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ABSTRACT 

 

Performance evaluation is a key issue for designers and users of Database Management Sys-

tems (DBMSs). Performance is generally assessed with software benchmarks that help, e.g., 

test architectural choices, compare different technologies or tune a system. In the particular 

context of data warehousing and On-Line Analytical Processing (OLAP), although the Trans-

action Processing Performance Council (TPC) aims at issuing standard decision-support 

benchmarks, few benchmarks do actually exist. We present in this chapter the Data Ware-

house Engineering Benchmark (DWEB), which allows generating various ad-hoc synthetic 

data warehouses and workloads. DWEB is fully parameterized to fulfill various data ware-

house design needs. However, two levels of parameterization keep it relatively easy to tune. 

We also expand on our previous work on DWEB by presenting its new Extract, Transform, 

and Load (ETL) feature as well as its new execution protocol. A Java implementation of 

DWEB is freely available on-line, which can be interfaced with most existing relational 

DMBSs. To the best of our knowledge, DWEB is the only easily available, up-to-date 

benchmark for data warehouses. 
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INTRODUCTION 

 

Performance evaluation is a key issue for both designers and users of Database Management 

Systems (DBMSs). It helps designers select among alternate software architectures, perfor-

mance optimization strategies, or validate or refute hypotheses regarding the actual behavior 

of a system. Thus, performance evaluation is an essential component in the development pro-
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cess of efficient and well-designed database systems. Users may also employ performance 

evaluation, either to compare the efficiency of different technologies before selecting one, or 

to tune a system. In many fields including databases, performance is generally assessed with 

the help of software benchmarks. The main components in a benchmark are its database mod-

el and workload model (set of operations to execute on the database). 

Evaluating data warehousing and decision-support technologies is a particularly intricate task. 

Though pertinent, general advice is available, notably on-line (Pendse, 2003; Greenfield, 

2004a), more quantitative elements regarding sheer performance, including benchmarks, are 

few. In the late nineties, the OLAP (On-Line Analytical Process) APB-1 benchmark has been 

very popular. Henceforth, the Transaction Processing Performance Council (TPC) (1), a non-

profit organization, defines standard benchmarks (including decision-support benchmarks) 

and publishes objective and verifiable performance evaluations to the industry. 

Our own motivation for data warehouse benchmarking was initially to test the efficiency of 

performance optimization techniques (such as automatic index and materialized view selec-

tion techniques) we have been developing for several years. None of the existing data ware-

house benchmarks suited our needs. APB-1’s schema is fixed, while we needed to test our 

performance optimization techniques on various data warehouse configurations. Furthermore, 

it is no longer supported and somewhat difficult to find. The TPC currently supports the TPC-

H decision-support benchmark (TPC, 2006). However, its database schema is inherited from 

the older and obsolete benchmark TPC-D (TPC, 1998), which is not a dimensional schema 

such as the typical star schema and its derivatives that are used in data warehouses (Inmon, 

2002; Kimball & Ross, 2002). Furthermore, TPC-H’s workload, though decision-oriented, 

does not include explicit OLAP queries either. This benchmark is implicitly considered obso-

lete by the TPC that has issued some draft specifications for its successor: TPC-DS (TPC, 

2007). However, TPC-DS, which is very complex, especially at the ETL (Extract, Transform, 

and Load) and workload levels, has been under development since 2002 and is not completed 

yet. 

Furthermore, although the TPC decision-support benchmarks are scalable according to Gray’s 

(1993) definition, their schema is also fixed. For instance, TPC-DS’ constellation schema 

cannot easily be simplified into a simple star schema. It must be used “as is”. Different ad-hoc 

configurations are not possible. Furthermore, there is only one parameter to define the data-

base, the Scale Factor (SF), which sets up its size (from 1 to 100,000 GB). Users cannot con-

trol the size of dimensions and fact tables separately, for instance. Finally, users have no con-

trol on workload definition. The number of generated queries directly depends on SF. 
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Eventually, in a context where data warehouse architectures and decision-support workloads 

depend a lot on application domain, it is very important that designers who wish to evaluate 

the impact of architectural choices or optimization techniques on global performance can 

choose and/or compare among several configurations. The TPC benchmarks, which aim at 

standardized results and propose only one configuration of warehouse schema, are ill-adapted 

to this purpose. TPC-DS is indeed able to evaluate the performance of optimization tech-

niques, but it cannot test their impact on various choices of data warehouse architectures. 

Generating particular data warehouse configurations (e.g., large-volume dimensions) or ad-

hoc query workloads is not possible either, whereas it could be an interesting feature for a 

data warehouse benchmark. 

For all these reasons, we decided to design a full data warehouse benchmark that would be 

able to model various configurations of database and workload: DWEB, the Data Warehouse 

Engineering Benchmark (Darmont et al., 2005; Darmont et al., 2007). In this context (varia-

ble architecture, variable size), using a real-life benchmark is not an option. Hence, DWEB 

helps generate ad-hoc synthetic data warehouses (modeled as star, snowflake, or constellation 

schemas) and workloads, mainly for engineering needs. DWEB may thus be viewed more as a 

benchmark generator than an actual, single benchmark. 

This chapter presents the full specifications of DWEB’s database and workload models, and 

expands our previous work with a new ETL process and a new execution protocol that have 

recently been included into DWEB. All models, parameters and pseudo-code algorithms are 

provided. The remainder of this chapter is organized as follows. We first present the state of 

the art decision-support benchmarks, with a particular focus on the current and future stand-

ards TPC-H and TPC-DS. Then, we detail DWEB’s specifications: database model, workload 

model, ETL process and execution protocol. We present a short tutorial to illustrate DWEB’s 

usage, and finally conclude this chapter and provide future research directions. 

 

STATE OF THE ART DECISION-SUPPORT BENCHMARKS 

 

To the best of our knowledge, relatively few decision-support benchmarks have been de-

signed out of the TPC. Some do exist, but their specification is sometimes not fully published 

(Demarest, 1995). The most notable is presumably the OLAP APB-1 benchmark, which was 

issued in 1998 by the OLAP council, a now inactive organization founded by four OLAP 

vendors. APB-1 has been quite extensively used in the late nineties. Its data warehouse sche-

ma is architectured around four dimensions: Customer, Product, Channel and Time. Its work-
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load of ten queries is aimed at sale forecasting. APB-1 is quite simple and proved limited, 

since it is not “differentiated to reflect the hurdles that are specific to different industries and 

functions” (Thomsen, 1998). Finally, some OLAP datasets are also available on-line (2), but 

they do not qualify as benchmarks, being only raw databases (chiefly, no workload is provid-

ed). 

In the remainder of this section, we focus more particularly on the TPC benchmarks. The 

TPC-D benchmark (Ballinger, 1993; Bhashyam, 1996; TPC, 1998) appeared in the mid-

nineties, and forms the base of TPC-H and TPC-R that have replaced it (Poess & Floyd, 

2000). TPC-H and TPC-R are actually identical, only their usage varies. TPC-H (TPC, 2006) 

is for ad-hoc querying (queries are not known in advance and optimizations are forbidden), 

while TPC-R (TPC, 2003) is for reporting (queries are known in advance and optimizations 

are allowed). TPC-H is currently the only decision-support benchmark supported by the TPC. 

Its designated successor, TPC-DS (Poess et al., 2002; TPC, 2007), is indeed still currently 

under development and only available as a draft. 

 

TPC-H 

 

TPC-H exploits the same relational database schema as TPC-D: a classical product-order-

supplier model (represented as a UML class diagram in Figure 1); and the workload from 

TPC-D supplemented with five new queries. This workload is constituted of twenty-two 

SQL-92 parameterized, decision-oriented queries labeled Q1 to Q22; and two refresh func-

tions RF1 and RF2 that essentially insert and delete tuples in the ORDER and LINEITEM 

tables. 
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Figure 1: TPC-D, TPC-H, and TPC-R database schema 

 

The query parameters are substituted with the help of a random function following a uniform 

distribution. Finally, the protocol for running TPC-H includes a load test and a performance 

test (executed twice), which is further subdivided into a power test and a throughput test. 

Three primary metrics describe the results in terms of power, throughput, and a composition 

of the two. Power and throughput are respectively the geometric and arithmetic average of 

database size divided by execution time. 

 

TPC-DS 

 

TPC-DS more clearly models a data warehouse than TPC-H. TPC-DS' database schema, 

whose fact tables are represented in Figure 2, models the decision-support functions of a retail 

product supplier as several snowflake schemas. Catalog and web sales and returns are interre-

lated, while store management is independent. This model also includes fifteen dimensions 

that are shared by the fact tables. Thus, the whole model is a constellation schema. 
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Figure 2: TPC-DS data warehouse schema 

 

TPC-DS' workload is made of four classes of queries: reporting queries, ad-hoc decision-

support queries, interactive OLAP queries, and data extraction queries. A set of about five 

hundred queries is generated from query templates written in SQL-99 (with OLAP exten-

sions). Substitutions on the templates are operated using non-uniform random distributions. 

The data warehouse maintenance process includes a full ETL process and a specific treatment 

of dimensions. For instance, historical dimensions preserve history as new dimension entries 

are added, while non-historical dimensions do not store aged data any more. Finally, the exe-

cution model of TPC-DS consists of four steps: a load test, a query run, a data maintenance 

run, and another query run. A single throughput metric is proposed, which takes the query and 

maintenance runs into account. 

 

DWEB SPECIFICATIONS 

 

We present in this section the fullest specifications of DWEB as of today. The main compo-

nents in a benchmark are its database and workload models, but we also detail DWEB’s new 

ETL capability and new execution protocol, which were previously assumed to be similar to 

TPC-DS’s. 

 

Database Model 

 

Schema 

 

Our design objective for DWEB is to be able to model the different kinds of data warehouse 

architectures that are popular within a ROLAP (Relational OLAP) environment: classical star 

schemas, snowflake schemas with hierarchical dimensions, and constellation schemas with 

multiple fact tables and shared dimensions. To achieve this goal, we propose a data ware-
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house metamodel (represented as a UML class diagram in Figure 3) that can be instantiated 

into these different schemas. 

We view this metamodel as a middle ground between the multidimensional metamodel from 

the Common Warehouse Metamodel (CWM) (OMG, 2003; Poole et al., 2003) and the even-

tual benchmark model. Our metamodel may actually be viewed as an instance of the CWM 

metamodel, which could be qualified as a meta-metamodel in our context. The upper part of 

Figure 3 describes a data warehouse (or a datamart, if a datamart is viewed as a small, dedi-

cated data warehouse) as constituted of one or several fact tables that are each described by 

several dimensions. Each dimension may also describe several fact tables (shared dimen-

sions). Each dimension may be constituted of one or several hierarchies made of different 

levels. There can be only one level if the dimension is not a hierarchy. Both fact tables and 

dimension hierarchy levels are relational tables, which are modeled in the lower part of Fig-

ure 3. Classically, a table or relation is defined in intention by its attributes and in extension 

by its tuples or rows. At the intersection of a given attribute and a given tuple lies the value of 

this attribute in this tuple. 

 

 
Figure 3: DWEB data warehouse metaschema 

 

Our metamodel is quite simple. It is sufficient to model the data warehouse schemas we aim 

at (star, snowflake, and constellation schemas), but it is limited and cannot model some par-

ticularities that are found in real-life warehouses, such as many-to-many relationships be-

tween facts and dimensions, or hierarchy levels shared by several hierarchies. This is current-

ly a deliberate choice, but the metamodel might be extended in the future. 
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Parameterization 

 

DWEB's database parameters help users select the data warehouse architecture they need in a 

given context. They are aimed at parameterizing metaschema instantiation to produce an actu-

al data warehouse schema. When designing them, we try to meet the four key criteria that 

make a “good” benchmark, according to Gray (1993): 

- relevance, the benchmark must answer our engineering needs (cf. Introduction); 

- portability, the benchmark must be easy to implement on different systems; 

- scalability, it must be possible to benchmark small and large databases, and to scale up the 

benchmark; 

- simplicity, the benchmark must be understandable; otherwise it will not be credible nor used. 

We further propose to extend Gray’s scalability criterion to adaptability. A performance eval-

uation tool must then propose different database or workload configurations that help run tests 

in various experimental conditions. Such tools might be qualified as benchmark generators, 

though we term them, possibly abusively, tunable or generic benchmarks. Aiming at adapta-

bility is mechanically detrimental to simplicity. However, this criterion is fundamental and 

must not be neglected when designing a generic tool. It is thus necessary to find means to 

ensure good adaptability while not sacrificing simplicity; in short, to find a fair tradeoff be-

tween these criteria. 

Relevance and adaptability on one hand, and simplicity on the other hand, are clearly two 

orthogonal goals. Introducing too few parameters reduces the model's expressiveness, while 

introducing too many parameters makes it difficult to apprehend by potential users. Further-

more, few of these parameters are likely to be used in practice. In parallel, the generation 

complexity of the instantiated schema must be mastered. To solve this dilemma, we capitalize 

on the experience of designing the OCB object-oriented database benchmark (Darmont & 

Schneider, 2000). OCB is generic and able to model all the other existing object-oriented da-

tabase benchmarks, but it is controlled by too many parameters, few of which are used in 

practice. Hence, we propose to divide the parameter set into two subsets. 

The first subset of so-called low-level parameters allows an advanced user to control every-

thing about data warehouse generation (Table 1). However, the number of low-level parame-

ters can increase dramatically when the schema gets larger. For instance, if there are several 

fact tables, all their characteristics, including dimensions and their own characteristics, must 

be defined for each fact table. 
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Parameter name Meaning 

NB_FT Number of fact tables 

NB_DIM(f) Number of dimensions describing fact table #f 

TOT_NB_DIM Total number of dimensions 

NB_MEAS(f) Number of measures in fact table #f 

DENSITY(f) Density rate in fact table #f 

NB_LEVELS(d) Number of hierarchy levels in dimension #d 

NB_ATT(d,h) 
Number of attributes in hierarchy level #h 

of dimension #d 

HHLEVEL_SIZE(d) 
Cardinality of the highest hierarchy level 

of dimension #d 

DIM_SFACTOR(d) 
Size scale factor in the hierarchy levels 

of dimension #d 

Table 1: DWEB warehouse low-level parameters 

 

Thus, we designed a layer above with much fewer parameters that may be easily understood 

and set up (Table 2). More precisely, these high-level parameters are average values for the 

low-level parameters. At database generation time, the high-level parameters are exploited by 

random functions (following a Gaussian distribution) to automatically set up the low-level 

parameters. Finally, unlike the number of low-level parameters, the number of high-level pa-

rameters always remains constant and reasonable (less than ten parameters). 

 

Parameter name Meaning Default value 

AVG_NB_FT Average number of fact tables 1 

AVG_NB_DIM 
Average number of dimensions 

per fact table 
5 

AVG_TOT_NB_DIM 
Average total number  

of dimensions 
5 

AVG_NB_MEAS 
Average number of measures  

in fact tables 
5 

AVG_DENSITY 
Average density rate  

in fact tables 
0.6 

AVG_NB_LEVELS 
Average number of hierarchy 

levels in dimensions 
3 

AVG_NB_ATT 
Average number of attributes  

in hierarchy levels 
5 

AVG_HHLEVEL_SIZE 
Average cardinality  

of the highest hierarchy levels 
10 

DIM_SFACTOR 
Average size scale factor  

within hierarchy levels 
10 

Table 2: DWEB warehouse high-level parameters 

 

Users may choose to set up either the full set of low-level parameters, or only the high-level 

parameters, for which we propose default values that correspond to a snowflake schema. Note 

that these parameters control both schema and data generation. 
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Remarks: 

- Since shared dimensions are possible, 



FTNB

i

iDIMNBDIMNBTOT
_

1

)(___ . 

- The cardinal of a fact table is usually lower or equal to the product of its dimensions' cardi-

nals. This is why we introduce the notion of density. A density rate of one indicates that all 

the possible combinations of the dimension primary keys are present in the fact table, which is 

very rare in real-life data warehouses. When density rate decreases, we progressively elimi-

nate some of these combinations (cf. Workload Generation). 

- This parameter helps control the size of the fact table, independently of the size of its dimen-

sions, which are defined by the HHLEVEL_SIZE and DIM_SFACTOR parameters (see be-

low).  

- Within a dimension, a given hierarchy level has normally a greater cardinality than the next 

level. For example, in a town-region-country hierarchy, the number of towns must be greater 

than the number of regions, which must be in turn greater than the number of countries. Fur-

thermore, there is often a significant scale factor between these cardinalities (e.g., one thou-

sand towns, one hundred regions, ten countries). Hence, we model the cardinality of hierarchy 

levels by assigning a “starting” cardinality to the highest level in the hierarchy 

(HHLEVEL_SIZE), and then by multiplying it by a predefined scale factor (DIM_SFACTOR) 

for each lower-level hierarchy. 

- The global size of the data warehouse is assessed at generation time so that the user retains 

full control over it. 

 

Generation Algorithm 

 

The instantiation of the DWEB metaschema into an actual benchmark schema is done in two 

steps: 

1. build the dimensions; 

2. build the fact tables. 

The pseudo-code for these two steps is provided in Figures 4 and 5, respectively. Each of 

these steps is further subdivided, for each dimension or each fact table, into generating its 

intention and extension. In addition, dimension hierarchies must be managed. Note that they 

are generated starting from the highest level of hierarchy. For instance, for our town-region-

country sample hierarchy, we build the country level first, then the region level, and eventual-
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ly the town level. Hence, tuples from a given hierarchy level can refer to tuples from the next 

level (that are already created) with the help of a foreign key. 

 

For i = 1 to TOT_NB_DIM do 

 previous_ptr = NIL 

 size = HHLEVEL_SIZE(i) 

 For j = 1 to NB_LEVELS(i) do 

  // Intention 

  h1 = New(Hierarchy_level) 

  h1.intention = Primary_key() 

  For k = 1 to NB_ATT(i,j) do 

   h1.intention = h1.intention 

     String_member() 

  End for 

  // Hierarchy management 

  h1.child = previous_ptr 

  h1.parent = NIL 

  If previous_ptr  NIL then 
   previous_ptr.parent = h1 

   // Foreign key 

   h1.intention = h1.intention 

     previous_ptr.intention.primary_key  
  End if 

  // Extension 

  h1.extension =  
  For k = 1 to size do 

   new_tuple = Integer_primary_key() 

   For l = 1 to NB_ATT(i,j) do 

    new_tuple = new_tuple  Random_string() 
   End for 

   If previous_ptr  NIL then 
    new_tuple = new_tuple 

      Random_key(previous_ptr) 
   End if 

   h1.extension = h1.extension  new_tuple 
  End for 

  previous_ptr = h1 

  size = size * DIM_SFACTOR(i) 

 End for 

 dim(i) = h1 // First (lowest) level of the hierarchy 

End for 

Figure 4: DWEB dimensions generation algorithm 

 

For i = 1 to TOT_NB_FT do 

 // Intention 

 ft(i).intention =  
 For k = 1 to NB_DIM(i) do 

  j = Random_dimension(ft(i)) 

  ft(i).intention = ft(i).intention 

    ft(i).dim(j).primary key 
 End for 

 For k to NB_MEAS(i) do 

  ft(i).intention = ft(i).intention 

    Float_measure() 
 End for 

 // Extension 

 ft(i).extension =  
 For j = 1 to NB_DIM(i) do // Cartesian product 

  ft(i).extension = ft(i).extension  

    ft(i).dim(j).primary key 
 End for 
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 to_delete = DENSITY(i) * |ft(i).extension| 

 For j = 1 to to_delete do 

  Random_delete(ft(i).extension) 

 End for 

 For j = 1 to |ft(i).extension| do 

 // With |ft(i).extension| updated 

  For k = 1 to NB_MEAS(i) do 

   Ft(i).extension.tuple(j).measure(k) 

    = Random_float() 

  End for 

 End for 

End for 

Figure 5: DWEB fact tables generation algorithm 

 

We use three main classes of functions and one procedure in these algorithms. 

1. Primary_key(), String_member() and Float_measure() return attribute names for pri-

mary keys, members in hierarchy levels, and measures in fact tables, respectively. These 

names are labeled sequentially and prefixed by the table's name (e.g., DIM1_1_DESCR1, 

DIM1_1_DESCR2...). 

2. Integer_primary_key(), Random_key(), Random_string() and Random_float() re-

turn sequential integers with respect to a given table (no duplicates are allowed), random in-

stances of the specified table's primary key (random values for a foreign key), random strings 

of fixed size (20 characters) selected from a precomputed referential of strings and prefixed 

by the corresponding attribute name, and random single-precision real numbers, respectively. 

3. Random_dimension() returns a dimension that is chosen among the existing dimensions 

that are not already describing the fact table in parameter. 

4. Random_delete() deletes one tuple at random from the extension of a table. 

Except in the Random_delete() procedure, where the random distribution is uniform, we use 

Gaussian random distributions to introduce a skew, so that some of the data, whether in the 

fact tables or the dimensions, are referenced more frequently than others as it is normally the 

case in real-life data warehouses. 

 

Remark: The way density is managed in Figure 5 is grossly non-optimal. We chose to present 

the algorithm that way for the sake of clarity, but the actual implementation does not create all 

the tuples from the cartesian product, and then delete some of them. It directly generates the 

right number of tuples by using the density rate as a probability for each tuple to be created. 

 

Workload Model 

 

In a data warehouse benchmark, the workload may be subdivided into: 



13 

1. a load of decision-support queries (mostly OLAP queries); 

2. the ETL (data generation and maintenance) process. 

To design DWEB's workload, we inspire both from TPC-DS' workload definition (which is 

very elaborate) and information regarding data warehouse performance from other sources 

(BMC, 2000; Greenfield, 2004b). However, TPC-DS' workload is quite complex and some-

how confusing. The reporting, ad-hoc decision-support and OLAP query classes are very sim-

ilar, for instance, but none of them include any specific OLAP operator such as Cube or 

Rollup. Since we want to meet Gray's simplicity criterion, we propose a simpler workload. In 

particular, we do not address the issue of nested queries for now. Furthermore, we also have 

to design a workload that is consistent with the variable nature of the DWEB data ware-

houses. 

We focus in this section on the definition of a query model that excludes update operations. 

The ETL and warehouse refreshing processes are addressed in the next section. 

 

Query Model 

 

The DWEB workload models two different classes of queries: purely decision-oriented que-

ries involving common OLAP operations, such as cube, roll-up, drill-down and slice and dice; 

and extraction queries (simple join queries). We define our generic query model (Figure 6) as 

a grammar that is a subset of the SQL-99 standard, which introduces much-needed analytical 

capabilities to relational database querying. This increases the ability to perform dynamic, 

analytic SQL queries. 

 

Query ::-  

Select ![<Attribute Clause> | <Aggregate 

Clause> | [<Attribute Clause>, 

<Aggregate Clause>]] 

From !<Table Clause> [<Where Clause> 

|| [<Group by Clause> * <Having 

Clause>]] 

Attribute Clause ::- Attribute name [[, <Attribute 

Clause>] | ] 

Aggregate Clause ::- ![Aggregate function name (At-

tribute name)] [As Alias] [[, 

<Aggregate Clause>] | ] 

Table Clause ::- Table name [[, <Table Clause>] | 

] 

Where Clause ::- Where ![<Condition Clause> | 

<Join Clause>| [<Condition 

Clause> And <Join Clause>]] 

Condition Clause ::- ![Attribute name <Comparison op-

erator> <Operand Clause>] [[<Log-

ical operator> <Condition 
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Clause>] | ] 

Operand Clause ::- [Attribute name | Attribute value 

| Attribute value list] 

Join Clause ::- ![Attribute name i = Attribute 

name j] [[And <Join Clause>] | ] 

Group by Clause ::- Group by [Cube | Rollup] <Attrib-

ute Clause> 

Having Clause ::- [Alias | Aggregate function name 

(Attribute name)] <Comparison 

operator> [Attribute name | At-

tribute value list] 

  

Key: The [ and ] brackets are delimiters. 

 !<A>: A is required. 

 *<A>: A is optional. 

 <A || B>: A or B. 

 <A | B>: A exclusive or B. 

 : empty clause. 

 SQL language elements are indicated in bold. 

Figure 6: DWEB query model 

 

Parameterization 

 

DWEB's workload parameters help users tailor the benchmark's load, which is also dependent 

from the warehouse schema, to their needs. Just like DWEB's database parameter set (cf. pre-

vious section), DWEB's workload parameter set (Table 3) has been designed with Gray's sim-

plicity criterion in mind. These parameters determine how the query model from Figure 6 is 

instantiated. These parameters help define workload size and complexity, by setting up the 

proportion of complex OLAP queries (i.e., the class of queries) in the workload , the number 

of aggregation operations, the presence of a Having clause in the query, or the number of sub-

sequent drill-down operations. 

 

Parameter name Meaning Default value 

NB_Q 
Approximate number of queries  

in the workload 
100 

AVG_NB_ATT 
Average number  

of selected attributes in a query 
5 

AVG_NB_RESTR 
Average number of restrictions 

in a query 
3 

PROB_OLAP 
Probability that the query type  

is OLAP 
0.9 

PROB_EXTRACT 
Probability that the query  

is an extraction query 

1 - 

PROB_OLAP 

AVG_NB_AGGREG 
Average number of aggregations  

in an OLAP query 
3 

PROB_CUBE 
Probability of an OLAP query  

to use the Cube operator 
0.3 

PROB_ROLLUP 
Probability of an OLAP query  

to use the Rollup operator 

1 - 

PROB_CUBE 

PROB_HAVING 
Probability of an OLAP query  

to include a Having clause 
0.2 
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AVG_NB_DD 
Average number of drill-downs 

after an OLAP query 
3 

Table 3: DWEB workload parameters 

 

Here, we have only a limited number of high-level parameters (eight parameters, since 

PROB_EXTRACT and PROB_ROLLUP are derived from PROB_OLAP and PROB_CUBE, 

respectively). Indeed, it cannot be envisaged to dive further into detail if the workload is as 

large as several hundred queries, which is quite typical.  

 

Remark: NB_Q is only an approximate number of queries because the number of drill-down 

operations after an OLAP query may vary. Hence we can stop generating queries only when 

we actually have generated as many or more queries than NB_Q. 

 

Generation Algorithm 

 

The pseudo-code of DWEB’s workload generation algorithm is presented in Figures 7a and 

7b. The algorithm's purpose is to generate a set of SQL-99 queries that can be directly execut-

ed on the synthetic data warehouse defined in the previous section. It is subdivided into two 

steps: 

1. generate an initial query that may be either an OLAP or an extraction (join) query; 

2. if the initial query is an OLAP query, execute a certain number of drill-down operations 

based on the first OLAP query. More precisely, each time a drill-down is performed, a mem-

ber from a lower level of dimension hierarchy is added to the attribute clause of the previous 

query. 

Step 1 is further subdivided into three substeps:  

1. the Select, From, and Where clauses of a query are generated simultaneously by randomly 

selecting a fact table and dimensions, including a hierarchy level within a given dimension 

hierarchy;  

2. the Where clause is supplemented with additional conditions;  

3. eventually, it is decided whether the query is an OLAP query or an extraction query. In the 

second case, the query is complete. In the first case, aggregate functions applied to measures 

of the fact table are added in the query, as well as a Group by clause that may include either 

the Cube or the Rollup operator. A Having clause may optionally be added in too. The aggre-

gate function we apply on measures is always Sum since it is the most common aggregate in 
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cubes. Furthermore, other aggregate functions bear similar time complexities, so they would 

not bring in any more insight in a performance study. 

 

n = 0 

While n < NB_Q do 

 // Step 1: Initial query 

 // Step 1.2: Select, From and Where clauses 

 i = Random_FT() // Fact table selection 

 attribute_list =  
 table_list = ft(i) 

 condition_list =  
 For k = 1 to Random_int(AVG_NB_ATT) do 

  // Dimension selection 

  j = Random_dimension(ft(i))  

  l = Random_int(1, ft(i).dim(j).nb_levels) 

  // Positioning on hierarchy level l 

  hl = ft(i).dim(j) // Current hierarchy level 

  m = 1 // Level counter 

  fk = ft(i).intention.primary_key.element(j) 

  // This foreign key corresponds to 

  // ft(i).dim(j).primary_key 

  While m < l and hl.child  NIL do 
   // Build join 

   table_list = table_list  hl 
   condition_list = condition_list 

     (fk = hl.intention.primary_key) 
   // Next level 

   fk = hl.intention.foreign_key 

   m = m + 1 

   hl = hl.child 

  End while 

  attribute_list = attribute_list 

    Random_attribute(hl.intention) 
 End for 

 // Step 1.2: Supplement Where clause 

 For k = 1 to Random_int(AVG_NB_RESTR) do 

  condition_list = condition_list 

    (Random_attribute(attribute_list) 
    = Random_string()) 

 End for 

 // Step 1.3: OLAP or extraction query selection 

 p1 = Random_float(0, 1) 

 If p1  PROB_OLAP then // OLAP query 
  // Aggregate clause 

  aggregate_list =  
  For k = 1 to Random_int(AVG_NB_AGGREG) do 

   aggregate_list = aggregate_list  

     (Random_measure(ft(i).intention) 
  End for 

                 ../.. 

Figure 7a: DWEB workload generation algorithm 

 

../.. 
  // Group by clause 

  group_by_list = attribute_list 

  p2 = Random_float(0, 1) 

  If p2  PROB_CUBE then  
   group_by_operator = CUBE 

  Else 

   group_by_operator = ROLLUP 

  End if 



17 

  // Having clause 

  P3 = Random_float(0, 1) 

  If p3  PROB_HAVING then  
   having_clause 

    = (Random_attribute(aggregate_list), , 
     Random_float()) 

  Else 

   having_clause =  
  End if 

 Else // Extraction query 

  group_by_list =  

  group_by_operator =  

  having_clause =  
 End if 

 // SQL query generation 

 Gen_query(attribute_list, aggregate_list, table_list, 

  condition_list, group_by_list, group_by_operator,  

  having_clause) 

 n = n + 1 

 // Step 2: Possible subsequent DRILL-DOWN queries 

 If p1  PROB_OLAP then 
  k = 0 

  While k < Random_int(AVG_NB_DD)  

   and hl.parent  NIL do 
   k = k + 1 

   hl = hl.parent 

   att = Random_attribute(hl.intention) 

   attribute_list = attribute_list  att 

   group_by_list = group_by_list  att 
   Gen_query(attribute_list, aggregate_list, 

   table_list, condition_list, group_by_list, 

   group_by_operator, having_clause) 

  End while 

  n = n + k 

 End if 

End while 

Figure 7b: DWEB workload generation algorithm (continued) 

 

We use three classes of functions and a procedure in this algorithm. 

1. Random_string() and Random_float() are the same functions than those already de-

scribed in the Database Generation section. However, we introduce the possibility for Ran-

dom_float() to use either a uniform or a Gaussian random distribution. This depends on the 

function parameters: either a range of values (uniform) or an average value (Gaussian). Final-

ly, we introduce the Random_int() function that behaves just like Random_float() but re-

turns integer values. 

2. Random_FT() and Random_dimension() help select a fact table or a dimension describing 

a given fact table, respectively. They both use a Gaussian random distribution, which intro-

duces an access skew at the fact table and dimension levels. Random_dimension() is also 

already described in the Database Generation section. 
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3. Random_attribute() and Random_measure() are very close in behavior. They return an 

attribute or a measure, respectively, from a table intention or a list of attributes. They both use 

a Gaussian random distribution. 

4. Gen_query() is the procedure that actually generates the SQL-99 code of the workload 

queries, given all the parameters that are needed to instantiate our query model. 

 

ETL Process 

 

When designing DWEB’s ETL process, we have to consider again the relevance vs. simplici-

ty tradeoff (cf. Gray’s criteria). Though the ETL phase may take up to 80% of the time devot-

ed to a data warehousing project, it would not be reasonable to include its full complexity in a 

benchmark tool. Hence, we balanced in favor of simplicity. However, we present here a first 

step toward including a full ETL phase into DWEB; extensions are definitely possible. 

 

Model 

 

Since the DWEB software is a standalone tool that generates data and workloads, we chose 

not to include an extraction phase in its ETL capability. Data updates are performed directly 

in the database to keep DWEB’s usage simple and minimize external file management. How-

ever, data updates could also easily be recorded into flat files before being applied, to simu-

late an extraction phase. 

We did not include any transformation in the process either, despite it is a very important 

phase in the ETL process. However, in a benchmark, such transformations are simulated to 

consume CPU time (this is the tactic adopted in TPC-DS). In DWEB, we consider that the 

processing time of various tests in the insert and modify procedures related to the loading 

phase might be considered as equivalent to simulating transformations. 

We thus focus on the loading phase. A data warehouse schema is built on two different con-

cepts: facts and dimensions. Updates might be insertions, modifications or deletions. Since 

data are normally historicized in a data warehouse, we do not consider deletions. Hence, we 

can identify four warehouse refreshing types for which we adopt specific strategies. 

1. Insertions in fact tables are simple. They involve few constraints at the schema level, save 

that we cannot use an existing primary key in the related fact table. To achieve an insertion, 

we randomly fetch one primary key in each dimension to build an aggregate fact table key, 

and then add random measure values to complete the fact. 
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2. Insertions in dimensions raise a new issue. They must be dispatched in all hierarchy levels. 

Hence, for each dimension, we seek to insert elements from the highest hierarchy level 

(coarsest granularity grain) into the lowest hierarchy level (finest granularity grain). New di-

mension members only need a new, unique primary key to be inserted in a given hierarchy 

level. 

3. Modifications in fact tables only necessitate randomly fetching an existing fact and modify-

ing its measure values. 

4. Modifications in dimensions must finally take dimension hierarchy levels in into account to 

avoid introducing inconsistencies in the hierarchy. 

 

Parameterization 

 

DWEB’s ETL parameters help users tune how the data warehouse is refreshed. Like the other 

parameters in DWEB, they have been designed with Gray's simplicity criterion in mind. 

These parameters direct how the ETL model is applied. They basically define refresh and in-

sertion/modification rates. We voluntarily define only a small number (three, since FRR and 

MR are derived from DRR and IR, respectively) of high-level parameters (Table 4). 

 

Parameter name Meaning Default value 

GRR Global refresh rate 0.01 

DRR Dimension refresh rate 0.05 

FRR Fact refresh rate 1 – DRR 

IR Insert rate 0.95 

MR Modification rate 1 – IR 

Table 4: DWEB ETL parameters 

 

GRR represents the total number of records from fact and dimension tables that must be re-

freshed (insertion and modifications included), with respect to current warehouse size. DRR 

and FRR control the proportion of these updates that are performed on dimension and fact 

tables, respectively. Finally, IR and MR control the proportion of insertions and modifications, 

respectively. 

 

Refresh Algorithms 
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The refresh phase in DWEB is actually achieved with the help of two refresh procedures, one 

for dimensions and one for fact tables. Their pseudo-code is presented in Figures 8 and 9, 

respectively. Both procedures follow the same principle: 

1. compute the number of tuples to insert or update with respect to parameters GRR, DRR, 

FRR, IR, and MR, as well as the total number of tuples in the warehouse GLOBAL_SIZE; 

2. insert or modify as many tuples in the corresponding table — modifications affect a ran-

domly selected tuple. Furthermore, dimension updates are dispatched on all hierarchy levels. 

 

For i = 1 to TOT_NB_DIM do 

 ins_nb = ((GLOBAL_SIZE * GRR * DRR * IR) 

  / TOT_NB_DIM) / NB_LEVELS(i) 

 mod_nb = ((GLOBAL_SIZE * GRR * DRR * MR)  

  / TOT_NB_DIM) / NB_LEVELS(i) 

 For j = NB_LEVELS(i) to 1 step -1 do 

  // Insertions 

  For k = 1 to ins_nb do 

   Insert_into_Dim(dim(i).level(j)) 

  End for 

  // Modifications 

  For k = 1 to mod_nb do 

   Modify_Dim(Random_Key(dim(i).level(j)) 

  End for 

 End for 

End for 

Figure 8: DWEB dimension refresh procedure 

 

For i = 1 to NB_FT do 

 For j = 1 to (GLOBAL_SIZE * GRR * FRR * IR)  

  / |ft(i).extension| do 

  Insert_into_FT(ft(i)) 

 End for 

 For j = 1 to (GLOBAL_SIZE * GRR * FRR * MR)  

  / |ft(i).extension| do 

  Modify_FT(Random_Key(ft(i)) 

 End for 

End for 

Figure 9: DWEB fact table refresh procedure 

 

We use two new classes of procedures in this algorithm.  

1. Insert_into_Dim() and Insert_into_FT() insert new tuples into dimension and fact 

tables, respectively. The main difference between these two procedures is that dimension in-

sertion manages foreign key selection for pointing to the next hierarchy level, whereas there is 

no such constraint in a fact table. 

2. Modify_Dim() and Modify_FT() modify one tuple, identified by its primary key, from a 

dimension or fact table, respectively. Primary keys are provided by the Random_key() func-

tion (cf. Database Model section), which returns random instances of the specified table's 

primary key. Modify_Dim() and Modify_FT() only differ by the updated attribute’s nature: 
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dimension members are strings, while fact measures are numerical. They are generated with 

the Random_string() and Random_float() functions, respectively (cf. Database Model sec-

tion). 

 

Execution Protocol 

 

Protocol 

 

DWEB’s test protocol is quite classical for a benchmark, and is actually a variation of TPC-

DS’. It is constituted of two distinct parts: 

1. a load test that consists in filling the data warehouse structure with data; 

2. a performance test that evaluates system response and that is further subdivided into two 

steps: 

2.1. a cold run in which the workload is applied onto the test warehouse once; 

2.2. a warm run that is replicated REPN times and that includes the warehouse refresh process 

and another execution of the workload. 

The pseudo-code for the performance test is presented in Figure 10. The main difference be-

tween DWEB’s and TPC-DS’ execution protocols is that DWEB’s warm run may be execut-

ed many times instead of just one. 

 

// Cold run 

etime[0] = time() 

Execute_Workload() 

etime[0] = time() – etime[0] 

// Warm run 

For i = 1 to REPN do 

 rtime[i] = time() 

 Execute_Refresh(GLOBAL_SIZE) 

 rtime[i] = time() – rtime[i] 

 etime[i] = time() 

 Execute_Workload() 

 etime[i] = time() – etime[i] 

End for 

Figure 10: Performance test algorithm 

 

Remark: The GRR parameter may be set to zero if users do not want to include warehouse 

refresh tests. 

 

Performance Metric 
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The performance metric we retained in DWEB is response time. It is computed separately for 

workload execution and data warehouse refreshing, so that any run time (e.g., cold run time, 

refresh time in warm run replication #i…) can be displayed. Global, average, minimum and 

maximum execution times are also computed, as well standard deviation. Note that this kind 

of atomic approach for assessing performance allows to derive any more complex, composite 

metrics, such as TPC-H’s and TPC-D’s, if necessary. 

 

DWEB TUTORIAL 

 

We present in this section a short tutorial that illustrates DWEB’s usage and shows how 

DWEB’s execution protocol is implemented in practice. DWEB is a Java application. Its main 

GUI (Graphical User Interface) is depicted in Figure 11. It is divided into three sec-

tions/panels: 

1. database connection: JDBC (Java Database Connectivity) connection to a database server 

and database; 

2. action: the actual benchmark interface that helps set parameters and launch tests; 

3. information: this window displays messages when an event or error occurs. 

Actually using DWEB through the “Action” panel is a four-step process. 
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Figure 11: DWEB GUI 

 

Data Warehouse Generation 

 

Clicking on the “Generate DW” command button helps set either the full range of low-level 

parameters or only the high-level parameters (Figure 12), which we recommend for most per-

formance tests. Then, the data warehouse’s (empty) structure is automatically created. 
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Figure 12: DWEB database parameterization 

 

Load Test 

 

The second subpanel in the “Action” panel features three command buttons. Since DWEB’s 

parameters might sound abstract, we provide through the “Info DW” command button an es-

timation of data warehouse size in megabytes before it is actually loaded. Hence, users can 

reset the parameters to better represent the kind of warehouse they need, if necessary. 

The “Load DW” command button actually launches the load test, whose status is displayed to 

the user (Figure 13), who can interrupt the process at any time. When the data warehouse is 

loaded, load time is displayed. 
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Figure 13: DWEB load test in process 

 

Finally, the “Reset DW” command button helps destroy the current data warehouse. Since 

table names are standard in DWEB, this feature helps avoiding name conflicts when generat-

ing a new data warehouse. If several warehouses need to be stored concurrently, several dif-

ferent database users must be created for this sake. 

 

Workload Generation 

 

Workload generation is simply achieved by clicking on the “Generate workload” command 

button, which triggers workload parameter setup (Figure 14) and save its queries into an ex-

ternal file, so that they can be reused. 
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Figure 14: DWEB workload parameterization 

 

Performance Test 

 

Finally, the “Start performance test” command button helps set the new ETL and protocol 

parameters (cf. previous section). They are then recapitulated in the performance test window 

(Figure 15) that actually allows launching benchmark execution. Every workload execution 

and refresh operation time is displayed and also recorded separately in a CSV (Comma-

Separated Values) file that can later be processed in a spreadsheet or any other application. 

Warm run total, average, minimum and maximum times, as well as standard deviation, for 

refresh operations, workload executions, and both (refresh + workload total), are computed. 

Performance tests may be reiterated any number of times, with or without generating a new 

workload each time. 
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Figure 15: DWEB performance test window 

 

CONCLUSION AND PERSPECTIVES 

 

We have mainly proposed DWEB, which is currently the only operational data warehouse 

benchmark to the best of our knowledge, to help data warehouse designers select among al-

ternate architectures and/or performance optimization techniques. However, it can also be 

used, as the TPC benchmarks, for sheer performance comparisons. It is indeed possible to 

save a given warehouse and its associated workload to run tests on different systems and/or 

with various optimization techniques. 

To satisfy the relevance and adaptability criteria, DWEB can generate various ad-hoc synthet-

ic data warehouses and their associated workloads. Popular data warehouse schemas, such as 
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star, snowflake, and constellation schemas, as well as much-used decision-support operators 

such as cube, roll-up or drill-down, are indeed supported by our tool. These features are pi-

loted by a full set of low-level parameters, but we have also proposed a series of high-level 

parameters that are limited in number, not to sacrifice too much Gray’s simplicity criterion. 

Finally, we have opted to implement DWEB with the Java language to satisfy the portability 

criterion. DWEB’s code is freely available on-line (3). 

We have illustrated sample usages of DWEB by evaluating the efficiency of several indexing 

techniques on various data warehouse configurations (Darmont et al., 2005; Darmont et al., 

2007). Though these experiments were not actually new, they helped us demonstrate DWEB’s 

relevance. We indeed obtained results that were consistent with previously published results 

regarding bitmap join indices (O’Neil & Graefe, 1995) and star-join indices (Bellatreche et 

al., 2002). We could underline again the crucial nature of indexing choices in data ware-

houses. Furthermore, since such choices depend on the warehouse’s architecture, we showed 

DWEB’s usefulness in a context where “mono-schema” benchmarks are not relevant. 

Our work opens up many perspectives for further developing and enhancing DWEB. First, the 

warehouse metamodel and query model are currently deliberately simple. They could defi-

nitely be extended to be more representative of real data warehouses, i.e., more relevant. For 

example, the warehouse metamodel could feature many-to-many relationships between di-

mensions and fact tables, and hierarchy levels that are shared by several dimensions. Our que-

ry model could also be extended with more complex queries such as nested queries that are 

common in OLAP usages. Similarly, our DWEB’s ETL feature focuses on the loading phase, 

and could be complemented by extraction and transformation capabilities. TPC-DS’ specifi-

cations and other existing studies (Labrinidis & Roussopoulos, 1998) could help us comple-

menting our own tool. 

We have also proposed a set of parameters for DWEB that suit both the models we developed 

and our expected usage of the benchmark. However, a formal validation would help select the 

soundest parameters. More experiments should also help us to evaluate the pertinence of our 

parameters and maybe propose sounder default values. Other parameters could also be con-

sidered, such as the domain cardinality of hierarchy attributes or the selectivity factors of re-

striction predicates in queries. This kind of information may indeed help designers to choose 

an architecture that supports some optimization techniques adequately. 

Finally, we only used response time as a performance metric. Other metrics must be envis-

aged, such as the metrics designed to measure the quality of data warehouse conceptual mod-
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els (Serrano et al., 2003; Serrano et al., 2004). Formally validating these metrics would also 

improve DWEB's usefulness. 
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(1) http://www.tpc.org 

 

(2) http://cgmlab.cs.dal.ca/downloadarea/datasets/ 

 

(3) http://bdd.univ-lyon2.fr/download/dweb.tgz 
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