
Benchmarking Data Warehouses

Jérôme Darmont, Fadila Bentayeb and Omar Boussaïd

ERIC, University of Lyon 2

5 avenue Pierre Mendès-France

69676 Bron Cedex

France

{jdarmont | boussaid | bentayeb}@eric.univ-lyon2.fr

Abstract. Data warehouse architectural choices and optimization techniques are critical to decision

support query performance. To facilitate these choices, the performance of the designed data ware-

house must be assessed, usually with benchmarks. These tools can either help system users compar-

ing the performances of different systems, or help system engineers testing the effect of various

design choices. While the Transaction Processing Performance Council’s standard benchmarks ad-

dress the first point, they are not tunable enough to address the second one and fail to model differ-

ent data warehouse schemas. By contrast, our Data Warehouse Engineering Benchmark (DWEB)

allows generating various ad-hoc synthetic data warehouses and workloads. DWEB is implemented

as a Java free software that can be interfaced with most existing relational database management

systems. The full specifications of DWEB, as well as experiments we performed to illustrate how

our benchmark may be used, are provided in this paper.

Keywords: Data warehouses, OLAP, Benchmarking, Performance evaluation, Data warehouse

design.

1. Introduction

 When designing a data warehouse, choosing its architecture is crucial. Since it is very depend-

ant on the domain of application and the analysis objectives that are selected for decision support,

different solutions are possible. In the ROLAP (Relational On-Line Analytical Process) environ-

ment we consider (Chen et al., 2006), the most popular solutions are by far star, snowflake, and

constellation schemas (Inmon, 2002; Kimball & Ross, 2002), and other modelling possibilities do

exist. This choice of architecture is not neutral: it always has advantages and drawbacks and greatly

influences the response time of decision support queries. For example, a snowflake schema with

hierarchical dimensions might improve analysis power (namely, when most of the queries are done

on the highest hierarchy levels), but induces many more costly join operations than a star schema

without hierarchies. Once the architecture is selected, various optimization techniques such as in-

dexing or materializing views further influence querying and refreshing performance. This is espe-

cially critical when performing complex tasks, such as computing cubes (Taniar & Rahayu, 2002;

Taniar & Tan, 2002; Tan et al., 2003; Taniar et al., 2004) or performing data mining (Tjioe &

Taniar, 2005). Again, it is a matter of trade-off between the improvement brought by a given tech-

nique and its overhead in terms of maintenance time and additional disk space; and also between

different optimization techniques that may cohabit.

 To help users make these critical choices of architecture and optimization techniques, the per-

formance of the designed data warehouse needs to be assessed. However, evaluating data warehous-

ing and decision support technologies is an intricate task. Though pertinent, general advice is avail-

able, notably on-line (Pendse, 2003; Greenfield, 2004a), more quantitative elements regarding sheer

performance are scarce. Thus, we advocate for the use of adapted benchmarks. A benchmark may

be defined as a database model and a workload model (set of operations to execute on the database).

Different goals may be achieved by using a benchmark: (1) compare the performances of various

systems in a given set of experimental conditions (users); (2) evaluate the impact of architectural

choices or optimization techniques on the performances of one given system (system designers).

 The Transaction Processing Performance Council (TPC1), a non-profit organization, defines

standard benchmarks and publishes objective and verifiable performance evaluations to the indus-

try. These benchmarks mainly aim at the first benchmarking goal we identified above. However,

these benchmarks only model one fixed type of database and they are not very tunable: the only

parameter that defines their database is a scale factor setting its size. Nevertheless, in a development

context, it is interesting to test a solution (an indexing strategy, for instance) using various database

configurations. Furthermore, though there is an ongoing effort at the TPC to design a data ware-

house benchmark, the current TPC decision support benchmarks do not properly model a dimen-

sional, star-like schema. They do not address specific warehousing issues such as the ETL (Extract,

Transform, Load) process or OLAP (On-Line Analytical Processing) querying either.

 Thus, we have proposed a new data warehouse benchmark named DWEB: the Data Warehouse

Engineering Benchmark (Darmont et al., 2005a). DWEB helps generating ad-hoc synthetic data

warehouses (modelled as star, snowflake, or constellation schemas) and workloads, mainly for en-

gineering needs (second benchmarking objective). Thus, DWEB may be viewed more like a

benchmark generator than an actual, single benchmark. It is indeed very important to achieve the

different kinds of schemas that are used in data warehouses, and to allow designers to select the

precise architecture they need to evaluate. This paper expands our previous work along three main

axes. First, we present a complete overview of the existing data warehouse benchmarks in this pa-

per. Second, we provide here the full specifications for DWEB, including all its parameters, our

query model and the pseudo-code for database and workload generation. We also better detail

1 http://www.tpc.org

DWEB's implementation. Third, we present a new illustration of how our benchmark can be used

by evaluating the performance of several index configurations on three test data warehouses.

 The remainder of this paper is organized as follows. First, we provide a comprehensive over-

view of the state of the art regarding decision support benchmarks in Section 2. Then, we motivate

the need for a new data warehouse benchmark in Section 3. We detail DWEB's database and work-

load in Sections 4 and 5, respectively. We also present our implementation of DWEB in Section 6.

We discuss our sample experiments with DWEB in Section 7, and finally conclude this paper and

provide future research directions in Section 8.

2. Existing decision support benchmarks

 To the best of our knowledge, relatively few decision support benchmarks have been designed

out of the TPC. Some do exist, but their specification is sometimes not fully published (Demarest,

1995). The most notable is presumably the OLAP APB-1 benchmark, which was issued in 1998 by

the OLAP council, a now inactive organization founded by four OLAP vendors. APB-1 has been

quite extensively used in the late nineties. Its data warehouse schema is architectured around four

dimensions: Customer, Product, Channel and Time. Its workload of ten queries is aimed at sale

forecasting. APB-1 is quite simple and proved limited, since it is not “differentiated to reflect the

hurdles that are specific to different industries and functions” (Thomsen, 1998). Finally, some

OLAP datasets are also available on-line2, but they do not qualify as benchmarks, being only raw

databases (chiefly, no workload is provided).

 In the remainder of this section, we focus more particularly on the TPC benchmarks. The TPC-

D benchmark (Ballinger, 1993; Bhashyam, 1996; TPC, 1998) appeared in the mid-nineties, and

forms the base of TPC-H and TPC-R that have replaced it (Poess & Floyd, 2000; TPC, 2003). TPC-

H and TPC-R are actually identical, only their usage varies. TPC-H is for ad-hoc querying (queries

are not known in advance and optimizations are forbidden), while TPC-R is for reporting (queries

are known in advance and optimizations are allowed). TPC-H is currently the only decision support

benchmark supported by the TPC. TPC-H and TPC-R exploit the same relational database schema

as TPC-D: a classical product-order-supplier model (represented as a UML class diagram in Fig-

ure 1); and the workload from TPC-D supplemented with five new queries. This workload is consti-

tuted of twenty-two SQL-92 parameterized, decision-oriented queries labelled Q1 to Q22; and two

refresh functions RF1 and RF2 that essentially insert and delete tuples in the ORDER and LINEI-

TEM tables.

Figure 1: TPC-D, TPC-H, and TPC-R database schema

 The query parameters are substituted with the help of a random function following a uniform

distribution. Finally, the protocol for running TPC-H or TPC-R includes a load test and a perfor-

mance test (executed twice), which is further subdivided into a power test and a throughput test.

Three primary metrics describe the results in terms of power, throughput, and a composition of the

two. Power and throughput are respectively the geometric and arithmetic average of database size

divided by execution time.

 TPC-DS (Poess et al., 2002), which is currently under development, is the designated successor

of TPC-H, and more clearly models a data warehouse. TPC-DS' database schema, whose fact tables

are represented in Figure 2, models the decision support functions of a retail product supplier as

several snowflake schemas. Catalog and web sales and returns are interrelated, while store man-

agement is independent. This model also includes fifteen dimensions that are shared by the fact ta-

bles. Thus, the whole model is a constellation schema.

 TPC-DS' workload is made of four classes of queries: reporting queries, ad-hoc decision sup-

port queries, interactive OLAP queries, and data extraction queries. A set of about five hundred

queries is generated from query templates written in SQL-99 – with OLAP extensions (Maniatis et

al., 2005). Substitutions on the templates are operated using non-uniform random distributions. The

data warehouse maintenance process includes a full ETL process and a specific treatment of the

dimensions. For instance, historical dimensions preserve history as new dimension entries are add-

ed, while non-historical dimensions do not store aged data any more. Finally, the execution model

2 http://cgmlab.cs.dal.ca/downloadarea/datasets/

of TPC-DS consists of four steps: a load test, a query run, a data maintenance run, and another que-

ry run. A single throughput metric is proposed, which takes the query and maintenance runs into

account.

Figure 2: TPC-DS data warehouse schema

3. Motivation

 Our first motivation to design a data warehouse benchmark is our need to evaluate the efficien-

cy of performance optimization techniques (such as automatic index and materialized view selec-

tion techniques) we have been developing for several years. To the best of our knowledge, none of

the existing data warehouse benchmarks suits our needs. APB-1’s schema is fixed, while we need to

test our performance optimization techniques on various data warehouse configurations. Further-

more, it is no longer supported and somewhat difficult to find. TPC-H's database schema, which is

inherited from the older and obsolete benchmark TPC-D, is not a dimensional schema such as the

typical star schema and its derivatives. Furthermore, its workload, though decision-oriented, does

not include explicit OLAP queries either. This benchmark is implicitly considered obsolete by the

TPC that has issued some specifications for its successor: TPC-DS. However, TPC-DS has been

under development for three years now and is not completed yet. This might be because of its high

complexity, especially at the ETL and workload levels.

 Furthermore, although the TPC decision support benchmarks are scalable according to the def-

inition of Gray (1993), their schema is fixed. For instance, TPC-DS' constellation schema cannot

easily be simplified into a simple star schema. It must be used “as is”. Different ad-hoc configura-

tions are not possible. Furthermore, there is only one parameter to define the database, the Scale

Factor (SF), which sets up its size (from 1 to 100,000 GB). The user cannot control the size of the

dimensions and the fact tables separately, for instance. Finally, the user has no control on the work-

load's definition. The number of generated queries directly depends on SF in TPC-DS, for example.

 Eventually, in a context where data warehouse architectures and decision support workloads

depend a lot on the domain of application, it is very important that designers who wish to evaluate

the impact of architectural choices or optimization techniques on global performance can choose

and/or compare between several configurations. The TPC benchmarks, which aim at standardized

results and propose only one configuration of warehouse schema, are not well adapted to this pur-

pose. TPC-DS is indeed able to evaluate the performance of optimization techniques, but it cannot

test their impact on various choices of data warehouse architectures. Generating particular data

warehouse configurations (e.g., large-volume dimensions) or ad-hoc query workloads is not possi-

ble either, whereas it could be an interesting feature for a data warehouse benchmark.

 For all these reasons, we decided to design a full data warehouse benchmark that would be able

to model various configurations of database and workload, while being simpler to develop than

TPC-DS. In this context (variable architecture, variable size), using a real-life benchmark is not an

option. Hence, we designed DWEB for generating various synthetic data warehouses and work-

loads, which could be individually viewed as full benchmarks.

4. DWEB database

4.1. Schema

 Our design objective for DWEB is to be able to model the different kinds of data warehouse

architectures that are popular within a ROLAP environment: classical star schemas, snowflake

schemas with hierarchical dimensions, and constellation schemas with multiple fact tables and

shared dimensions. To achieve this goal, we propose a data warehouse metamodel (represented as a

UML class diagram in Figure 3) that can be instantiated into these different schemas.

 We view this metamodel as a middle ground between the multidimensional metamodel from

the Common Warehouse Metamodel (CWM) (OMG, 2003; Poole et al., 2003) and the eventual

benchmark model. Our metamodel may actually be viewed as an instance of the CWM metamodel,

which could be qualified as a meta-metamodel in our context. The upper part of Figure 3 describes

a data warehouse (or a datamart, if a datamart is viewed as a small, dedicated data warehouse) as

constituted of one or several fact tables that are each described by several dimensions. Each dimen-

sion may also describe several fact tables (shared dimensions). Each dimension may be constituted

of one or several hierarchies made of different levels. There can be only one level if the dimension

is not a hierarchy. Both fact tables and dimension hierarchy levels are relational tables, which are

modelled in the lower part of Figure 3. Classically, a table or relation is defined in intention by its

attributes and in extension by its tuples or rows. At the intersection of a given attribute and a given

tuple lies the value of this attribute in this tuple.

Figure 3: DWEB data warehouse metaschema

 Our metamodel is quite simple. It is sufficient to model the data warehouse schemas we aim at

(star, snowflake, and constellation schemas), but it is limited and cannot model some particularities

that are found in real-life warehouses, such as many-to-many relationships between facts and di-

mensions, or hierarchy levels shared by several hierarchies. This is currently a deliberate choice, but

the metamodel might be extended in the future.

4.2. Parameterization

 DWEB's database parameters help users selecting the data warehouse architecture they need in

a given context. They are aimed at parameterizing the instantiation of the metaschema to produce an

actual data warehouse schema. When designing them, we try to meet the four key criteria that make

a “good” benchmark, as defined by Gray (1993): relevance, the benchmark must answer our engi-

neering needs (as expressed in Section 1); portability, the benchmark must be easy to implement on

different systems; scalability, it must be possible to benchmark small and large databases, and to

scale up the benchmark; and simplicity, the benchmark must be understandable, otherwise it will not

be credible nor used.

 Relevance and simplicity are clearly two orthogonal goals. Introducing too few parameters re-

duces the model's expressiveness, while introducing too many parameters makes it difficult to ap-

prehend by potential users. Furthermore, few of these parameters are likely to be used in practice. In

parallel, the generation complexity of the instantiated schema must be mastered. To solve this di-

lemma, we capitalize on the experience of designing the OCB object-oriented database benchmark

(Darmont & Schneider, 2000). OCB is generic and able to model all the other existing object-

oriented database benchmarks, but it is controlled by too many parameters, few of which are used in

practice. Hence, we propose to divide the parameter set into two subsets.

 The first subset of so-called low-level parameters allows an advanced user to control every-

thing about the data warehouse generation (Table 1). However, the number of low-level parameters

can increase dramatically when the schema gets larger. For instance, if there are several fact tables,

all their characteristics, including dimensions and their own characteristics, must be defined for

each fact table.

Parameter name Meaning

NB_FT Number of fact tables

NB_DIM(f) Number of dimensions describing fact table #f

TOT_NB_DIM Total number of dimensions

NB_MEAS(f) Number of measures in fact table #f

DENSITY(f) Density rate in fact table #f

NB_LEVELS(d) Number of hierarchy levels in dimension #d

NB_ATT(d,h) Number of attributes in hierarchy level #h of dimension #d

HHLEVEL_SIZE(d) Cardinality of the highest hierarchy level of dimension #d

DIM_SFACTOR(d) Size scale factor in the hierarchy levels of dimension #d

Table 1: DWEB warehouse low-level parameters

 Thus, we designed a layer above with much fewer parameters that may be easily understood

and set up (Table 2). More precisely, these high-level parameters are average values for the low-

level parameters. At database generation time, the high-level parameters are exploited by random

functions (following a Gaussian distribution) to automatically set up the low-level parameters. Fi-

nally, unlike the number of low-level parameters, the number of high-level parameters always re-

mains constant and reasonable (less than ten parameters).

Parameter name Meaning Default value

AVG_NB_FT Average number of fact tables 1

AVG_NB_DIM Average number of dimensions per fact table 5

AVG_TOT_NB_DIM Average total number of dimensions 5

AVG_NB_MEAS Average number of measures in fact tables 5

AVG_DENSITY Average density rate in fact tables 0.6

AVG_NB_LEVELS Average number of hierarchy levels in dimensions 3

AVG_NB_ATT Average number of attributes in hierarchy levels 5

AVG_HHLEVEL_SIZE Average cardinality of the highest hierarchy levels 10

DIM_SFACTOR Average size scale factor within hierarchy levels 10

Table 2: DWEB warehouse high-level parameters

 Users may choose to set up either the full set of low-level parameters, or only the high-level

parameters, for which we propose default values that correspond to a snowflake schema. Note that

these parameters control both schema and data generation.

Remarks:

 Since shared dimensions are possible, 



FTNB

i

iDIMNBDIMNBTOT
_

1

)(___ .

 The cardinal of a fact table is usually lower or equal to the product of its dimensions' cardi-

nals. This is why we introduce the notion of density. A density rate of one indicates that all

the possible combinations of the dimension primary keys are present in the fact table. When

the density rate decreases, we progressively eliminate some of these combinations (see Sec-

tion 4.3).

 This parameter helps controlling the size of the fact table, independently of the size of its

dimensions, which are defined by the HHLEVEL_SIZE and DIM_SFACTOR parameters

(see below).

 Within a dimension, a given hierarchy level normally has a greater cardinality than the next

level. For example, in a town-region-country hierarchy, the number of towns must be greater

than the number of regions, which must be in turn greater than the number of countries. Fur-

thermore, there is often a significant scale factor between these cardinalities (e.g., one thou-

sand towns, one hundred regions, ten countries). Hence, we model the cardinality of hierar-

chy levels by assigning a “starting” cardinality to the highest level in the hierarchy

(HHLEVEL_SIZE), and then by multiplying it by a predefined scale factor

(DIM_SFACTOR) for each lower-level hierarchy.

 The global size of the data warehouse is assessed at generation time (see Section 6) so that

the user retains full control over it.

4.3. Generation algorithm

 The instantiation of the DWEB metaschema into an actual benchmark schema is done in two

steps: (1) build the dimensions; (2) build the fact tables. The pseudo-code for these two steps is pro-

vided in Figures 4 and 5, respectively. Each of these steps is further subdivided, for each dimension

or each fact table, into generating its intention and extension. In addition, hierarchies of dimensions

must be managed. Note that they are generated starting from the highest level of hierarchy. For in-

stance, for our town-region-country sample hierarchy, we build the country level first, then the re-

gion level, and eventually the town level. Hence, tuples from a given hierarchy level can refer to

tuples from the next level (that are already created) with the help of a foreign key.

For i = 1 to TOT_NB_DIM do

 previous_ptr = NIL

 size = HHLEVEL_SIZE(i)

 For j = 1 to NB_LEVELS(i) do

 // Intention

 h1 = New(Hierarchy_level)

 h1.intention = Primary_key()

 For k = 1 to NB_ATT(i,j) do

 h1.intention = h1.intention  String_descriptor()
 End for

 // Hierarchy management

 h1.child = previous_ptr

 h1.parent = NIL

 If previous_ptr  NIL then
 previous_ptr.parent = h1

 h1.intention = h1.intention

  previous_ptr.intention.primary_key // Foreign key

 End if

 // Extension

 h1.extension = 
 For k = 1 to size do

 new_tuple = Integer_primary_key()

 For l = 1 to NB_ATT(i,j) do

 new_tuple = new_tuple  Random_string()
 End for

 If previous_ptr  NIL then

 new_tuple = new_tuple  Random_key(previous_ptr)
 End if

 h1.extension = h1.extension  new_tuple
 End for

 previous_ptr = h1

 size = size * DIM_SFACTOR(i)

 End for

 dim(i) = h1 // First (lowest) level of the hierarchy

End for

Figure 4: DWEB dimensions generation algorithm

For i = 1 to TOT_NB_FT do

 // Intention

 ft(i).intention = 
 For k = 1 to NB_DIM(i) do

 j = Random_dimension(ft(i))

 ft(i).intention = ft(i).intention  ft(i).dim(j).primary key
 End for

 For k to NB_MEAS(i) do

 ft(i).intention = ft(i).intention  Float_measure()

 End for

 // Extension

 ft(i).extension = 
 For j = 1 to NB_DIM(i) do // Cartesian product

 ft(i).extension = ft(i).extension  ft(i).dim(j).primary key
 End for

 to_delete = DENSITY(i) * |ft(i).extension)|

 For j = 1 to to_delete do

 Random_delete(ft(i).extension)

 End for

 For j = 1 to |ft(i).extension)| do // With |ft(i).extension)| updated

 For k = 1 to NB_MEAS(i) do

 Ft(i).extension.tuple(j).measure(k) = Random_float()

 End for

 End for

End for

Figure 5: DWEB fact tables generation algorithm

 We use three main classes of functions and one procedure in these algorithms.

1. Primary_key(), String_descriptor() and Float_measure() return attribute names for

primary keys, descriptors in hierarchy levels, and measures in fact tables, respectively.

These names are labelled sequentially and prefixed by the table's name (e.g.,

DIM1_1_DESCR1, DIM1_1_DESCR2...).

2. Integer_primary_key(), Random_key(), Random_string() and Random_float() return

sequential integers with respect to a given table (no duplicates are allowed), random instanc-

es of the specified table's primary key (random values for a foreign key), random strings of

fixed size (20 characters) selected from a precomputed referential of strings and prefixed by

the corresponding attribute name, and random single-precision real numbers, respectively.

3. Random_dimension() returns a dimension that is chosen among the existing dimensions

that are not already describing the fact table in parameter.

4. Random_delete() deletes one tuple at random from the extension of a table.

 Except in the Random_delete() procedure, where the random distribution is uniform, we use

Gaussian random distributions to introduce a skew, so that some of the data, whether in the fact

tables or the dimensions, are referenced more frequently than others as it is normally the case in

real-life data warehouses.

Remark: The way density is managed in Figure 5 is grossly non-optimal. We chose to present the

algorithm that way for the sake of clarity, but the actual implementation does not create all the tu-

ples from the Cartesian product, and then delete some of them. It directly generates the right num-

ber of tuples by using the density rate as a probability for each tuple to be created.

5. DWEB workload

 In a data warehouse benchmark, the workload may be subdivided into: (1) a load of decision

support queries (mostly OLAP queries); (2) the ETL (data generation and maintenance) process. To

design DWEB's workload, we inspire both from TPC-DS' workload definition (which is very elabo-

rate) and information regarding data warehouse performance from other sources (BMC, 2000;

Greenfield, 2004b). However, TPC-DS' workload is quite complex and somehow confusing. The

reporting, ad-hoc decision support and OLAP query classes are very similar, for instance, but none

of them include any specific OLAP operator such as Cube or Rollup (Tan et al., 2004). Since we

want to meet Gray's simplicity criterion, we propose a simpler workload. In particular, we do not

address the issue of nested queries for now. Furthermore, we also have to design a workload that is

consistent with the variable nature of the DWEB data warehouses.

 We also, in a first step, mainly focus on the definition of a query model that excludes update

operations. Modelling the full ETL and warehouse refreshing processes is a complex task requiring

processes that are out of the scope of this work (Schlesinger et al., 2005). Hence, we postpone this

for now. We consider that the current DWEB specifications provide a raw loading evaluation

framework. The DWEB database may indeed be generated into flat files, and then loaded into a data

warehouse using the ETL tools provided by the system.

5.1. Query model

 The DWEB workload models two different classes of queries: purely decision-oriented queries

involving common OLAP operations, such as cube, roll-up, drill down and slice and dice; and ex

traction queries (simple join queries). We define our generic query model (Figure 6) as a grammar

that is a subset of the SQL-99 standard, which introduces much-needed analytical capabilities to

relational database querying. This increases the ability to perform dynamic, analytic SQL queries.

Query ::-

Select ![<Attribute Clause> | <Aggregate Clause>

 | [<Attribute Clause>, <Aggregate Clause>]]

From !<Table Clause> [<Where Clause>

 || [<Group by Clause> * <Having Clause>]]

Attribute Clause ::- Attribute name [[, <Attribute Clause>] | ]
Aggregate Clause ::- ![Aggregate function name (Attribute name)] [As Alias]

 [[, <Aggregate Clause>] | ]

Table Clause ::- Table name [[, <Table Clause>] | ]

Where Clause ::- Where ![<Condition Clause> | <Join Clause>

 | [<Condition Clause> And <Join Clause>]]

Condition Clause ::- ![Attribute name <Comparison operator> <Operand Clause>]

 [[<Logical operator> <Condition Clause>] | ]
Operand Clause ::- [Attribute name | Attribute value | Attribute value list]

Join Clause ::- ![Attribute name i = Attribute name j]

 [[And <Join Clause>] | ]

Group by Clause ::- Group by [Cube | Rollup] <Attribute Clause>

Having Clause ::- [Alias | Aggregate function name (Attribute name)]

 <Comparison operator> [Attribute name | Attribute value list]

Key: The [and] brackets are delimiters.

 !<A>: A is required.

 *<A>: A is optional.

 <A || B>: A or B.

 <A | B>: A exclusive or B.

 : empty clause.

 SQL language elements are indicated in bold.

Figure 6: DWEB query model

5.2. Parameterization

 DWEB's workload parameters help users tailoring the benchmark's load, which is also depend-

ent from the warehouse schema, to their needs. Just like DWEB's database parameter set (Sec-

tion 4.2), DWEB's workload parameter set (Table 3) has been designed with Gray's simplicity crite-

rion in mind. These parameters determine how the query model from Figure 6 is instantiated. These

parameters help defining the workload's size and complexity, by setting up the proportion of com-

plex OLAP queries (i.e., the class of queries) in the workload , the number of aggregation opera-

tions, the presence of a Having clause in the query, or the number of subsequent drill down opera-

tions.

 Here, we have only a limited number of high-level parameters (eight parameters, since

PROB_EXTRACT and PROB_ROLLUP are derived from PROB_OLAP and PROB_CUBE, respec-

tively). Indeed, it cannot be envisaged to dive further into detail if the workload is as large as sever-

al hundred queries, which is quite typical.

Parameter name Meaning Default value

NB_Q Approximate number of queries in the workload 100

AVG_NB_ATT Average number of selected attributes in a query 5

AVG_NB_RESTR Average number of restrictions in a query 3

PROB_OLAP Probability that the query type is OLAP 0.9

PROB_EXTRACT Probability that the query is an extraction query 1 - PROB_OLAP

AVG_NB_AGGREG Average number of aggregations in an OLAP query 3

PROB_CUBE Probability of an OLAP query to use the Cube operator 0.3

PROB_ROLLUP Probability of an OLAP query to use the Rollup operator 1 - PROB_CUBE

PROB_HAVING Probability of an OLAP query to include an Having clause 0.2

AVG_NB_DD Average number of drill downs after an OLAP query 3

Table 3: DWEB workload parameters

Remark: NB_Q is only an approximate number of queries because the number of drill down opera-

tions after an OLAP query may vary. Hence we can stop generating queries only when we actually

have generated as many or more queries than NB_Q.

5.3. Generation algorithm

 The pseudo-code of DWEB's workload generation algorithm is presented in Figure 7. The algo-

rithm's purpose is to generate a set of SQL-99 queries that can be directly executed on the synthetic

data warehouse defined in Section 4. It is subdivided into two steps: (1) generate an initial query

that may either be an OLAP or an extraction (join) query; (2) if the initial query is an OLAP query,

execute a certain number of drill down operations based on the first OLAP query. More precisely,

each time a drill down is performed, an attribute from a lower level of dimension hierarchy is added

to the attribute clause of the previous query.

 Step 1 is further subdivided into three substeps: (1) the Select, From, and Where clauses of a

query are generated simultaneously by randomly selecting a fact table and dimensions, including a

hierarchy level within a given dimension hierarchy; (2) the Where clause is supplemented with ad-

ditional conditions; (3) eventually, it is decided whether the query is an OLAP query or an extrac-

tion query. In the second case, the query is complete. In the first case, aggregate functions applied

to measures of the fact table are added in the query, as well as a Group by clause that may include

either the Cube or the Rollup operator. A Having clause may optionally be added in too. The aggre-

gate function we apply on measures is always Sum since it is the most common aggregate in cubes.

Furthermore, other aggregate functions bear similar time complexities, so they would not bring in

any more insight in a performance study.

n = 0

While n < NB_Q do

 // Step 1: Initial query

 // Step 1.2: Select, From and Where clauses

 i = Random_FT() // Fact table selection

 attribute_list = 
 table_list = ft(i)

 condition_list = 
 For k = 1 to Random_int(AVG_NB_ATT) do

 j = Random_dimension(ft(i)) // Dimension selection

 l = Random_int(1, ft(i).dim(j).nb_levels)

 // Positioning on hierarchy level l

 hl = ft(i).dim(j) // Current hierarchy level

 m = 1 // Level counter

 fk = ft(i).intention.primary_key.element(j)

 // This foreign key corresponds to ft(i).dim(j).primary_key

 While m < l and hl.child  NIL do
 // Build join

 table_list = table_list  hl
 condition_list = condition_list

  (fk = hl.intention.primary_key)
 // Next level

 fk = hl.intention.foreign_key

 m = m + 1

 hl = hl.child

 End while

 attribute_list = attribute_list  Random_attribute(hl.intention)
 End for

 // Step 1.2: Supplement Where clause

 For k = 1 to Random_int(AVG_NB_RESTR) do

 condition_list = condition_list

  (Random_attribute(attribute_list) = Random_string())
 End for

 // Step 1.3: OLAP or extraction query selection

 p1 = Random_float(0, 1)

 If p1  PROB_OLAP then // OLAP query
 // Aggregate clause

 aggregate_list = 
 For k = 1 to Random_int(AVG_NB_AGGREG) do

 aggregate_list = aggregate_list

  (Random_measure(ft(i).intention)
 End for

 // Group by clause

 group_by_list = attribute_list

 p2 = Random_float(0, 1)

 If p2  PROB_CUBE then
 group_by_operator = CUBE

 Else

 group_by_operator = ROLLUP

 End if

 // Having clause

 P3 = Random_float(0, 1)

 If p3  PROB_HAVING then
 having_clause

 = (Random_attribute(aggregate_list), , Random_float())
 Else

 having_clause = 
 End if

 Else // Extraction query

 group_by_list = 

 group_by_operator = 

 having_clause = 
 End if

 // SQL query generation

 Gen_query(attribute_list, aggregate_list, table_list, condition_list,

 group_by_list, group_by_operator, having_clause)

 n = n + 1

 // Step 2: Possible subsequent DRILL DOWN queries

 If p1  PROB_OLAP then
 k = 0

 While k < Random_int(AVG_NB_DD) and hl.parent  NIL do
 k = k + 1

 hl = hl.parent

 att = Random_attribute(hl.intention)

 attribute_list = attribute_list  att

 group_by_list = group_by_list  att
 Gen_query(attribute_list, aggregate_list, table_list,

 condition_list, group_by_list, group_by_operator,

 having_clause)

 End while

 n = n + k

 End if

End while

Figure 7: DWEB workload generation algorithm

 We use three classes of functions and a procedure in this algorithm.

1. Random_string() and Random_float() are the same functions than those already de-

scribed in Section 4.3. However, we introduce the possibility for Random_float() to use ei-

ther a uniform or a Gaussian random distribution. This depends on the function parameters:

either a range of values (uniform) or an average value (Gaussian). Finally, we introduce the

Random_int() function that behaves just like Random_float() but returns integer values.

2. Random_FT() and Random_dimension() help selecting a fact table or a dimension describ-

ing a given fact table, respectively. They both use a Gaussian random distribution, which in-

troduces an access skew at the fact table and dimension levels. Random_dimension() is also

already described in Section 4.3.

3. Random_attribute() and Random_measure() are very close in behaviour. They return an

attribute or a measure, respectively, from a table intention or a list of attributes. They both

use a Gaussian random distribution.

4. Gen_query() is the procedure that actually generates the SQL-99 code of the workload que-

ries, given all the parameters that are needed to instantiate our query model.

6. DWEB implementation

 DWEB is implemented as a Java software. We selected the Java language to meet Gray's port-

ability requirement. The current version of our prototype is able to generate star, snowflake, and

constellation schemas, and suitable workloads for these schemas. Its only limitation with respect to

our metamodel is that it cannot generate several distinct hierarchies for the same dimension. Fur-

thermore, since DWEB's parameters might sound abstract, our prototype provides an estimation of

the data warehouse size in megabytes after they are set up and before the database is generated.

Hence, users can adjust the parameters to better represent the kind of warehouse they need.

 The interface of our Java application is actually constituted of two GUIs (Graphical User Inter-

faces). The first one is the Generator, the core of DWEB. It actually implements all the algorithms

provided in Sections 4.3 and 5.3 and helps selecting either low or high-level parameters and gener-

ating any data warehouse and corresponding workload (Figure 8-a). Data warehouses are currently

directly loaded into a database management system (DMBS), but we also plan to save them as files

of SQL queries to better evaluate the loading phase. Workloads are already saved as files of SQL

queries. The second GUI, the Workload executor, helps connecting to an existing data warehouse

and running an existing workload on it (Figure 8-b). The execution time for each query is recorded

separately and can be exported in a CSV file that can later be processed in a spreadsheet or any oth-

er application. Both GUIs can be interfaced with most existing relational database management sys-

tems through JDBC.

 Our software is constantly evolving. For example, since we use a lot of random functions, we

plan to include in our prototype a better than standard pseudorandom number generator, such as the

Lewis and Payne (1973) generator, which has a huge period, or the Mersenne Twister (Matsumoto

& Nishimura, 1998), which is currently one of the best pseudorandom number generators. Howev-

er, the latest version of DWEB is always freely available on-line3.

3 http://bdd.univ-lyon2.fr/download/dweb.tgz

(a) Generator (b) Workload executor

Figure 8: DWEB GUIs

7. Sample usage of DWEB

7.1. Experiments scope

 In order to illustrate one possible usage for DWEB, we evaluate the efficiency of several index-

ing techniques on several configurations of warehouses. Since there is presumably no perfect index

for all the ROLAP logical data warehouse models, we aim at verifying which indices work best on a

given schema type. To achieve this goal, we generate with DWEB three test data warehouses la-

belled DW1 to DW3 and their associated workloads. DW1 and DW2 are modelled as snowflake

schemas, and DW3 as a star schema. Then, we successively execute the corresponding workloads

on these data warehouses using four index configurations labelled IC0 to IC3. IC0 actually uses no

index and serves as a reference.

 Index configuration IC1 is constituted of bitmap join indices (O’Neil & Graefe, 1995) built on

the fact tables and the dimensions' lowest hierarchy levels (i.e., only on the central star in the snow-

flake schemas of DW1 and DW2). Bitmap join indices are well suited to the data warehouse envi-

ronment. They indeed improve the response time of such common operations as And, Or, Not, or

Count that can operate on the bitmaps (and thus directly in memory) instead of the source data. Fur-

thermore, joins are computed a priori when the indices are created. Index configuration IC2 adds to

IC1 bitmap join indices between the dimensions' hierarchy levels. If course, IC2 is not applied to

the DW3 data warehouse, which is modelled as a star schema. Finally, index configuration IC3 is

made of a star join index (Bellatreche et al., 2002). Such an index may link all the dimensions to the

fact table. It is then said whole and may benefit to any query on the star schema. Its storage space is

very large, though. A partial star join index may be built on the fact table and only several dimen-

sions. However, we used only whole star join indices in this study to maximize performance im-

provement.

 Note that we do not expect to achieve new results with these experiments. What we seek to do

is providing an example of how DWEB may be used, and demonstrating that the results it provides

are consistent with the previous results achieved by data warehouse indices’ designers (O’Neil &

Graefe, 1995; Bellatreche et al., 2002).

7.2. Hardware and software configuration

 Our tests have been performed on a Centrino 1.7 GHz PC with 1024 MB of RAM running

Windows XP and Oracle 10g. All the experiments have been run “locally”, i.e., the Oracle server

and client were on the same machine, so that network latency did not interfere with the results.

7.3. Benchmark configuration

 DW1's snowflake schema is constituted of one fact table and two dimensions. The DWEB low-

level parameters that define it are displayed in Table 4. Its schema is showed as a UML class dia-

gram in Figure 9. Its actual size is 92.9 MB. DW2's snowflake schema is constituted of one fact

table and four dimensions. The DWEB low-level parameters that define it are displayed in Table 5.

Its schema is showed as a UML class diagram in Figure 10. Its actual size is 224.5 MB. Finally,

DW3's star schema is constituted of one fact table and three dimensions. The DWEB low-level pa-

rameters that define it are displayed in Table 6. Its schema is showed as a UML class diagram in

Figure 11. Its actual size is 68.3 MB.

 For each data warehouse, we generate a workload of twenty queries (NB_Q = 20). The other

parameters are set up to the default values specified in Table 3. The queries to be executed on data

warehouse DWi are labelled Qi.1 to Qi.20. Due to space constraints, we cannot include these three

workloads in this paper, but their SQL code is available on-line4.

4 http://bdd.univ-lyon2.fr/documents/dweb-workloads.pdf

Parameter Value

NB_FT 1

NB_DIM(1) 2

TOT_NB_DIM 2

NB_MEAS(1) 5

DENSITY(1) 0.6

NB_LEVELS(1) 2

NB_ATT(1) 5 / 5

NB_LEVELS(2) 3

NB_ATT(2) 4 / 4 / 4

HHLEVEL_SIZE(1-2) 18

DIM_SFACTOR(1-2) 18

Table 4: DW1 parameters

Figure 9: DW1 snowflake schema

Parameter Value

NB_FT 1

NB_DIM(1) 4

TOT_NB_DIM 4

NB_MEAS(1) 3

DENSITY(1) 0.25

NB_LEVELS(1) 1

NB_ATT(1) 4

NB_LEVELS(2) 2

NB_ATT(2) 2 / 3

NB_LEVELS(3) 3

NB_ATT(3) 3 / 3 / 2

NB_LEVELS(4) 3

NB_ATT(4) 2 / 2 / 3

HHLEVEL_SIZE(1-4) 8

DIM_SFACTOR(1-4) 5

Table 5: DW2 parameters

Figure 10: DW2 snowflake schema

Parameter Value

NB_FT 1

NB_DIM(1) 3

TOT_NB_DIM 3

NB_MEAS(1) 5

DENSITY(1) 0.8

NB_LEVELS(1-3) 1

NB_ATT(1-3) 5

HHLEVEL_SIZE(1-2) 100

HHLEVEL_SIZE(3) 70

DIM_SFACTOR(1-3) n/a

Table 6: DW3 parameters

Figure 11: DW3 star schema

7.4. Results

 Since we are chiefly interested in raw performance in these experiments, execution time is the

only metric we selected. However, we do envisage more elaborate metrics (Section 8). Table 7 pre-

sents the execution time (in milliseconds) of each of the queries Q1.1 to Q1.20 on data warehouse

DW1, using each of the index configurations IC0 to IC3. Table 7's last line also features the average

gain in performance when using a given index configuration instead of no index.

Query IC0 IC1 IC2 IC3

Q1.1 120 574 115 926 121 074 197 774

Q1.2 51 133 34 981 31 105 66 716

Q1.3 95 618 37 954 42 861 66 275

Q1.4 74 958 30 564 29 222 36 393

Q1.5 2 556 075 1 130 315 1 300 580 3 181 364

Q1.6 38 255 74 898 50 403 101 486

Q1.7 391 90 160 601

Q1.8 75 999 117 179 221 889 131 359

Q1.9 12 228 11 486 13 720 15 162

Q1.10 808 402 604 980 633 371 1 263 407

Q1.11 4 577 4 326 6 098 4 847

Q1.12 105 952 27 230 42 942 46 937

Q1.13 1 618 317 944 818 990 104 1 052 303

Q1.14 1 461 492 1 050 120 1 392 512 1 022 901

Q1.15 59 946 81 898 66 886 207 719

Q1.16 324 256 343 894 242 419 494 120

Q1.17 835 141 705 024 677 003 2 199 853

Q1.18 2 414 913 1 731 830 2 760 129 5 063 301

Q1.19 313 560 261 286 526 998 317 437

Q1.20 577 462 384 673 481 551 814 208

Gain 0% 33.4% 16.6% -41.0%

Table 7: DW1 results

 Table 7 first shows that index configuration IC1 noticeably improves response time, especially

for queries that return large results (Q1.5, Q1.13, Q1.14, and Q1.18). Using no index is better only

for some shorter queries such as Q1.6 or Q1.15, but in these cases, it is not penalizing since re-

sponse times are low and the difference in performance is small too. Bitmap join indices are thus

experimented to be the most useful when queries return large results. We can also notice on Table 7

that adding bitmap join indices between the dimensions' hierarchy levels (index configuration IC2)

degrades the performances. They indeed incur many index scans, whereas the dimensions' highest

hierarchy tables have a relatively small size that does not actually justify indexing. Finally, the star

join index (IC3) appears completely ill-suited to the snowflake schema of DW1 and clearly de-

grades the performances, especially for queries that return large results, whose response time may

triple. This was expected, since star join indices are aimed at accelerating queries formulated on a

star schema only, but maybe not to this extent.

 Table 8 presents the execution time (in milliseconds) of each of the queries Q2.1 to Q2.20 on

data warehouse DW2, using each of the index configurations IC0 to IC3. Table 8's last line also

features the average gain in performance when using a given index configuration instead of no in-

dex. Table 8's results basically confirm those from Table 7. However, the effects of indices are sig-

nificantly softened. DW2's fact table is indeed thrice as large as DW1's, while being much sparser

(its density is more than twice lower than DW1's). Hence, bitmap join indices (configurations IC1

and IC2) are at the same time bigger and less pertinent when computing sparse cubes. This low den-

sity in the fact table also reduces the bad performances of the star join index (configuration IC3),

since links to the dimensions are less numerous.

Query IC0 IC1 IC2 IC3

Q2.1 14 351 14 701 13 279 15 052

Q2.2 15 612 14 571 16 855 15 302

Q2.3 3 004 1 372 1 161 1 222

Q2.4 53 878 54 428 60 027 66 466

Q2.5 12 317 10 866 15 152 12 307

Q2.6 267 085 314 261 364 834 276 618

Q2.7 316 104 174 942 258 562 224 593

Q2.8 56 441 32 066 22 653 136 346

Q2.9 26 258 27 780 30 884 129 987

Q2.10 27 419 22 312 33 578 29 252

Q2.11 1 072 1 012 152 810 148 624

Q2.12 55 770 90 259 62 950 99 112

Q2.13 61 348 53 457 69 540 62 009

Q2.14 241 528 165 588 218 144 239 615

Q2.15 403 500 345 357 481 573 485 358

Q2.16 527 478 448 956 1 882 503 093

Q2.17 445 902 499 908 608 445 459 201

Q2.18 44 433 31 976 26 659 33 848

Q2.19 56 091 55 410 52 876 57 072

Q2.20 62 800 69 260 56 280 71 623

Gain 0% 9.8% 5.4% -13.9%

Table 8: DW2 results

 Table 9 finally presents the execution time (in milliseconds) of each of the queries Q3.1 to

Q3.20 on data warehouse DW3, using each of the index configurations IC0, IC1, and IC3 (IC2 is

not applicable on a star schema). Table 9's last line also features the average gain in performance

when using a given index configuration instead of no index. Table 9 confirms that star join indices

(configuration IC3) are the best choice on a star schema, as they are designed to be. This is especial-

ly visible with queries that return large results such as Q3.2, Q3.15 or Q3.18.

Query IC0 IC1 IC3

Q3.1 2 603 1 922 731

Q3.2 497 125 370 353 279 882

Q3.3 12 228 2 183 1 923

Q3.4 15 031 2 874 3 605

Q3.5 14 411 3 185 2 704

Q3.6 10 265 4 316 3 706

Q3.7 6 529 4 266 6 499

Q3.8 12 128 3 555 3 064

Q3.9 16 984 14 020 17 455

Q3.10 5 107 2 905 4 156

Q3.11 6 730 4 076 6 740

Q3.12 17 806 14 460 9 073

Q3.13 7 400 9 184 7 080

Q3.14 3 185 3 555 3 195

Q3.15 173 960 92 983 83 800

Q3.16 5 478 2 714 2 654

Q3.17 53 076 33 839 35 441

Q3.18 576 649 733 004 529 472

Q3.19 802 811 610

Q3.20 2 353 2 063 2 344

Gain 0% 9.3% 30.3%

Table 9: DW3 results

 As a conclusion, we showed with these experiments how DWEB could be used to evaluate the

performances of a given DBMS when executing decision support queries on several data ware-

houses. We underlined the critical nature of index choices and how they should be guided by both

the data warehouse architecture and contents. However, note that, from a sheer performance point

of view, these experiments are not wholly significant. For practical reasons, we indeed generated

relatively small data warehouses and did not conduct real full-scale tests. Furthermore, our experi-

ments do not do justice to Oracle, since we did not seek to achieve the best performance. For in-

stance, we did not combine different types of indices. We did not use any knowledge about how

Oracle exploits these indices either. Our experiments are truly sample usages for DWEB.

8. Conclusion and perspectives

 We aimed in this paper at helping data warehouse designers to choose between alternate ware-

house architectures and performance optimization techniques. For this sake, we proposed a perfor-

mance evaluation tool, namely a benchmark (or benchmark generator, as it may be viewed) called

DWEB (the Data Warehouse Engineering Benchmark), which allows users to compare these alter-

natives.

 To the best of our knowledge, DWEB is currently the only operational data warehouse bench-

mark. Its main feature is that it can generate various ad-hoc synthetic data warehouses and their

associated workloads. Popular data warehouse schemas, such as star schemas, snowflake schemas,

and constellation schemas can indeed be achieved. We mainly view DWEB as an engineering

benchmark designed for data warehouse and system designers, but it can also be used for sheer per-

formance comparisons. It is indeed possible to save a given warehouse and its associated workload

to run tests on different systems and/or with various optimization techniques.

 This work opens up many perspectives for developing and enhancing DWEB toward Gray’s

relevance objective. First, the warehouse metamodel and query model were deliberately simple in

this first version. They could definitely be extended to be more representative of real data ware-

houses. For example, the warehouse metamodel could feature many to many relationships between

dimensions and fact tables, and hierarchy levels that are shared by several dimensions. Our query

model could also be extended with more complex queries such as nested queries that are common in

OLAP usages. Furthermore, it will be important to fully include the ETL process into our workload,

and the specifications of TPC-DS and some other existing studies (Labrinidis & Roussopoulos,

1998) should help us.

 We have also proposed a set of parameters for DWEB that suit both the models we developed

and our expected usage of the benchmark. However, a formal validation would help selecting the

soundest parameters. More experiments should also help us to evaluate the pertinence of our pa-

rameters and maybe propose sounder default values. Other parameters could also be considered,

such as the domain cardinality of hierarchy attributes or the selectivity factors of restriction predi-

cates in queries. This kind of information may indeed help designers to choose an architecture that

supports some optimization techniques adequately.

 We assumed in this paper that an execution protocol and performance metrics were easy to

define for DWEB (e.g., using TPC-DS' as a base) and focused on the benchmark's database and

workload model. However, a more elaborate execution protocol must definitely be designed. In our

experiments, we also only used response time as a performance metric. Other metrics must be en-

visaged, such as the metrics designed to measure the quality of data warehouse conceptual models

(Serrano et al., 2003; Serrano et al., 2004). Formally validating these metrics would also improve

DWEB's usefulness.

 Finally, we are also currently working on warehousing complex, non-standard data, such as

multimedia, multistructure, multisource, multimodal, and/or multiversion data (Darmont et al.,

2005b). Such data may be stored as XML documents. Thus, we also plan a “complex data” exten-

sion of DWEB that would take into account the advances in XML warehousing (Nassis et al., 2005;

Rusu et al., 2005).

Acknowledgements

The authors would like to thank Sylvain Ducreux, Sofiane Guesmia, Bruno Joubert, Benjamin

Mouton and Pierre-Marie Penin for their important contribution to DWEB's implementation and

testing; as well as this paper’s reviewers, for their invaluable comments.

References

Ballinger, C. (1993). TPC-D: Benchmarking for Decision Support. The Benchmark Handbook for

Database and Transaction Processing Systems, second edition. Morgan Kaufmann.

Bellatreche, L., Karlapalem, K., & Mohania, M. (2002). Some issues in design of data warehousing

systems. Data warehousing and web engineering. IRM Press. 22-76.

Bhashyam, R. (1996). TCP-D: The Challenges, Issues and Results. 22nd International Conference

on Very Large Data Bases, Mumbai (Bombay), India. SIGMOD Record. 4, 593.

BMC Software. (2000). Performance Management of a Data Warehouse. http://www.bmc.com

Chen, Y., Dehne, F., Eavis, T., & Rau-Chaplin, A. (2006). Improved Data Partitioning for Building

Large ROLAP Data Cubes in Parallel. International Journal of Data Warehousing and Mining.

2(1), 1-26.

Darmont, J., Bentayeb, F., & Boussaïd, O. (2005). DWEB: A Data Warehouse Engineering Bench-

mark. 7th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 05),

Copenhagen, Denmark. LNCS. 3589, 85-94.

Darmont, J., Boussaïd, O., Ralaivao, J.C., & Aouiche, K. (2005). An Architecture Framework for

Complex Data Warehouses. 7th International Conference on Enterprise Information Systems

(ICEIS 05), Miami, USA. 370-373.

Darmont, J., & Schneider, M. (2000). Benchmarking OODBs with a Generic Tool. Journal of Da-

tabase Management. 11(3), 16-27.

Demarest, M. (1995). A Data Warehouse Evaluation Model. Oracle Technical Journal. 1(1), 29.

Gray, J., Ed. (1993). The Benchmark Handbook for Database and Transaction Processing Systems,

second edition. Morgan Kaufmann.

Greenfield, L. (2004). Performing Data Warehouse Software Evaluations.

http://www.dwinfocenter.org/evals.html

Greenfield, L. (2004). What to Learn About in Order to Speed Up Data Warehouse Querying.

http://www.dwinfocenter.org/fstquery.html

Inmon, W.H. (2002). Building the Data Warehouse, third edition. John Wiley & Sons.

Kimball, R., & Ross, M. (2002). The Data Warehouse Toolkit: The Complete Guide to Dimensional

Modeling, second edition. John Wiley & Sons.

Labrinidis, A., & Roussopoulos, N. (1998). A Performance Evaluation of Online Warehouse Up-

date Algorithms. Technical report CS-TR-3954. Department of Computer Science, University of

Maryland.

Lewis, T.G., & Payne, W.H. (1973). Generalized feedback shift register pseudorandom number

algorithm. ACM Journal. 20(3), 458-468.

Maniatis, A., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y., Mavrogonatos, G., & Michalarias, I.

(2005). A Presentation Model & Non-Traditional Visualization for OLAP. International Journal of

Data Warehousing and Mining. 1 (1), 1-36.

Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-dimensionally equidistributed

uniform pseudorandom number generator. CM Transactions on Modeling and Computer Simula-

tion. 8(1), 3-30.

Nassis, V., Rajagopalapillai, R., Dillon, T.S., & Rahayu, W. (2005). Conceptual and Systematic

Design Approach for XML Document Warehouses. International Journal of Data Warehousing

and Mining. 1(3), 63-87.

OMG. (2003). Common Warehouse Metamodel (CWM) Specification version 1.1. Object Manage-

ment Group.

O’Neil, P.E., & Graefe, G. (1995). Multi-table joins through bitmapped join indices. SIGMOD Rec-

ord. 24(3), 8-11.

Pendse, N. (2003). The OLAP Report: How not to buy an OLAP product.

http://www.olapreport.com/How_not_to_buy.htm

Poess, M., & Floyd, C. (2000). New TPC Benchmarks for Decision Support and Web Commerce.

SIGMOD Record. 29(4), 64-71.

Poess, M., Smith, B., Kollar, L., & Larson, P.A. (2002). TPC-DS: Taking Decision Support

Benchmarking to the Next Level. 2002 ACM SIGMOD International Conference on Management

of Data, Madison, Wisconsin, USA. 582-587.

Poole, J., Chang, D., Tolbert, D., & Mellor, D. (2003). Common Warehouse Metamodel Develop-

er's Guide. John Wiley & Sons.

Rusu, L.I., Rahayu, J.W., & Taniar, D. (2005). A Methodology for Building XML Data Ware-

houses. International Journal of Data Warehousing and Mining. 1(2), 23-48.

Schlesinger, L., Irmert, F., & Lehner, W. (2005). Supporting the ETL-process by Web Service

technologies. International Journal of Web and Grid Services. 1(1), 31-47.

Serrano, M., Calero, C., & Piattini, M. (2003). Metrics for Data Warehouse Quality. Effective Data-

bases for Text & Document Management. 156-173.

Serrano, M., Calero, C., Trujillo, J., Lujan-Mora, S., & Piattini, M. (2004). Towards a Metrics Suite

for Conceptual Models of Datawarehouses. 1st International Workshop on Software Audit and Met-

rics (SAM 04), Porto, Portugal. 105-117.

Tan, R.B.N., Taniar, D., & Lu, G.J. (2003). Efficient Execution of Parallel Aggregate Data Cube

Queries in Data Warehouse Environment. Intelligent Data Engineering and Automated Learning,

LNCS. 2690, 709-716.

Tan, R.B.N., Taniar, D., & Lu, G.J. (2004). A Taxonomy for Data Cube Query. International Jour-

nal of Computers and Their Applications. 11(3), 171-185.

Taniar, D., & Rahayu, J.W. (2002). Parallel Group-By Query Processing in a Cluster Architecture.

International Journal of Computer Systems Science & Engineering. 17(1), 23-39.

Taniar, D., & Tan, R.B.N. (2002). Parallel Processing of Multi-Join Expansion Aggregate Data Cu-

be Query in High Performance Database Systems. 6th International Symposium on Parallel Archi-

tectures, Algorithms, and Networks (I-SPAN 02), Manila, Philippines. 51-56, 2002.

Taniar, D., Tan, R.B-N, Leung, C.H.C., & Liu, K.H. (2004). Performance Analysis of Groupby-

After-Join Query Processing in Parallel Database Systems. Information Sciences. 168(1-4), 25-50.

Thomsen, E. (1998). Comparing different approaches to OLAP calculations as revealed in bench-

marks. Intelligence Enterprise's Database Programming & Design.

http://www.dbpd.com/vault/9805desc.htm

Tjioe, H.C., & Taniar, D. (2005). Mining Association Rules in Data Warehouses. International

Journal of Data Warehousing and Mining. 1(3), 28-62.

TPC. (1998). TPC Benchmark D Standard Specification version 2.1. Transaction Processing Per-

formance Council.

TPC. (2003). TPC Benchmark H Standard Specification version 2.2.0. Transaction Processing Per-

formance Council.

TPC. (2003). TPC Benchmark R Standard Specification version 2.1.0. Transaction Processing Per-

formance Council.

