.

- The global size of the data warehouse is assessed at generation time so that the user retains

full control over it.

Generation Algorithm

The instantiation of the DWEB metaschema into an actual benchmark schema is done in two

steps:

1. build the dimensions;

2. build the fact tables.

The pseudo-code for these two steps is provided in Figures 4 and 5, respectively. Each of

these steps is further subdivided, for each dimension or each fact table, into generating its

intention and extension. In addition, dimension hierarchies must be managed. Note that they

are generated starting from the highest level of hierarchy. For instance, for our town-region-

country sample hierarchy, we build the country level first, then the region level, and eventual-

11

ly the town level. Hence, tuples from a given hierarchy level can refer to tuples from the next

level (that are already created) with the help of a foreign key.

For i = 1 to TOT_NB_DIM do

 previous_ptr = NIL

 size = HHLEVEL_SIZE(i)

 For j = 1 to NB_LEVELS(i) do

 // Intention

 h1 = New(Hierarchy_level)

 h1.intention = Primary_key()

 For k = 1 to NB_ATT(i,j) do

 h1.intention = h1.intention

  String_member()

 End for

 // Hierarchy management

 h1.child = previous_ptr

 h1.parent = NIL

 If previous_ptr  NIL then
 previous_ptr.parent = h1

 // Foreign key

 h1.intention = h1.intention

  previous_ptr.intention.primary_key
 End if

 // Extension

 h1.extension = 
 For k = 1 to size do

 new_tuple = Integer_primary_key()

 For l = 1 to NB_ATT(i,j) do

 new_tuple = new_tuple  Random_string()
 End for

 If previous_ptr  NIL then
 new_tuple = new_tuple

  Random_key(previous_ptr)
 End if

 h1.extension = h1.extension  new_tuple
 End for

 previous_ptr = h1

 size = size * DIM_SFACTOR(i)

 End for

 dim(i) = h1 // First (lowest) level of the hierarchy

End for

Figure 4: DWEB dimensions generation algorithm

For i = 1 to TOT_NB_FT do

 // Intention

 ft(i).intention = 
 For k = 1 to NB_DIM(i) do

 j = Random_dimension(ft(i))

 ft(i).intention = ft(i).intention

  ft(i).dim(j).primary key
 End for

 For k to NB_MEAS(i) do

 ft(i).intention = ft(i).intention

  Float_measure()
 End for

 // Extension

 ft(i).extension = 
 For j = 1 to NB_DIM(i) do // Cartesian product

 ft(i).extension = ft(i).extension

  ft(i).dim(j).primary key
 End for

12

 to_delete = DENSITY(i) * |ft(i).extension|

 For j = 1 to to_delete do

 Random_delete(ft(i).extension)

 End for

 For j = 1 to |ft(i).extension| do

 // With |ft(i).extension| updated

 For k = 1 to NB_MEAS(i) do

 Ft(i).extension.tuple(j).measure(k)

 = Random_float()

 End for

 End for

End for

Figure 5: DWEB fact tables generation algorithm

We use three main classes of functions and one procedure in these algorithms.

1. Primary_key(), String_member() and Float_measure() return attribute names for pri-

mary keys, members in hierarchy levels, and measures in fact tables, respectively. These

names are labeled sequentially and prefixed by the table's name (e.g., DIM1_1_DESCR1,

DIM1_1_DESCR2...).

2. Integer_primary_key(), Random_key(), Random_string() and Random_float() re-

turn sequential integers with respect to a given table (no duplicates are allowed), random in-

stances of the specified table's primary key (random values for a foreign key), random strings

of fixed size (20 characters) selected from a precomputed referential of strings and prefixed

by the corresponding attribute name, and random single-precision real numbers, respectively.

3. Random_dimension() returns a dimension that is chosen among the existing dimensions

that are not already describing the fact table in parameter.

4. Random_delete() deletes one tuple at random from the extension of a table.

Except in the Random_delete() procedure, where the random distribution is uniform, we use

Gaussian random distributions to introduce a skew, so that some of the data, whether in the

fact tables or the dimensions, are referenced more frequently than others as it is normally the

case in real-life data warehouses.

Remark: The way density is managed in Figure 5 is grossly non-optimal. We chose to present

the algorithm that way for the sake of clarity, but the actual implementation does not create all

the tuples from the cartesian product, and then delete some of them. It directly generates the

right number of tuples by using the density rate as a probability for each tuple to be created.

Workload Model

In a data warehouse benchmark, the workload may be subdivided into:

13

1. a load of decision-support queries (mostly OLAP queries);

2. the ETL (data generation and maintenance) process.

To design DWEB's workload, we inspire both from TPC-DS' workload definition (which is

very elaborate) and information regarding data warehouse performance from other sources

(BMC, 2000; Greenfield, 2004b). However, TPC-DS' workload is quite complex and some-

how confusing. The reporting, ad-hoc decision-support and OLAP query classes are very sim-

ilar, for instance, but none of them include any specific OLAP operator such as Cube or

Rollup. Since we want to meet Gray's simplicity criterion, we propose a simpler workload. In

particular, we do not address the issue of nested queries for now. Furthermore, we also have

to design a workload that is consistent with the variable nature of the DWEB data ware-

houses.

We focus in this section on the definition of a query model that excludes update operations.

The ETL and warehouse refreshing processes are addressed in the next section.

Query Model

The DWEB workload models two different classes of queries: purely decision-oriented que-

ries involving common OLAP operations, such as cube, roll-up, drill-down and slice and dice;

and extraction queries (simple join queries). We define our generic query model (Figure 6) as

a grammar that is a subset of the SQL-99 standard, which introduces much-needed analytical

capabilities to relational database querying. This increases the ability to perform dynamic,

analytic SQL queries.

Query ::-

Select ![<Attribute Clause> | <Aggregate

Clause> | [<Attribute Clause>,

<Aggregate Clause>]]

From !<Table Clause> [<Where Clause>

|| [<Group by Clause> * <Having

Clause>]]

Attribute Clause ::- Attribute name [[, <Attribute

Clause>] | ]

Aggregate Clause ::- ![Aggregate function name (At-

tribute name)] [As Alias] [[,

<Aggregate Clause>] | ]

Table Clause ::- Table name [[, <Table Clause>] |

]

Where Clause ::- Where ![<Condition Clause> |

<Join Clause>| [<Condition

Clause> And <Join Clause>]]

Condition Clause ::- ![Attribute name <Comparison op-

erator> <Operand Clause>] [[<Log-

ical operator> <Condition

14

Clause>] | ]

Operand Clause ::- [Attribute name | Attribute value

| Attribute value list]

Join Clause ::- ![Attribute name i = Attribute

name j] [[And <Join Clause>] | ]

Group by Clause ::- Group by [Cube | Rollup] <Attrib-

ute Clause>

Having Clause ::- [Alias | Aggregate function name

(Attribute name)] <Comparison

operator> [Attribute name | At-

tribute value list]

Key: The [and] brackets are delimiters.

 !<A>: A is required.

 *<A>: A is optional.

 <A || B>: A or B.

 <A | B>: A exclusive or B.

 : empty clause.

 SQL language elements are indicated in bold.

Figure 6: DWEB query model

Parameterization

DWEB's workload parameters help users tailor the benchmark's load, which is also dependent

from the warehouse schema, to their needs. Just like DWEB's database parameter set (cf. pre-

vious section), DWEB's workload parameter set (Table 3) has been designed with Gray's sim-

plicity criterion in mind. These parameters determine how the query model from Figure 6 is

instantiated. These parameters help define workload size and complexity, by setting up the

proportion of complex OLAP queries (i.e., the class of queries) in the workload , the number

of aggregation operations, the presence of a Having clause in the query, or the number of sub-

sequent drill-down operations.

Parameter name Meaning Default value

NB_Q
Approximate number of queries

in the workload
100

AVG_NB_ATT
Average number

of selected attributes in a query
5

AVG_NB_RESTR
Average number of restrictions

in a query
3

PROB_OLAP
Probability that the query type

is OLAP
0.9

PROB_EXTRACT
Probability that the query

is an extraction query

1 -

PROB_OLAP

AVG_NB_AGGREG
Average number of aggregations

in an OLAP query
3

PROB_CUBE
Probability of an OLAP query

to use the Cube operator
0.3

PROB_ROLLUP
Probability of an OLAP query

to use the Rollup operator

1 -

PROB_CUBE

PROB_HAVING
Probability of an OLAP query

to include a Having clause
0.2

15

AVG_NB_DD
Average number of drill-downs

after an OLAP query
3

Table 3: DWEB workload parameters

Here, we have only a limited number of high-level parameters (eight parameters, since

PROB_EXTRACT and PROB_ROLLUP are derived from PROB_OLAP and PROB_CUBE,

respectively). Indeed, it cannot be envisaged to dive further into detail if the workload is as

large as several hundred queries, which is quite typical.

Remark: NB_Q is only an approximate number of queries because the number of drill-down

operations after an OLAP query may vary. Hence we can stop generating queries only when

we actually have generated as many or more queries than NB_Q.

Generation Algorithm

The pseudo-code of DWEB’s workload generation algorithm is presented in Figures 7a and

7b. The algorithm's purpose is to generate a set of SQL-99 queries that can be directly execut-

ed on the synthetic data warehouse defined in the previous section. It is subdivided into two

steps:

1. generate an initial query that may be either an OLAP or an extraction (join) query;

2. if the initial query is an OLAP query, execute a certain number of drill-down operations

based on the first OLAP query. More precisely, each time a drill-down is performed, a mem-

ber from a lower level of dimension hierarchy is added to the attribute clause of the previous

query.

Step 1 is further subdivided into three substeps:

1. the Select, From, and Where clauses of a query are generated simultaneously by randomly

selecting a fact table and dimensions, including a hierarchy level within a given dimension

hierarchy;

2. the Where clause is supplemented with additional conditions;

3. eventually, it is decided whether the query is an OLAP query or an extraction query. In the

second case, the query is complete. In the first case, aggregate functions applied to measures

of the fact table are added in the query, as well as a Group by clause that may include either

the Cube or the Rollup operator. A Having clause may optionally be added in too. The aggre-

gate function we apply on measures is always Sum since it is the most common aggregate in

16

cubes. Furthermore, other aggregate functions bear similar time complexities, so they would

not bring in any more insight in a performance study.

n = 0

While n < NB_Q do

 // Step 1: Initial query

 // Step 1.2: Select, From and Where clauses

 i = Random_FT() // Fact table selection

 attribute_list = 
 table_list = ft(i)

 condition_list = 
 For k = 1 to Random_int(AVG_NB_ATT) do

 // Dimension selection

 j = Random_dimension(ft(i))

 l = Random_int(1, ft(i).dim(j).nb_levels)

 // Positioning on hierarchy level l

 hl = ft(i).dim(j) // Current hierarchy level

 m = 1 // Level counter

 fk = ft(i).intention.primary_key.element(j)

 // This foreign key corresponds to

 // ft(i).dim(j).primary_key

 While m < l and hl.child  NIL do
 // Build join

 table_list = table_list  hl
 condition_list = condition_list

  (fk = hl.intention.primary_key)
 // Next level

 fk = hl.intention.foreign_key

 m = m + 1

 hl = hl.child

 End while

 attribute_list = attribute_list

  Random_attribute(hl.intention)
 End for

 // Step 1.2: Supplement Where clause

 For k = 1 to Random_int(AVG_NB_RESTR) do

 condition_list = condition_list

  (Random_attribute(attribute_list)
 = Random_string())

 End for

 // Step 1.3: OLAP or extraction query selection

 p1 = Random_float(0, 1)

 If p1  PROB_OLAP then // OLAP query
 // Aggregate clause

 aggregate_list = 
 For k = 1 to Random_int(AVG_NB_AGGREG) do

 aggregate_list = aggregate_list

  (Random_measure(ft(i).intention)
 End for

 ../..

Figure 7a: DWEB workload generation algorithm

../..
 // Group by clause

 group_by_list = attribute_list

 p2 = Random_float(0, 1)

 If p2  PROB_CUBE then
 group_by_operator = CUBE

 Else

 group_by_operator = ROLLUP

 End if

17

 // Having clause

 P3 = Random_float(0, 1)

 If p3  PROB_HAVING then
 having_clause

 = (Random_attribute(aggregate_list), ,
 Random_float())

 Else

 having_clause = 
 End if

 Else // Extraction query

 group_by_list = 

 group_by_operator = 

 having_clause = 
 End if

 // SQL query generation

 Gen_query(attribute_list, aggregate_list, table_list,

 condition_list, group_by_list, group_by_operator,

 having_clause)

 n = n + 1

 // Step 2: Possible subsequent DRILL-DOWN queries

 If p1  PROB_OLAP then
 k = 0

 While k < Random_int(AVG_NB_DD)

 and hl.parent  NIL do
 k = k + 1

 hl = hl.parent

 att = Random_attribute(hl.intention)

 attribute_list = attribute_list  att

 group_by_list = group_by_list  att
 Gen_query(attribute_list, aggregate_list,

 table_list, condition_list, group_by_list,

 group_by_operator, having_clause)

 End while

 n = n + k

 End if

End while

Figure 7b: DWEB workload generation algorithm (continued)

We use three classes of functions and a procedure in this algorithm.

1. Random_string() and Random_float() are the same functions than those already de-

scribed in the Database Generation section. However, we introduce the possibility for Ran-

dom_float() to use either a uniform or a Gaussian random distribution. This depends on the

function parameters: either a range of values (uniform) or an average value (Gaussian). Final-

ly, we introduce the Random_int() function that behaves just like Random_float() but re-

turns integer values.

2. Random_FT() and Random_dimension() help select a fact table or a dimension describing

a given fact table, respectively. They both use a Gaussian random distribution, which intro-

duces an access skew at the fact table and dimension levels. Random_dimension() is also

already described in the Database Generation section.

18

3. Random_attribute() and Random_measure() are very close in behavior. They return an

attribute or a measure, respectively, from a table intention or a list of attributes. They both use

a Gaussian random distribution.

4. Gen_query() is the procedure that actually generates the SQL-99 code of the workload

queries, given all the parameters that are needed to instantiate our query model.

ETL Process

When designing DWEB’s ETL process, we have to consider again the relevance vs. simplici-

ty tradeoff (cf. Gray’s criteria). Though the ETL phase may take up to 80% of the time devot-

ed to a data warehousing project, it would not be reasonable to include its full complexity in a

benchmark tool. Hence, we balanced in favor of simplicity. However, we present here a first

step toward including a full ETL phase into DWEB; extensions are definitely possible.

Model

Since the DWEB software is a standalone tool that generates data and workloads, we chose

not to include an extraction phase in its ETL capability. Data updates are performed directly

in the database to keep DWEB’s usage simple and minimize external file management. How-

ever, data updates could also easily be recorded into flat files before being applied, to simu-

late an extraction phase.

We did not include any transformation in the process either, despite it is a very important

phase in the ETL process. However, in a benchmark, such transformations are simulated to

consume CPU time (this is the tactic adopted in TPC-DS). In DWEB, we consider that the

processing time of various tests in the insert and modify procedures related to the loading

phase might be considered as equivalent to simulating transformations.

We thus focus on the loading phase. A data warehouse schema is built on two different con-

cepts: facts and dimensions. Updates might be insertions, modifications or deletions. Since

data are normally historicized in a data warehouse, we do not consider deletions. Hence, we

can identify four warehouse refreshing types for which we adopt specific strategies.

1. Insertions in fact tables are simple. They involve few constraints at the schema level, save

that we cannot use an existing primary key in the related fact table. To achieve an insertion,

we randomly fetch one primary key in each dimension to build an aggregate fact table key,

and then add random measure values to complete the fact.

19

2. Insertions in dimensions raise a new issue. They must be dispatched in all hierarchy levels.

Hence, for each dimension, we seek to insert elements from the highest hierarchy level

(coarsest granularity grain) into the lowest hierarchy level (finest granularity grain). New di-

mension members only need a new, unique primary key to be inserted in a given hierarchy

level.

3. Modifications in fact tables only necessitate randomly fetching an existing fact and modify-

ing its measure values.

4. Modifications in dimensions must finally take dimension hierarchy levels in into account to

avoid introducing inconsistencies in the hierarchy.

Parameterization

DWEB’s ETL parameters help users tune how the data warehouse is refreshed. Like the other

parameters in DWEB, they have been designed with Gray's simplicity criterion in mind.

These parameters direct how the ETL model is applied. They basically define refresh and in-

sertion/modification rates. We voluntarily define only a small number (three, since FRR and

MR are derived from DRR and IR, respectively) of high-level parameters (Table 4).

Parameter name Meaning Default value

GRR Global refresh rate 0.01

DRR Dimension refresh rate 0.05

FRR Fact refresh rate 1 – DRR

IR Insert rate 0.95

MR Modification rate 1 – IR

Table 4: DWEB ETL parameters

GRR represents the total number of records from fact and dimension tables that must be re-

freshed (insertion and modifications included), with respect to current warehouse size. DRR

and FRR control the proportion of these updates that are performed on dimension and fact

tables, respectively. Finally, IR and MR control the proportion of insertions and modifications,

respectively.

Refresh Algorithms

20

The refresh phase in DWEB is actually achieved with the help of two refresh procedures, one

for dimensions and one for fact tables. Their pseudo-code is presented in Figures 8 and 9,

respectively. Both procedures follow the same principle:

1. compute the number of tuples to insert or update with respect to parameters GRR, DRR,

FRR, IR, and MR, as well as the total number of tuples in the warehouse GLOBAL_SIZE;

2. insert or modify as many tuples in the corresponding table — modifications affect a ran-

domly selected tuple. Furthermore, dimension updates are dispatched on all hierarchy levels.

For i = 1 to TOT_NB_DIM do

 ins_nb = ((GLOBAL_SIZE * GRR * DRR * IR)

 / TOT_NB_DIM) / NB_LEVELS(i)

 mod_nb = ((GLOBAL_SIZE * GRR * DRR * MR)

 / TOT_NB_DIM) / NB_LEVELS(i)

 For j = NB_LEVELS(i) to 1 step -1 do

 // Insertions

 For k = 1 to ins_nb do

 Insert_into_Dim(dim(i).level(j))

 End for

 // Modifications

 For k = 1 to mod_nb do

 Modify_Dim(Random_Key(dim(i).level(j))

 End for

 End for

End for

Figure 8: DWEB dimension refresh procedure

For i = 1 to NB_FT do

 For j = 1 to (GLOBAL_SIZE * GRR * FRR * IR)

 / |ft(i).extension| do

 Insert_into_FT(ft(i))

 End for

 For j = 1 to (GLOBAL_SIZE * GRR * FRR * MR)

 / |ft(i).extension| do

 Modify_FT(Random_Key(ft(i))

 End for

End for

Figure 9: DWEB fact table refresh procedure

We use two new classes of procedures in this algorithm.

1. Insert_into_Dim() and Insert_into_FT() insert new tuples into dimension and fact

tables, respectively. The main difference between these two procedures is that dimension in-

sertion manages foreign key selection for pointing to the next hierarchy level, whereas there is

no such constraint in a fact table.

2. Modify_Dim() and Modify_FT() modify one tuple, identified by its primary key, from a

dimension or fact table, respectively. Primary keys are provided by the Random_key() func-

tion (cf. Database Model section), which returns random instances of the specified table's

primary key. Modify_Dim() and Modify_FT() only differ by the updated attribute’s nature:

21

dimension members are strings, while fact measures are numerical. They are generated with

the Random_string() and Random_float() functions, respectively (cf. Database Model sec-

tion).

Execution Protocol

Protocol

DWEB’s test protocol is quite classical for a benchmark, and is actually a variation of TPC-

DS’. It is constituted of two distinct parts:

1. a load test that consists in filling the data warehouse structure with data;

2. a performance test that evaluates system response and that is further subdivided into two

steps:

2.1. a cold run in which the workload is applied onto the test warehouse once;

2.2. a warm run that is replicated REPN times and that includes the warehouse refresh process

and another execution of the workload.

The pseudo-code for the performance test is presented in Figure 10. The main difference be-

tween DWEB’s and TPC-DS’ execution protocols is that DWEB’s warm run may be execut-

ed many times instead of just one.

// Cold run

etime[0] = time()

Execute_Workload()

etime[0] = time() – etime[0]

// Warm run

For i = 1 to REPN do

 rtime[i] = time()

 Execute_Refresh(GLOBAL_SIZE)

 rtime[i] = time() – rtime[i]

 etime[i] = time()

 Execute_Workload()

 etime[i] = time() – etime[i]

End for

Figure 10: Performance test algorithm

Remark: The GRR parameter may be set to zero if users do not want to include warehouse

refresh tests.

Performance Metric

22

The performance metric we retained in DWEB is response time. It is computed separately for

workload execution and data warehouse refreshing, so that any run time (e.g., cold run time,

refresh time in warm run replication #i…) can be displayed. Global, average, minimum and

maximum execution times are also computed, as well standard deviation. Note that this kind

of atomic approach for assessing performance allows to derive any more complex, composite

metrics, such as TPC-H’s and TPC-D’s, if necessary.

DWEB TUTORIAL

We present in this section a short tutorial that illustrates DWEB’s usage and shows how

DWEB’s execution protocol is implemented in practice. DWEB is a Java application. Its main

GUI (Graphical User Interface) is depicted in Figure 11. It is divided into three sec-

tions/panels:

1. database connection: JDBC (Java Database Connectivity) connection to a database server

and database;

2. action: the actual benchmark interface that helps set parameters and launch tests;

3. information: this window displays messages when an event or error occurs.

Actually using DWEB through the “Action” panel is a four-step process.

23

Figure 11: DWEB GUI

Data Warehouse Generation

Clicking on the “Generate DW” command button helps set either the full range of low-level

parameters or only the high-level parameters (Figure 12), which we recommend for most per-

formance tests. Then, the data warehouse’s (empty) structure is automatically created.

24

Figure 12: DWEB database parameterization

Load Test

The second subpanel in the “Action” panel features three command buttons. Since DWEB’s

parameters might sound abstract, we provide through the “Info DW” command button an es-

timation of data warehouse size in megabytes before it is actually loaded. Hence, users can

reset the parameters to better represent the kind of warehouse they need, if necessary.

The “Load DW” command button actually launches the load test, whose status is displayed to

the user (Figure 13), who can interrupt the process at any time. When the data warehouse is

loaded, load time is displayed.

25

Figure 13: DWEB load test in process

Finally, the “Reset DW” command button helps destroy the current data warehouse. Since

table names are standard in DWEB, this feature helps avoiding name conflicts when generat-

ing a new data warehouse. If several warehouses need to be stored concurrently, several dif-

ferent database users must be created for this sake.

Workload Generation

Workload generation is simply achieved by clicking on the “Generate workload” command

button, which triggers workload parameter setup (Figure 14) and save its queries into an ex-

ternal file, so that they can be reused.

26

Figure 14: DWEB workload parameterization

Performance Test

Finally, the “Start performance test” command button helps set the new ETL and protocol

parameters (cf. previous section). They are then recapitulated in the performance test window

(Figure 15) that actually allows launching benchmark execution. Every workload execution

and refresh operation time is displayed and also recorded separately in a CSV (Comma-

Separated Values) file that can later be processed in a spreadsheet or any other application.

Warm run total, average, minimum and maximum times, as well as standard deviation, for

refresh operations, workload executions, and both (refresh + workload total), are computed.

Performance tests may be reiterated any number of times, with or without generating a new

workload each time.

27

Figure 15: DWEB performance test window

CONCLUSION AND PERSPECTIVES

We have mainly proposed DWEB, which is currently the only operational data warehouse

benchmark to the best of our knowledge, to help data warehouse designers select among al-

ternate architectures and/or performance optimization techniques. However, it can also be

used, as the TPC benchmarks, for sheer performance comparisons. It is indeed possible to

save a given warehouse and its associated workload to run tests on different systems and/or

with various optimization techniques.

To satisfy the relevance and adaptability criteria, DWEB can generate various ad-hoc synthet-

ic data warehouses and their associated workloads. Popular data warehouse schemas, such as

28

star, snowflake, and constellation schemas, as well as much-used decision-support operators

such as cube, roll-up or drill-down, are indeed supported by our tool. These features are pi-

loted by a full set of low-level parameters, but we have also proposed a series of high-level

parameters that are limited in number, not to sacrifice too much Gray’s simplicity criterion.

Finally, we have opted to implement DWEB with the Java language to satisfy the portability

criterion. DWEB’s code is freely available on-line (3).

We have illustrated sample usages of DWEB by evaluating the efficiency of several indexing

techniques on various data warehouse configurations (Darmont et al., 2005; Darmont et al.,

2007). Though these experiments were not actually new, they helped us demonstrate DWEB’s

relevance. We indeed obtained results that were consistent with previously published results

regarding bitmap join indices (O’Neil & Graefe, 1995) and star-join indices (Bellatreche et

al., 2002). We could underline again the crucial nature of indexing choices in data ware-

houses. Furthermore, since such choices depend on the warehouse’s architecture, we showed

DWEB’s usefulness in a context where “mono-schema” benchmarks are not relevant.

Our work opens up many perspectives for further developing and enhancing DWEB. First, the

warehouse metamodel and query model are currently deliberately simple. They could defi-

nitely be extended to be more representative of real data warehouses, i.e., more relevant. For

example, the warehouse metamodel could feature many-to-many relationships between di-

mensions and fact tables, and hierarchy levels that are shared by several dimensions. Our que-

ry model could also be extended with more complex queries such as nested queries that are

common in OLAP usages. Similarly, our DWEB’s ETL feature focuses on the loading phase,

and could be complemented by extraction and transformation capabilities. TPC-DS’ specifi-

cations and other existing studies (Labrinidis & Roussopoulos, 1998) could help us comple-

menting our own tool.

We have also proposed a set of parameters for DWEB that suit both the models we developed

and our expected usage of the benchmark. However, a formal validation would help select the

soundest parameters. More experiments should also help us to evaluate the pertinence of our

parameters and maybe propose sounder default values. Other parameters could also be con-

sidered, such as the domain cardinality of hierarchy attributes or the selectivity factors of re-

striction predicates in queries. This kind of information may indeed help designers to choose

an architecture that supports some optimization techniques adequately.

Finally, we only used response time as a performance metric. Other metrics must be envis-

aged, such as the metrics designed to measure the quality of data warehouse conceptual mod-

29

els (Serrano et al., 2003; Serrano et al., 2004). Formally validating these metrics would also

improve DWEB's usefulness.

ACKNOWLEDGEMENTS

The author would like to thank Audrey Gutierrez and Benjamin Variot for coding DWEB’s

latest improvements.

ENDNOTES

(1) http://www.tpc.org

(2) http://cgmlab.cs.dal.ca/downloadarea/datasets/

(3) http://bdd.univ-lyon2.fr/download/dweb.tgz

REFERENCES

Ballinger, C. (1993). TPC-D: Benchmarking for Decision Support. The Benchmark Handbook

for Database and Transaction Processing Systems, second edition. Morgan Kaufmann.

Bellatreche, L., Karlapalem, K., & Mohania, M. (2002). Some issues in design of data ware-

housing systems. Data warehousing and web engineering. IRM Press. 22-76.

Bhashyam, R. (1996). TCP-D: The Challenges, Issues and Results. 22th International Con-

ference on Very Large Data Bases, Mumbai (Bombay), India. SIGMOD Record. 4, 593.

BMC Software. (2000). Performance Management of a Data Warehouse. http://www.bmc.com

Darmont, J., Bentayeb, F., & Boussaïd, O. (2005). DWEB: A Data Warehouse Engineering

Benchmark. 7th International Conference on Data Warehousing and Knowledge Discovery

(DaWaK 05), Copenhagen, Denmark. LNCS. 3589, 85-94.

Darmont, J., Bentayeb, F., & Boussaïd, O. (2007). Benchmarking Data Warehouses. Interna-

tional Journal of Business Intelligence and Data Mining. 2(1), 79-104.

Darmont, J., & Schneider, M. (2000). Benchmarking OODBs with a Generic Tool. Journal of

Database Management. 11(3), 16-27.

Demarest, M. (1995). A Data Warehouse Evaluation Model. Oracle Technical Journal. 1(1),

29.

Gray, J., Ed. (1993). The Benchmark Handbook for Database and Transaction Processing

Systems, second edition. Morgan Kaufmann.

30

Greenfield, L. (2004). Performing Data Warehouse Software Evaluations.

http://www.dwinfocenter.org/evals.html

Greenfield, L. (2004). What to Learn About in Order to Speed Up Data Warehouse Querying.

http://www.dwinfocenter.org/fstquery.html

Inmon, W.H. (2002). Building the Data Warehouse, third edition. John Wiley & Sons.

Kimball, R., & Ross, M. (2002). The Data Warehouse Toolkit: The Complete Guide to Di-

mensional Modeling, second edition. John Wiley & Sons.

Labrinidis, A., & Roussopoulos, N. (1998). A Performance Evaluation of Online Warehouse

Update Algorithms. Technical report CS-TR-3954. Department of Computer Science, Univer-

sity of Maryland.

OMG. (2003). Common Warehouse Metamodel (CWM) Specification version 1.1. Object

Management Group.

O’Neil, P.E., & Graefe, G. (1995). Multi-table joins through bitmapped join indices. SIG-

MOD Record. 24(3), 8-11.

Pendse, N. (2003). The OLAP Report: How not to buy an OLAP product.

http://www.olapreport.com/How_not_to_buy.htm

Poess, M., & Floyd, C. (2000). New TPC Benchmarks for Decision Support and Web Com-

merce. SIGMOD Record. 29(4), 64-71.

Poess, M., Smith, B., Kollar, L., & Larson, P.A. (2002). TPC-DS: Taking Decision Support

Benchmarking to the Next Level. 2002 ACM SIGMOD International Conference on Man-

agement of Data, Madison, Wisconsin, USA. 582-587.

Poole, J., Chang, D., Tolbert, D., & Mellor, D. (2003). Common Warehouse Metamodel De-

veloper's Guide. John Wiley & Sons.

Serrano, M., Calero, C., & Piattini, M. (2003). Metrics for Data Warehouse Quality. Effective

Databases for Text & Document Management. 156-173.

Serrano, M., Calero, C., Trujillo, J., Lujan-Mora, S., & Piattini, M. (2004). Towards a Metrics

Suite for Conceptual Models of Datawarehouses. 1st International Workshop on Software

Audit and Metrics (SAM 04), Porto, Portugal. 105-117.

Thomsen, E. (1998). Comparing different approaches to OLAP calculations as revealed in

benchmarks. Intelligence Enterprise's Database Programming & Design.

http://www.dbpd.com/vault/9805desc.htm

TPC. (1998). TPC Benchmark D Standard Specification Version 2.1. Transaction Processing

Performance Council.

TPC. (2003). TPC Benchmark R Standard Specification Revision 2.1.0. Transaction Pro-

cessing Performance Council.

31

TPC. (2006). TPC Benchmark H Standard Specification Revision 2.6.1. Transaction Pro-

cessing Performance Council.

TPC. (2007). TPC Benchmark DS Standard Specification Draft version 52. Transaction Pro-

cessing Performance Council.

