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Abstract. Data warehouse architectural choices and optimization techniques are critical to decision 

support query performance. To facilitate these choices, the performance of the designed data ware-

house must be assessed, usually with benchmarks. These tools can either help system users compar-

ing the performances of different systems, or help system engineers testing the effect of various 

design choices. While the Transaction Processing Performance Council’s standard benchmarks ad-

dress the first point, they are not tunable enough to address the second one and fail to model differ-

ent data warehouse schemas. By contrast, our Data Warehouse Engineering Benchmark (DWEB) 

allows generating various ad-hoc synthetic data warehouses and workloads. DWEB is implemented 

as a Java free software that can be interfaced with most existing relational database management 

systems. The full specifications of DWEB, as well as experiments we performed to illustrate how 

our benchmark may be used, are provided in this paper. 

 

Keywords: Data warehouses, OLAP, Benchmarking, Performance evaluation, Data warehouse 

design. 

 

1. Introduction 

 

 When designing a data warehouse, choosing its architecture is crucial. Since it is very depend-

ant on the domain of application and the analysis objectives that are selected for decision support, 

different solutions are possible. In the ROLAP (Relational On-Line Analytical Process) environ-

ment we consider (Chen et al., 2006), the most popular solutions are by far star, snowflake, and 

constellation schemas (Inmon, 2002; Kimball & Ross, 2002), and other modelling possibilities do 

exist. This choice of architecture is not neutral: it always has advantages and drawbacks and greatly 

influences the response time of decision support queries. For example, a snowflake schema with 

hierarchical dimensions might improve analysis power (namely, when most of the queries are done 

on the highest hierarchy levels), but induces many more costly join operations than a star schema 

without hierarchies. Once the architecture is selected, various optimization techniques such as in-

dexing or materializing views further influence querying and refreshing performance. This is espe-



cially critical when performing complex tasks, such as computing cubes (Taniar & Rahayu, 2002; 

Taniar & Tan, 2002; Tan et al., 2003; Taniar et al., 2004) or performing data mining (Tjioe & 

Taniar, 2005). Again, it is a matter of trade-off between the improvement brought by a given tech-

nique and its overhead in terms of maintenance time and additional disk space; and also between 

different optimization techniques that may cohabit. 

 To help users make these critical choices of architecture and optimization techniques, the per-

formance of the designed data warehouse needs to be assessed. However, evaluating data warehous-

ing and decision support technologies is an intricate task. Though pertinent, general advice is avail-

able, notably on-line (Pendse, 2003; Greenfield, 2004a), more quantitative elements regarding sheer 

performance are scarce. Thus, we advocate for the use of adapted benchmarks. A benchmark may 

be defined as a database model and a workload model (set of operations to execute on the database). 

Different goals may be achieved by using a benchmark: (1) compare the performances of various 

systems in a given set of experimental conditions (users); (2) evaluate the impact of architectural 

choices or optimization techniques on the performances of one given system (system designers). 

 The Transaction Processing Performance Council (TPC1), a non-profit organization, defines 

standard benchmarks and publishes objective and verifiable performance evaluations to the indus-

try. These benchmarks mainly aim at the first benchmarking goal we identified above. However, 

these benchmarks only model one fixed type of database and they are not very tunable: the only 

parameter that defines their database is a scale factor setting its size. Nevertheless, in a development 

context, it is interesting to test a solution (an indexing strategy, for instance) using various database 

configurations. Furthermore, though there is an ongoing effort at the TPC to design a data ware-

house benchmark, the current TPC decision support benchmarks do not properly model a dimen-

sional, star-like schema. They do not address specific warehousing issues such as the ETL (Extract, 

Transform, Load) process or OLAP (On-Line Analytical Processing) querying either. 

 Thus, we have proposed a new data warehouse benchmark named DWEB: the Data Warehouse 

Engineering Benchmark (Darmont et al., 2005a). DWEB helps generating ad-hoc synthetic data 

warehouses (modelled as star, snowflake, or constellation schemas) and workloads, mainly for en-

gineering needs (second benchmarking objective). Thus, DWEB may be viewed more like a 

benchmark generator than an actual, single benchmark. It is indeed very important to achieve the 

different kinds of schemas that are used in data warehouses, and to allow designers to select the 

precise architecture they need to evaluate. This paper expands our previous work along three main 

axes. First, we present a complete overview of the existing data warehouse benchmarks in this pa-

per. Second, we provide here the full specifications for DWEB, including all its parameters, our 

query model and the pseudo-code for database and workload generation. We also better detail 

                                                           
1 http://www.tpc.org 



DWEB's implementation. Third, we present a new illustration of how our benchmark can be used 

by evaluating the performance of several index configurations on three test data warehouses. 

 The remainder of this paper is organized as follows. First, we provide a comprehensive over-

view of the state of the art regarding decision support benchmarks in Section 2. Then, we motivate 

the need for a new data warehouse benchmark in Section 3. We detail DWEB's database and work-

load in Sections 4 and 5, respectively. We also present our implementation of DWEB in Section 6. 

We discuss our sample experiments with DWEB in Section 7, and finally conclude this paper and 

provide future research directions in Section 8. 

 

2. Existing decision support benchmarks 

 

 To the best of our knowledge, relatively few decision support benchmarks have been designed 

out of the TPC. Some do exist, but their specification is sometimes not fully published (Demarest, 

1995). The most notable is presumably the OLAP APB-1 benchmark, which was issued in 1998 by 

the OLAP council, a now inactive organization founded by four OLAP vendors. APB-1 has been 

quite extensively used in the late nineties. Its data warehouse schema is architectured around four 

dimensions: Customer, Product, Channel and Time. Its workload of ten queries is aimed at sale 

forecasting. APB-1 is quite simple and proved limited, since it is not “differentiated to reflect the 

hurdles that are specific to different industries and functions” (Thomsen, 1998). Finally, some 

OLAP datasets are also available on-line2, but they do not qualify as benchmarks, being only raw 

databases (chiefly, no workload is provided). 

 In the remainder of this section, we focus more particularly on the TPC benchmarks. The TPC-

D benchmark (Ballinger, 1993; Bhashyam, 1996; TPC, 1998) appeared in the mid-nineties, and 

forms the base of TPC-H and TPC-R that have replaced it (Poess & Floyd, 2000; TPC, 2003). TPC-

H and TPC-R are actually identical, only their usage varies. TPC-H is for ad-hoc querying (queries 

are not known in advance and optimizations are forbidden), while TPC-R is for reporting (queries 

are known in advance and optimizations are allowed). TPC-H is currently the only decision support 

benchmark supported by the TPC. TPC-H and TPC-R exploit the same relational database schema 

as TPC-D: a classical product-order-supplier model (represented as a UML class diagram in Fig-

ure 1); and the workload from TPC-D supplemented with five new queries. This workload is consti-

tuted of twenty-two SQL-92 parameterized, decision-oriented queries labelled Q1 to Q22; and two 

refresh functions RF1 and RF2 that essentially insert and delete tuples in the ORDER and LINEI-

TEM tables. 

 



 

Figure 1: TPC-D, TPC-H, and TPC-R database schema 

 

 The query parameters are substituted with the help of a random function following a uniform 

distribution. Finally, the protocol for running TPC-H or TPC-R includes a load test and a perfor-

mance test (executed twice), which is further subdivided into a power test and a throughput test. 

Three primary metrics describe the results in terms of power, throughput, and a composition of the 

two. Power and throughput are respectively the geometric and arithmetic average of database size 

divided by execution time. 

 TPC-DS (Poess et al., 2002), which is currently under development, is the designated successor 

of TPC-H, and more clearly models a data warehouse. TPC-DS' database schema, whose fact tables 

are represented in Figure 2, models the decision support functions of a retail product supplier as 

several snowflake schemas. Catalog and web sales and returns are interrelated, while store man-

agement is independent. This model also includes fifteen dimensions that are shared by the fact ta-

bles. Thus, the whole model is a constellation schema. 

 TPC-DS' workload is made of four classes of queries: reporting queries, ad-hoc decision sup-

port queries, interactive OLAP queries, and data extraction queries. A set of about five hundred 

queries is generated from query templates written in SQL-99 – with OLAP extensions (Maniatis et 

al., 2005). Substitutions on the templates are operated using non-uniform random distributions. The 

data warehouse maintenance process includes a full ETL process and a specific treatment of the 

dimensions. For instance, historical dimensions preserve history as new dimension entries are add-

ed, while non-historical dimensions do not store aged data any more. Finally, the execution model 
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of TPC-DS consists of four steps: a load test, a query run, a data maintenance run, and another que-

ry run. A single throughput metric is proposed, which takes the query and maintenance runs into 

account. 

 

 

Figure 2: TPC-DS data warehouse schema 

 

3. Motivation 

 

 Our first motivation to design a data warehouse benchmark is our need to evaluate the efficien-

cy of performance optimization techniques (such as automatic index and materialized view selec-

tion techniques) we have been developing for several years. To the best of our knowledge, none of 

the existing data warehouse benchmarks suits our needs. APB-1’s schema is fixed, while we need to 

test our performance optimization techniques on various data warehouse configurations. Further-

more, it is no longer supported and somewhat difficult to find. TPC-H's database schema, which is 

inherited from the older and obsolete benchmark TPC-D, is not a dimensional schema such as the 

typical star schema and its derivatives. Furthermore, its workload, though decision-oriented, does 

not include explicit OLAP queries either. This benchmark is implicitly considered obsolete by the 

TPC that has issued some specifications for its successor: TPC-DS. However, TPC-DS has been 

under development for three years now and is not completed yet. This might be because of its high 

complexity, especially at the ETL and workload levels. 

 Furthermore, although the TPC decision support benchmarks are scalable according to the def-

inition of Gray (1993), their schema is fixed. For instance, TPC-DS' constellation schema cannot 

easily be simplified into a simple star schema. It must be used “as is”. Different ad-hoc configura-

tions are not possible. Furthermore, there is only one parameter to define the database, the Scale 

Factor (SF), which sets up its size (from 1 to 100,000 GB). The user cannot control the size of the 

dimensions and the fact tables separately, for instance. Finally, the user has no control on the work-

load's definition. The number of generated queries directly depends on SF in TPC-DS, for example. 

 Eventually, in a context where data warehouse architectures and decision support workloads 

depend a lot on the domain of application, it is very important that designers who wish to evaluate 

the impact of architectural choices or optimization techniques on global performance can choose 



and/or compare between several configurations. The TPC benchmarks, which aim at standardized 

results and propose only one configuration of warehouse schema, are not well adapted to this pur-

pose. TPC-DS is indeed able to evaluate the performance of optimization techniques, but it cannot 

test their impact on various choices of data warehouse architectures. Generating particular data 

warehouse configurations (e.g., large-volume dimensions) or ad-hoc query workloads is not possi-

ble either, whereas it could be an interesting feature for a data warehouse benchmark. 

 For all these reasons, we decided to design a full data warehouse benchmark that would be able 

to model various configurations of database and workload, while being simpler to develop than 

TPC-DS. In this context (variable architecture, variable size), using a real-life benchmark is not an 

option. Hence, we designed DWEB for generating various synthetic data warehouses and work-

loads, which could be individually viewed as full benchmarks. 

 

4. DWEB database 

 

4.1. Schema 

 

 Our design objective for DWEB is to be able to model the different kinds of data warehouse 

architectures that are popular within a ROLAP environment: classical star schemas, snowflake 

schemas with hierarchical dimensions, and constellation schemas with multiple fact tables and 

shared dimensions. To achieve this goal, we propose a data warehouse metamodel (represented as a 

UML class diagram in Figure 3) that can be instantiated into these different schemas. 

 We view this metamodel as a middle ground between the multidimensional metamodel from 

the Common Warehouse Metamodel (CWM) (OMG, 2003; Poole et al., 2003) and the eventual 

benchmark model. Our metamodel may actually be viewed as an instance of the CWM metamodel, 

which could be qualified as a meta-metamodel in our context. The upper part of Figure 3 describes 

a data warehouse (or a datamart, if a datamart is viewed as a small, dedicated data warehouse) as 

constituted of one or several fact tables that are each described by several dimensions. Each dimen-

sion may also describe several fact tables (shared dimensions). Each dimension may be constituted 

of one or several hierarchies made of different levels. There can be only one level if the dimension 

is not a hierarchy. Both fact tables and dimension hierarchy levels are relational tables, which are 

modelled in the lower part of Figure 3. Classically, a table or relation is defined in intention by its 

attributes and in extension by its tuples or rows. At the intersection of a given attribute and a given 

tuple lies the value of this attribute in this tuple. 

 



 
Figure 3: DWEB data warehouse metaschema 

 

 Our metamodel is quite simple. It is sufficient to model the data warehouse schemas we aim at 

(star, snowflake, and constellation schemas), but it is limited and cannot model some particularities 

that are found in real-life warehouses, such as many-to-many relationships between facts and di-

mensions, or hierarchy levels shared by several hierarchies. This is currently a deliberate choice, but 

the metamodel might be extended in the future. 

 

4.2. Parameterization 

 

 DWEB's database parameters help users selecting the data warehouse architecture they need in 

a given context. They are aimed at parameterizing the instantiation of the metaschema to produce an 

actual data warehouse schema. When designing them, we try to meet the four key criteria that make 

a “good” benchmark, as defined by Gray (1993): relevance, the benchmark must answer our engi-

neering needs (as expressed in Section 1); portability, the benchmark must be easy to implement on 

different systems; scalability, it must be possible to benchmark small and large databases, and to 

scale up the benchmark; and simplicity, the benchmark must be understandable, otherwise it will not 

be credible nor used. 

 Relevance and simplicity are clearly two orthogonal goals. Introducing too few parameters re-

duces the model's expressiveness, while introducing too many parameters makes it difficult to ap-

prehend by potential users. Furthermore, few of these parameters are likely to be used in practice. In 

parallel, the generation complexity of the instantiated schema must be mastered. To solve this di-

lemma, we capitalize on the experience of designing the OCB object-oriented database benchmark 



(Darmont & Schneider, 2000). OCB is generic and able to model all the other existing object-

oriented database benchmarks, but it is controlled by too many parameters, few of which are used in 

practice. Hence, we propose to divide the parameter set into two subsets. 

 The first subset of so-called low-level parameters allows an advanced user to control every-

thing about the data warehouse generation (Table 1). However, the number of low-level parameters 

can increase dramatically when the schema gets larger. For instance, if there are several fact tables, 

all their characteristics, including dimensions and their own characteristics, must be defined for 

each fact table. 

 

Parameter name Meaning 

NB_FT Number of fact tables 

NB_DIM(f) Number of dimensions describing fact table #f 

TOT_NB_DIM Total number of dimensions 

NB_MEAS(f) Number of measures in fact table #f 

DENSITY(f) Density rate in fact table #f 

NB_LEVELS(d) Number of hierarchy levels in dimension #d 

NB_ATT(d,h) Number of attributes in hierarchy level #h of dimension #d 

HHLEVEL_SIZE(d) Cardinality of the highest hierarchy level of dimension #d 

DIM_SFACTOR(d) Size scale factor in the hierarchy levels of dimension #d 

Table 1: DWEB warehouse low-level parameters 

 

 Thus, we designed a layer above with much fewer parameters that may be easily understood 

and set up (Table 2). More precisely, these high-level parameters are average values for the low-

level parameters. At database generation time, the high-level parameters are exploited by random 

functions (following a Gaussian distribution) to automatically set up the low-level parameters. Fi-

nally, unlike the number of low-level parameters, the number of high-level parameters always re-

mains constant and reasonable (less than ten parameters). 

 

Parameter name Meaning Default value 

AVG_NB_FT Average number of fact tables 1 

AVG_NB_DIM Average number of dimensions per fact table 5 

AVG_TOT_NB_DIM Average total number of dimensions 5 

AVG_NB_MEAS Average number of measures in fact tables 5 

AVG_DENSITY Average density rate in fact tables 0.6 

AVG_NB_LEVELS Average number of hierarchy levels in dimensions 3 

AVG_NB_ATT Average number of attributes in hierarchy levels 5 

AVG_HHLEVEL_SIZE Average cardinality of the highest hierarchy levels 10 

DIM_SFACTOR Average size scale factor within hierarchy levels 10 

Table 2: DWEB warehouse high-level parameters 

 

 Users may choose to set up either the full set of low-level parameters, or only the high-level 

parameters, for which we propose default values that correspond to a snowflake schema. Note that 

these parameters control both schema and data generation. 



 

Remarks: 

 Since shared dimensions are possible, 



FTNB

i

iDIMNBDIMNBTOT
_

1

)(___ . 

 The cardinal of a fact table is usually lower or equal to the product of its dimensions' cardi-

nals. This is why we introduce the notion of density. A density rate of one indicates that all 

the possible combinations of the dimension primary keys are present in the fact table. When 

the density rate decreases, we progressively eliminate some of these combinations (see Sec-

tion 4.3). 

 This parameter helps controlling the size of the fact table, independently of the size of its 

dimensions, which are defined by the HHLEVEL_SIZE and DIM_SFACTOR parameters 

(see below).  

 Within a dimension, a given hierarchy level normally has a greater cardinality than the next 

level. For example, in a town-region-country hierarchy, the number of towns must be greater 

than the number of regions, which must be in turn greater than the number of countries. Fur-

thermore, there is often a significant scale factor between these cardinalities (e.g., one thou-

sand towns, one hundred regions, ten countries). Hence, we model the cardinality of hierar-

chy levels by assigning a “starting” cardinality to the highest level in the hierarchy 

(HHLEVEL_SIZE), and then by multiplying it by a predefined scale factor 

(DIM_SFACTOR) for each lower-level hierarchy. 

 The global size of the data warehouse is assessed at generation time (see Section 6) so that 

the user retains full control over it. 

 

4.3. Generation algorithm 

 

 The instantiation of the DWEB metaschema into an actual benchmark schema is done in two 

steps: (1) build the dimensions; (2) build the fact tables. The pseudo-code for these two steps is pro-

vided in Figures 4 and 5, respectively. Each of these steps is further subdivided, for each dimension 

or each fact table, into generating its intention and extension. In addition, hierarchies of dimensions 

must be managed. Note that they are generated starting from the highest level of hierarchy. For in-

stance, for our town-region-country sample hierarchy, we build the country level first, then the re-

gion level, and eventually the town level. Hence, tuples from a given hierarchy level can refer to 

tuples from the next level (that are already created) with the help of a foreign key. 

 

 



For i = 1 to TOT_NB_DIM do 

 previous_ptr = NIL 

 size = HHLEVEL_SIZE(i) 

 For j = 1 to NB_LEVELS(i) do 

  // Intention 

  h1 = New(Hierarchy_level) 

  h1.intention = Primary_key() 

  For k = 1 to NB_ATT(i,j) do 

   h1.intention = h1.intention  String_descriptor() 
  End for 

  // Hierarchy management 

  h1.child = previous_ptr 

  h1.parent = NIL 

  If previous_ptr  NIL then 
   previous_ptr.parent = h1 

   h1.intention = h1.intention 

     previous_ptr.intention.primary_key // Foreign key 

  End if 

  // Extension 

  h1.extension =  
  For k = 1 to size do 

   new_tuple = Integer_primary_key() 

   For l = 1 to NB_ATT(i,j) do 

    new_tuple = new_tuple  Random_string() 
   End for 

   If previous_ptr  NIL then 

    new_tuple = new_tuple  Random_key(previous_ptr) 
   End if 

   h1.extension = h1.extension  new_tuple 
  End for 

  previous_ptr = h1 

  size = size * DIM_SFACTOR(i) 

 End for 

 dim(i) = h1 // First (lowest) level of the hierarchy 

End for 

Figure 4: DWEB dimensions generation algorithm 

 

For i = 1 to TOT_NB_FT do 

 // Intention 

 ft(i).intention =  
 For k = 1 to NB_DIM(i) do 

  j = Random_dimension(ft(i)) 

  ft(i).intention = ft(i).intention  ft(i).dim(j).primary key 
 End for 

 For k to NB_MEAS(i) do 

  ft(i).intention = ft(i).intention  Float_measure() 

 End for 

 // Extension 

 ft(i).extension =  
 For j = 1 to NB_DIM(i) do // Cartesian product 

  ft(i).extension = ft(i).extension  ft(i).dim(j).primary key 
 End for 

 to_delete = DENSITY(i) * |ft(i).extension)| 

 For j = 1 to to_delete do 

  Random_delete(ft(i).extension) 

 End for 

 For j = 1 to |ft(i).extension)| do // With |ft(i).extension)| updated 

  For k = 1 to NB_MEAS(i) do 

   Ft(i).extension.tuple(j).measure(k) = Random_float() 

  End for 

 End for 

End for 

Figure 5: DWEB fact tables generation algorithm 

 



 We use three main classes of functions and one procedure in these algorithms. 

1. Primary_key(), String_descriptor() and Float_measure() return attribute names for 

primary keys, descriptors in hierarchy levels, and measures in fact tables, respectively. 

These names are labelled sequentially and prefixed by the table's name (e.g., 

DIM1_1_DESCR1, DIM1_1_DESCR2...). 

2. Integer_primary_key(), Random_key(), Random_string() and Random_float() return 

sequential integers with respect to a given table (no duplicates are allowed), random instanc-

es of the specified table's primary key (random values for a foreign key), random strings of 

fixed size (20 characters) selected from a precomputed referential of strings and prefixed by 

the corresponding attribute name, and random single-precision real numbers, respectively. 

3. Random_dimension() returns a dimension that is chosen among the existing dimensions 

that are not already describing the fact table in parameter. 

4. Random_delete() deletes one tuple at random from the extension of a table. 

 Except in the Random_delete() procedure, where the random distribution is uniform, we use 

Gaussian random distributions to introduce a skew, so that some of the data, whether in the fact 

tables or the dimensions, are referenced more frequently than others as it is normally the case in 

real-life data warehouses. 

 

Remark: The way density is managed in Figure 5 is grossly non-optimal. We chose to present the 

algorithm that way for the sake of clarity, but the actual implementation does not create all the tu-

ples from the Cartesian product, and then delete some of them. It directly generates the right num-

ber of tuples by using the density rate as a probability for each tuple to be created. 

 

5. DWEB workload 

 

 In a data warehouse benchmark, the workload may be subdivided into: (1) a load of decision 

support queries (mostly OLAP queries); (2) the ETL (data generation and maintenance) process. To 

design DWEB's workload, we inspire both from TPC-DS' workload definition (which is very elabo-

rate) and information regarding data warehouse performance from other sources (BMC, 2000; 

Greenfield, 2004b). However, TPC-DS' workload is quite complex and somehow confusing. The 

reporting, ad-hoc decision support and OLAP query classes are very similar, for instance, but none 

of them include any specific OLAP operator such as Cube or Rollup (Tan et al., 2004). Since we 

want to meet Gray's simplicity criterion, we propose a simpler workload. In particular, we do not 

address the issue of nested queries for now. Furthermore, we also have to design a workload that is 

consistent with the variable nature of the DWEB data warehouses. 



 We also, in a first step, mainly focus on the definition of a query model that excludes update 

operations. Modelling the full ETL and warehouse refreshing processes is a complex task requiring 

processes that are out of the scope of this work (Schlesinger et al., 2005). Hence, we postpone this 

for now. We consider that the current DWEB specifications provide a raw loading evaluation 

framework. The DWEB database may indeed be generated into flat files, and then loaded into a data 

warehouse using the ETL tools provided by the system. 

 

5.1. Query model 

 

 The DWEB workload models two different classes of queries: purely decision-oriented queries 

involving common OLAP operations, such as cube, roll-up, drill down and slice and dice; and ex 

traction queries (simple join queries). We define our generic query model (Figure 6) as a grammar 

that is a subset of the SQL-99 standard, which introduces much-needed analytical capabilities to 

relational database querying. This increases the ability to perform dynamic, analytic SQL queries. 

 

Query ::-  

  

Select ![<Attribute Clause> | <Aggregate Clause> 

 | [<Attribute Clause>, <Aggregate Clause>]] 

From !<Table Clause> [<Where Clause>  

 || [<Group by Clause> * <Having Clause>]] 

  

Attribute Clause ::- Attribute name [[, <Attribute Clause>] | ] 
Aggregate Clause ::- ![Aggregate function name (Attribute name)] [As Alias] 

 [[, <Aggregate Clause>] | ] 
  

Table Clause ::- Table name [[, <Table Clause>] | ] 
  

Where Clause ::- Where ![<Condition Clause> | <Join Clause> 

 | [<Condition Clause> And <Join Clause>]] 

Condition Clause ::- ![Attribute name <Comparison operator> <Operand Clause>] 

 [[<Logical operator> <Condition Clause>] | ] 
Operand Clause ::- [Attribute name | Attribute value | Attribute value list] 

Join Clause ::- ![Attribute name i = Attribute name j] 

 [[And <Join Clause>] | ] 

  

Group by Clause ::- Group by [Cube | Rollup] <Attribute Clause> 

Having Clause ::- [Alias | Aggregate function name (Attribute name)] 

 <Comparison operator> [Attribute name | Attribute value list] 

  

Key: The [ and ] brackets are delimiters. 

 !<A>: A is required. 

 *<A>: A is optional. 

 <A || B>: A or B. 

 <A | B>: A exclusive or B. 

 : empty clause. 

 SQL language elements are indicated in bold. 

Figure 6: DWEB query model 

5.2. Parameterization 

 



 DWEB's workload parameters help users tailoring the benchmark's load, which is also depend-

ent from the warehouse schema, to their needs. Just like DWEB's database parameter set (Sec-

tion 4.2), DWEB's workload parameter set (Table 3) has been designed with Gray's simplicity crite-

rion in mind. These parameters determine how the query model from Figure 6 is instantiated. These 

parameters help defining the workload's size and complexity, by setting up the proportion of com-

plex OLAP queries (i.e., the class of queries) in the workload , the number of aggregation opera-

tions, the presence of a Having clause in the query, or the number of subsequent drill down opera-

tions. 

 Here, we have only a limited number of high-level parameters (eight parameters, since 

PROB_EXTRACT and PROB_ROLLUP are derived from PROB_OLAP and PROB_CUBE, respec-

tively). Indeed, it cannot be envisaged to dive further into detail if the workload is as large as sever-

al hundred queries, which is quite typical.  

 

Parameter name Meaning Default value 

NB_Q Approximate number of queries in the workload 100 

AVG_NB_ATT Average number of selected attributes in a query 5 

AVG_NB_RESTR Average number of restrictions in a query 3 

PROB_OLAP Probability that the query type is OLAP 0.9 

PROB_EXTRACT Probability that the query is an extraction query 1 - PROB_OLAP 

AVG_NB_AGGREG Average number of aggregations in an OLAP query 3 

PROB_CUBE Probability of an OLAP query to use the Cube operator 0.3 

PROB_ROLLUP Probability of an OLAP query to use the Rollup operator 1 - PROB_CUBE 

PROB_HAVING Probability of an OLAP query to include an Having clause 0.2 

AVG_NB_DD Average number of drill downs after an OLAP query 3 

Table 3: DWEB workload parameters 

 

Remark: NB_Q is only an approximate number of queries because the number of drill down opera-

tions after an OLAP query may vary. Hence we can stop generating queries only when we actually 

have generated as many or more queries than NB_Q. 

 

5.3. Generation algorithm 

 

 The pseudo-code of DWEB's workload generation algorithm is presented in Figure 7. The algo-

rithm's purpose is to generate a set of SQL-99 queries that can be directly executed on the synthetic 

data warehouse defined in Section 4. It is subdivided into two steps: (1) generate an initial query 

that may either be an OLAP or an extraction (join) query; (2) if the initial query is an OLAP query, 

execute a certain number of drill down operations based on the first OLAP query. More precisely, 

each time a drill down is performed, an attribute from a lower level of dimension hierarchy is added 

to the attribute clause of the previous query. 



 Step 1 is further subdivided into three substeps: (1) the Select, From, and Where clauses of a 

query are generated simultaneously by randomly selecting a fact table and dimensions, including a 

hierarchy level within a given dimension hierarchy; (2) the Where clause is supplemented with ad-

ditional conditions; (3) eventually, it is decided whether the query is an OLAP query or an extrac-

tion query. In the second case, the query is complete. In the first case, aggregate functions applied 

to measures of the fact table are added in the query, as well as a Group by clause that may include 

either the Cube or the Rollup operator. A Having clause may optionally be added in too. The aggre-

gate function we apply on measures is always Sum since it is the most common aggregate in cubes. 

Furthermore, other aggregate functions bear similar time complexities, so they would not bring in 

any more insight in a performance study. 

 

n = 0 

While n < NB_Q do 

 // Step 1: Initial query 

 // Step 1.2: Select, From and Where clauses 

 i = Random_FT() // Fact table selection 

 attribute_list =  
 table_list = ft(i) 

 condition_list =  
 For k = 1 to Random_int(AVG_NB_ATT) do 

  j = Random_dimension(ft(i)) // Dimension selection 

  l = Random_int(1, ft(i).dim(j).nb_levels) 

  // Positioning on hierarchy level l 

  hl = ft(i).dim(j) // Current hierarchy level 

  m = 1 // Level counter 

  fk = ft(i).intention.primary_key.element(j) 

  // This foreign key corresponds to ft(i).dim(j).primary_key 

  While m < l and hl.child  NIL do 
   // Build join 

   table_list = table_list  hl 
   condition_list = condition_list 

     (fk = hl.intention.primary_key) 
   // Next level 

   fk = hl.intention.foreign_key 

   m = m + 1 

   hl = hl.child 

  End while 

  attribute_list = attribute_list  Random_attribute(hl.intention) 
 End for 

 // Step 1.2: Supplement Where clause 

 For k = 1 to Random_int(AVG_NB_RESTR) do 

  condition_list = condition_list 

    (Random_attribute(attribute_list) = Random_string()) 
 End for 

 // Step 1.3: OLAP or extraction query selection 

 p1 = Random_float(0, 1) 

 If p1  PROB_OLAP then // OLAP query 
  // Aggregate clause 

  aggregate_list =  
  For k = 1 to Random_int(AVG_NB_AGGREG) do 

   aggregate_list = aggregate_list  

     (Random_measure(ft(i).intention) 
  End for 

  // Group by clause 

  group_by_list = attribute_list 

  p2 = Random_float(0, 1) 

  If p2  PROB_CUBE then  
   group_by_operator = CUBE 



  Else 

   group_by_operator = ROLLUP 

  End if 

  // Having clause 

  P3 = Random_float(0, 1) 

  If p3  PROB_HAVING then  
   having_clause 

    = (Random_attribute(aggregate_list), , Random_float()) 
  Else 

   having_clause =  
  End if 

 Else // Extraction query 

  group_by_list =  

  group_by_operator =  

  having_clause =  
 End if 

 // SQL query generation 

 Gen_query(attribute_list, aggregate_list, table_list, condition_list, 

  group_by_list, group_by_operator, having_clause) 

 n = n + 1 

 // Step 2: Possible subsequent DRILL DOWN queries 

 If p1  PROB_OLAP then 
  k = 0 

  While k < Random_int(AVG_NB_DD) and hl.parent  NIL do 
   k = k + 1 

   hl = hl.parent 

   att = Random_attribute(hl.intention) 

   attribute_list = attribute_list  att 

   group_by_list = group_by_list  att 
   Gen_query(attribute_list, aggregate_list, table_list, 

    condition_list,  group_by_list, group_by_operator,  

    having_clause) 

  End while 

  n = n + k 

 End if 

End while 

Figure 7: DWEB workload generation algorithm 

 

 We use three classes of functions and a procedure in this algorithm. 

1. Random_string() and Random_float() are the same functions than those already de-

scribed in Section 4.3. However, we introduce the possibility for Random_float() to use ei-

ther a uniform or a Gaussian random distribution. This depends on the function parameters: 

either a range of values (uniform) or an average value (Gaussian). Finally, we introduce the 

Random_int() function that behaves just like Random_float() but returns integer values. 

2. Random_FT() and Random_dimension() help selecting a fact table or a dimension describ-

ing a given fact table, respectively. They both use a Gaussian random distribution, which in-

troduces an access skew at the fact table and dimension levels. Random_dimension() is also 

already described in Section 4.3. 

3. Random_attribute() and Random_measure() are very close in behaviour. They return an 

attribute or a measure, respectively, from a table intention or a list of attributes. They both 

use a Gaussian random distribution. 



4. Gen_query() is the procedure that actually generates the SQL-99 code of the workload que-

ries, given all the parameters that are needed to instantiate our query model. 

 

6. DWEB implementation 

 

 DWEB is implemented as a Java software. We selected the Java language to meet Gray's port-

ability requirement. The current version of our prototype is able to generate star, snowflake, and 

constellation schemas, and suitable workloads for these schemas. Its only limitation with respect to 

our metamodel is that it cannot generate several distinct hierarchies for the same dimension. Fur-

thermore, since DWEB's parameters might sound abstract, our prototype provides an estimation of 

the data warehouse size in megabytes after they are set up and before the database is generated. 

Hence, users can adjust the parameters to better represent the kind of warehouse they need.  

 The interface of our Java application is actually constituted of two GUIs (Graphical User Inter-

faces). The first one is the Generator, the core of DWEB. It actually implements all the algorithms 

provided in Sections 4.3 and 5.3 and helps selecting either low or high-level parameters and gener-

ating any data warehouse and corresponding workload (Figure 8-a). Data warehouses are currently 

directly loaded into a database management system (DMBS), but we also plan to save them as files 

of SQL queries to better evaluate the loading phase. Workloads are already saved as files of SQL 

queries. The second GUI, the Workload executor, helps connecting to an existing data warehouse 

and running an existing workload on it (Figure 8-b). The execution time for each query is recorded 

separately and can be exported in a CSV file that can later be processed in a spreadsheet or any oth-

er application. Both GUIs can be interfaced with most existing relational database management sys-

tems through JDBC. 

 Our software is constantly evolving. For example, since we use a lot of random functions, we 

plan to include in our prototype a better than standard pseudorandom number generator, such as the 

Lewis and Payne (1973) generator, which has a huge period, or the Mersenne Twister (Matsumoto 

& Nishimura, 1998), which is currently one of the best pseudorandom number generators. Howev-

er, the latest version of DWEB is always freely available on-line3. 

 

                                                           
3 http://bdd.univ-lyon2.fr/download/dweb.tgz 



  

(a) Generator (b) Workload executor 

Figure 8: DWEB GUIs 

 

7. Sample usage of DWEB 

 

7.1. Experiments scope 

 

 In order to illustrate one possible usage for DWEB, we evaluate the efficiency of several index-

ing techniques on several configurations of warehouses. Since there is presumably no perfect index 

for all the ROLAP logical data warehouse models, we aim at verifying which indices work best on a 

given schema type. To achieve this goal, we generate with DWEB three test data warehouses la-

belled DW1 to DW3 and their associated workloads. DW1 and DW2 are modelled as snowflake 

schemas, and DW3 as a star schema. Then, we successively execute the corresponding workloads 

on these data warehouses using four index configurations labelled IC0 to IC3. IC0 actually uses no 

index and serves as a reference.  

 Index configuration IC1 is constituted of bitmap join indices (O’Neil & Graefe, 1995) built on 

the fact tables and the dimensions' lowest hierarchy levels (i.e., only on the central star in the snow-

flake schemas of DW1 and DW2). Bitmap join indices are well suited to the data warehouse envi-

ronment. They indeed improve the response time of such common operations as And, Or, Not, or 

Count that can operate on the bitmaps (and thus directly in memory) instead of the source data. Fur-

thermore, joins are computed a priori when the indices are created. Index configuration IC2 adds to 

IC1 bitmap join indices between the dimensions' hierarchy levels. If course, IC2 is not applied to 

the DW3 data warehouse, which is modelled as a star schema. Finally, index configuration IC3 is 

made of a star join index (Bellatreche et al., 2002). Such an index may link all the dimensions to the 



fact table. It is then said whole and may benefit to any query on the star schema. Its storage space is 

very large, though. A partial star join index may be built on the fact table and only several dimen-

sions. However, we used only whole star join indices in this study to maximize performance im-

provement. 

 Note that we do not expect to achieve new results with these experiments. What we seek to do 

is providing an example of how DWEB may be used, and demonstrating that the results it provides 

are consistent with the previous results achieved by data warehouse indices’ designers (O’Neil & 

Graefe, 1995; Bellatreche et al., 2002). 

 

7.2. Hardware and software configuration 

 

 Our tests have been performed on a Centrino 1.7 GHz PC with 1024 MB of RAM running 

Windows XP and Oracle 10g. All the experiments have been run “locally”, i.e., the Oracle server 

and client were on the same machine, so that network latency did not interfere with the results. 

 

7.3. Benchmark configuration 

 

 DW1's snowflake schema is constituted of one fact table and two dimensions. The DWEB low-

level parameters that define it are displayed in Table 4. Its schema is showed as a UML class dia-

gram in Figure 9. Its actual size is 92.9 MB. DW2's snowflake schema is constituted of one fact 

table and four dimensions. The DWEB low-level parameters that define it are displayed in Table 5. 

Its schema is showed as a UML class diagram in Figure 10. Its actual size is 224.5 MB. Finally, 

DW3's star schema is constituted of one fact table and three dimensions. The DWEB low-level pa-

rameters that define it are displayed in Table 6. Its schema is showed as a UML class diagram in 

Figure 11. Its actual size is 68.3 MB. 

 For each data warehouse, we generate a workload of twenty queries (NB_Q = 20). The other 

parameters are set up to the default values specified in Table 3. The queries to be executed on data 

warehouse DWi are labelled Qi.1 to Qi.20. Due to space constraints, we cannot include these three 

workloads in this paper, but their SQL code is available on-line4. 

 

                                                           
4 http://bdd.univ-lyon2.fr/documents/dweb-workloads.pdf 



Parameter Value 

NB_FT 1 

NB_DIM(1) 2 

TOT_NB_DIM 2 

NB_MEAS(1) 5 

DENSITY(1) 0.6 

NB_LEVELS(1) 2 

NB_ATT(1) 5 / 5 

NB_LEVELS(2) 3 

NB_ATT(2) 4 / 4 / 4 

HHLEVEL_SIZE(1-2) 18 

DIM_SFACTOR(1-2) 18 

Table 4: DW1 parameters 

 

Figure 9: DW1 snowflake schema 

 

Parameter Value 

NB_FT 1 

NB_DIM(1) 4 

TOT_NB_DIM 4 

NB_MEAS(1) 3 

DENSITY(1) 0.25 

NB_LEVELS(1) 1 

NB_ATT(1) 4 

NB_LEVELS(2) 2 

NB_ATT(2) 2 / 3 

NB_LEVELS(3) 3 

NB_ATT(3) 3 / 3 / 2 

NB_LEVELS(4) 3 

NB_ATT(4) 2 / 2 / 3 

HHLEVEL_SIZE(1-4) 8 

DIM_SFACTOR(1-4) 5 

Table 5: DW2 parameters 

 

Figure 10: DW2 snowflake schema 

 

Parameter Value 

NB_FT 1 

NB_DIM(1) 3 

TOT_NB_DIM 3 

NB_MEAS(1) 5 

DENSITY(1) 0.8 

NB_LEVELS(1-3) 1 

NB_ATT(1-3) 5 

HHLEVEL_SIZE(1-2) 100 

HHLEVEL_SIZE(3) 70 

DIM_SFACTOR(1-3) n/a 

Table 6: DW3 parameters 
 

Figure 11: DW3 star schema 



7.4. Results 

 

 Since we are chiefly interested in raw performance in these experiments, execution time is the 

only metric we selected. However, we do envisage more elaborate metrics (Section 8). Table 7 pre-

sents the execution time (in milliseconds) of each of the queries Q1.1 to Q1.20 on data warehouse 

DW1, using each of the index configurations IC0 to IC3. Table 7's last line also features the average 

gain in performance when using a given index configuration instead of no index. 

 

Query IC0 IC1 IC2 IC3 

Q1.1 120 574 115 926 121 074 197 774 

Q1.2 51 133 34 981 31 105 66 716 

Q1.3 95 618 37 954 42 861 66 275 

Q1.4 74 958 30 564 29 222 36 393 

Q1.5 2 556 075 1 130 315 1 300 580 3 181 364 

Q1.6 38 255 74 898 50 403 101 486 

Q1.7 391 90 160 601 

Q1.8 75 999 117 179 221 889 131 359 

Q1.9 12 228 11 486 13 720 15 162 

Q1.10 808 402 604 980 633 371 1 263 407 

Q1.11 4 577 4 326 6 098 4 847 

Q1.12 105 952 27 230 42 942 46 937 

Q1.13 1 618 317 944 818 990 104 1 052 303 

Q1.14 1 461 492 1 050 120 1 392 512 1 022 901 

Q1.15 59 946 81 898 66 886 207 719 

Q1.16 324 256 343 894 242 419 494 120 

Q1.17 835 141 705 024 677 003 2 199 853 

Q1.18 2 414 913 1 731 830 2 760 129 5 063 301 

Q1.19 313 560 261 286 526 998 317 437 

Q1.20 577 462 384 673 481 551 814 208 

Gain 0% 33.4% 16.6% -41.0% 

Table 7: DW1 results 

 

 Table 7 first shows that index configuration IC1 noticeably improves response time, especially 

for queries that return large results (Q1.5, Q1.13, Q1.14, and Q1.18). Using no index is better only 

for some shorter queries such as Q1.6 or Q1.15, but in these cases, it is not penalizing since re-

sponse times are low and the difference in performance is small too. Bitmap join indices are thus 

experimented to be the most useful when queries return large results. We can also notice on Table 7 

that adding bitmap join indices between the dimensions' hierarchy levels (index configuration IC2) 

degrades the performances. They indeed incur many index scans, whereas the dimensions' highest 

hierarchy tables have a relatively small size that does not actually justify indexing. Finally, the star 

join index (IC3) appears completely ill-suited to the snowflake schema of DW1 and clearly de-

grades the performances, especially for queries that return large results, whose response time may 

triple. This was expected, since star join indices are aimed at accelerating queries formulated on a 

star schema only, but maybe not to this extent. 



 Table 8 presents the execution time (in milliseconds) of each of the queries Q2.1 to Q2.20 on 

data warehouse DW2, using each of the index configurations IC0 to IC3. Table 8's last line also 

features the average gain in performance when using a given index configuration instead of no in-

dex. Table 8's results basically confirm those from Table 7. However, the effects of indices are sig-

nificantly softened. DW2's fact table is indeed thrice as large as DW1's, while being much sparser 

(its density is more than twice lower than DW1's). Hence, bitmap join indices (configurations IC1 

and IC2) are at the same time bigger and less pertinent when computing sparse cubes. This low den-

sity in the fact table also reduces the bad performances of the star join index (configuration IC3), 

since links to the dimensions are less numerous. 

 

Query IC0 IC1 IC2 IC3 

Q2.1 14 351 14 701 13 279 15 052 

Q2.2 15 612 14 571 16 855 15 302 

Q2.3 3 004 1 372 1 161 1 222 

Q2.4 53 878 54 428 60 027 66 466 

Q2.5 12 317 10 866 15 152 12 307 

Q2.6 267 085 314 261 364 834 276 618 

Q2.7 316 104 174 942 258 562 224 593 

Q2.8 56 441 32 066 22 653 136 346 

Q2.9 26 258 27 780 30 884 129 987 

Q2.10 27 419 22 312 33 578 29 252 

Q2.11 1 072 1 012 152 810 148 624 

Q2.12 55 770 90 259 62 950 99 112 

Q2.13 61 348 53 457 69 540 62 009 

Q2.14 241 528 165 588 218 144 239 615 

Q2.15 403 500 345 357 481 573 485 358 

Q2.16 527 478 448 956 1 882 503 093 

Q2.17 445 902 499 908 608 445 459 201 

Q2.18 44 433 31 976 26 659 33 848 

Q2.19 56 091 55 410 52 876 57 072 

Q2.20 62 800 69 260 56 280 71 623 

Gain 0% 9.8% 5.4% -13.9% 

Table 8: DW2 results 

 

 Table 9 finally presents the execution time (in milliseconds) of each of the queries Q3.1 to 

Q3.20 on data warehouse DW3, using each of the index configurations IC0, IC1, and IC3 (IC2 is 

not applicable on a star schema). Table 9's last line also features the average gain in performance 

when using a given index configuration instead of no index. Table 9 confirms that star join indices 

(configuration IC3) are the best choice on a star schema, as they are designed to be. This is especial-

ly visible with queries that return large results such as Q3.2, Q3.15 or Q3.18. 

 



 

Query IC0 IC1 IC3 

Q3.1 2 603 1 922 731 

Q3.2 497 125 370 353 279 882 

Q3.3 12 228 2 183 1 923 

Q3.4 15 031 2 874 3 605 

Q3.5 14 411 3 185 2 704 

Q3.6 10 265 4 316 3 706 

Q3.7 6 529 4 266 6 499 

Q3.8 12 128 3 555 3 064 

Q3.9 16 984 14 020 17 455 

Q3.10 5 107 2 905 4 156 

Q3.11 6 730 4 076 6 740 

Q3.12 17 806 14 460 9 073 

Q3.13 7 400 9 184 7 080 

Q3.14 3 185 3 555 3 195 

Q3.15 173 960 92 983 83 800 

Q3.16 5 478 2 714 2 654 

Q3.17 53 076 33 839 35 441 

Q3.18 576 649 733 004 529 472 

Q3.19 802 811 610 

Q3.20 2 353 2 063 2 344 

Gain 0% 9.3% 30.3% 

Table 9: DW3 results 

 

 As a conclusion, we showed with these experiments how DWEB could be used to evaluate the 

performances of a given DBMS when executing decision support queries on several data ware-

houses. We underlined the critical nature of index choices and how they should be guided by both 

the data warehouse architecture and contents. However, note that, from a sheer performance point 

of view, these experiments are not wholly significant. For practical reasons, we indeed generated 

relatively small data warehouses and did not conduct real full-scale tests. Furthermore, our experi-

ments do not do justice to Oracle, since we did not seek to achieve the best performance. For in-

stance, we did not combine different types of indices. We did not use any knowledge about how 

Oracle exploits these indices either. Our experiments are truly sample usages for DWEB. 

 

8. Conclusion and perspectives 

 

 We aimed in this paper at helping data warehouse designers to choose between alternate ware-

house architectures and performance optimization techniques. For this sake, we proposed a perfor-

mance evaluation tool, namely a benchmark (or benchmark generator, as it may be viewed) called 

DWEB (the Data Warehouse Engineering Benchmark), which allows users to compare these alter-

natives.  

 To the best of our knowledge, DWEB is currently the only operational data warehouse bench-

mark. Its main feature is that it can generate various ad-hoc synthetic data warehouses and their 



associated workloads. Popular data warehouse schemas, such as star schemas, snowflake schemas, 

and constellation schemas can indeed be achieved. We mainly view DWEB as an engineering 

benchmark designed for data warehouse and system designers, but it can also be used for sheer per-

formance comparisons. It is indeed possible to save a given warehouse and its associated workload 

to run tests on different systems and/or with various optimization techniques. 

 This work opens up many perspectives for developing and enhancing DWEB toward Gray’s 

relevance objective. First, the warehouse metamodel and query model were deliberately simple in 

this first version. They could definitely be extended to be more representative of real data ware-

houses. For example, the warehouse metamodel could feature many to many relationships between 

dimensions and fact tables, and hierarchy levels that are shared by several dimensions. Our query 

model could also be extended with more complex queries such as nested queries that are common in 

OLAP usages. Furthermore, it will be important to fully include the ETL process into our workload, 

and the specifications of TPC-DS and some other existing studies (Labrinidis & Roussopoulos, 

1998) should help us. 

 We have also proposed a set of parameters for DWEB that suit both the models we developed 

and our expected usage of the benchmark. However, a formal validation would help selecting the 

soundest parameters. More experiments should also help us to evaluate the pertinence of our pa-

rameters and maybe propose sounder default values. Other parameters could also be considered, 

such as the domain cardinality of hierarchy attributes or the selectivity factors of restriction predi-

cates in queries. This kind of information may indeed help designers to choose an architecture that 

supports some optimization techniques adequately. 

 We assumed in this paper that an execution protocol and performance metrics were easy to 

define for DWEB (e.g., using TPC-DS' as a base) and focused on the benchmark's database and 

workload model. However, a more elaborate execution protocol must definitely be designed. In our 

experiments, we also only used response time as a performance metric. Other metrics must be en-

visaged, such as the metrics designed to measure the quality of data warehouse conceptual models 

(Serrano et al., 2003; Serrano et al., 2004). Formally validating these metrics would also improve 

DWEB's usefulness. 

 Finally, we are also currently working on warehousing complex, non-standard data, such as 

multimedia, multistructure, multisource, multimodal, and/or multiversion data (Darmont et al., 

2005b). Such data may be stored as XML documents. Thus, we also plan a “complex data” exten-

sion of DWEB that would take into account the advances in XML warehousing (Nassis et al., 2005; 

Rusu et al., 2005). 
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