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ABSTRACT
The business intelligence and decision-support systems used
in many application domains casually rely on data ware-
houses, which are decision-oriented data repositories mod-
eled as multidimensional (MD) structures. MD structures
help navigate data through hierarchical levels of detail. In
many real-world situations, hierarchies in MD models are
complex, which causes data aggregation issues, collectively
known as the summarizability problem. This problem leads
to incorrect analyses and critically affects decision making.
To enforce summarizability, existing approaches alter either
MD models or data, and must be applied a priori, on a
case-by-case basis, by an expert. To alter neither models
nor data, a few query-time approaches have been proposed
recently, but they only detect summarizability issues with-
out solving them. Thus, we propose in this paper a novel
approach that automatically detects and processes summa-
rizability issues at query time, without requiring any partic-
ular expertise from the user. Moreover, while most existing
approaches are based on the relational model, our approach
focus on an XML MD model, since XML data is custom-
arily used to represent business data and its format better
copes with complex hierarchies than the relational model.
Finally, our experiments show that our method is likely to
scale better than a reference approach for addressing the
summarizability problem in the MD context.

1. INTRODUCTION
Business intelligence and decision-support systems in gen-

eral are nowadays used in many business (e.g., finance, tele-
coms, insurance, logistics) and non-business (e.g., agricul-
ture, medicine, health and environment) domains. Such sys-
tems casually rely on data warehouses, which are designed,
both at the conceptual and logical levels, using multidimen-
sional (MD) structures [28]. In MD models, facts are anal-
ysis subjects of interest (e.g., sales) that are described by
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a set of (usually numerical) measures (e.g., sale quantity
and amount) w.r.t. analysis axes called dimensions (e.g.,
book category, sale date, sale location...). Dimensions may
be organized in hierarchical levels to allow data aggregation
at different granularities (e.g., store, city, state or country,
from the finer level to the coarser level).

MD modeling essentially aims at easing online analyti-
cal processing (OLAP), whose main operators help navigate
data through coarser (roll up) and finer (drill down) levels
of detail. In this context, aggregating measures works fine
when intradimensional relationships are one-to-many (e.g.,
a book belongs to one single category). However, in real-
world situations, dimension hierarchies may be much more
complex [3, 17], which leads to a semantic gap between MD
models and current OLAP tools [28], an issue known as the
summarizability problem [13]. Violating summarizability is
a critical matter, for it causes erroneous aggregations and,
therefore, erroneous analyses that can jeopardize important
decisions [21]. However, testing summarizability is a difficult
(coNP-complete) problem [10]. Finally, complex hierarchies
are difficult to both represent in classical database man-
agement systems and query with SQL-like languages, while
XML storage and interrogation with XQuery is much more
natural [3], which led to the design of XML data warehouses
and so-called XOLAP solutions.

The summarizability problem is widely acknowledged as
crucial and has received some attention in the Nineties, with
most solutions aiming at a priori normalizing data to en-
force summarizability. Quite surprisingly, few researchers
came back on this topic since then, although we identify two
types of shortcomings in normalization approaches. First,
normalizing data breaks initial conceptual MD models, pro-
voking the alteration or loss of some semantics. Thus, there
would be no point in exploiting XML’s flexibility to model
rich, complex hierarchies if they were “flattened” after nor-
malization. Second, data normalization applies a priori, on
a case-by-case basis, and requires the intervention of an ex-
pert in MD modeling. Such an approach is subjective, likely
to be costly and does not scale well w.r.t. data volume [20].
Finally, to the best of our knowledge, there is no existing
XOLAP approach that provides a practical solution to sum-
marizability issues, while they are much likely to occur in
an XML data warehouse with complex dimension hierar-
chies. The closest approach does detect summarizability
issues, but then returns no result [22, 23].

Thus, we propose in this paper a novel approach, set in the



XOLAP context, to the summarizability problem. By con-
trast to normalization, our approach does not alter data to
retain all semantics. We also favor paying the price of some
overhead and tackle the summarizability problem at query
time, without requiring any expertise beyond the user’s, to
avoid re-normalizing when data schema evolves, favor scal-
ability and eliminate human-related costs. In many institu-
tions, decision-support applications indeed require external
Web data [7]. Due to the heterogeneity and high evolutivity
of such data, an XOLAP run-time solution is more suitable
than a priori expert interventions.

The remainder of this paper is organized as follows. In
Section 2, we formalize the background information related
to data warehouses, and define what we term complex hi-
erarchies and summarizability. We also review the existing
approaches for enforcing summarizability. In Section 3, we
motivate and introduce our query-based solution to complex
hierarchy management in XOLAP, including novel pattern
tree-based data and query models, as well as the aggrega-
tion algorithm that exploits them. In Section 4, we provide
a complexity study and an experimental validation of our
work. Finally, in Section 5, we conclude this paper and hint
at future research.

2. BACKGROUND
In this section, we formalize data warehousing concepts

and define complex hierarchies that lead to summarizability
issues. Then, we discuss the approaches that address the
summarizability problem.

2.1 Data Warehouses

2.1.1 Data Warehouse
A data warehouse W modeled w.r.t. a snowflake schema

(i.e., with dimension hierarchies) is defined as W = (F ,D),
where F is a set of facts to observe and D is a set of dimen-
sions or analysis axes. Let d = |D|.

2.1.2 Dimension and Hierarchy
∀i ∈ [1, d], a dimension Di ∈ D is defined as a hierarchy

made up of a set of ni levels: Di = {Hij |j = 1, ni}. By
convention, we denote Hi1 as the lowest granularity level.
∀j ∈ [1, ni], a hierarchy level Hij is defined in intention
as Hij = (IDij , {Aijk|k = 1, aij}, Rij), where IDij is the
identifier attribute of Hij , {Aijk} is a set of aij so-called
member attributes of Hij , and Rij is an attribute that ref-
erences a hierarchy level at a higher granularity than that
of Hij (notion of roll up).

Let dom() be a function that associates to any attribute its
definition domain. Let hij = |Hij |. ∀l ∈ [1, hij ], instances
of Hij are tuples Hijl = (σijl, {αijkl|k = 1, aij}, ρijl), where
σijl ∈ dom(IDij), αijkl ∈ dom(Aijk) ∀k ∈ [1, aij ], and ρijl ∈
dom(IDij′) with j′ ∈ [1, ni].

2.1.3 Fact
The set of facts F is defined in intention as F = ({∆i|i =

1, d}, {Mj |j = 1,m}), where {∆i} is a set of d attributes
that reference instances of hierarchy levels Hi1 of each di-
mension Di ∈ D, and {Mj} is a set of m measure (or indi-
cator) attributes that characterize facts.

Let f = |F|. ∀k ∈ [1, f ], instances of F are tuples Fk =
({δik|i = 1, d}, {µjk|j = 1,m}), where δik ∈ dom(IDi1)
∀i ∈ [1, d], and µjk ∈ dom(Mj) ∀j ∈ [1,m].

2.2 Complex Hierarchies
We term a dimension hierarchy Di as complex if it is both

non-strict and incomplete. We choose this new, general de-
nomination because dimension hierarchy characterizations
vary wildly in the literature. For example, Beyer et al. name
complex hierarchies ragged hierarchies [3], while Rizzi de-
fines ragged hierarchies as incomplete only [27]. Malinowski
and Zimányi also use the terms of complex generalized hi-
erarchy [17], but even though they include incomplete hier-
archies, they do not include non-strict hierarchies.

2.2.1 Non-Strict Hierarchy
A hierarchy is non-strict [1, 16, 30] or multiple-arc [27]

when attribute Rij is multivalued. In other terms, from a
conceptual point of view, a hierarchy is non-strict if the re-
lationship between two hierarchical levels is many-to-many
instead of one-to-many. For example, in a dimension de-
scribing products, a product may belong to several cate-
gories instead of just one.

Similarly, a many-to-many relationship between facts and
dimension instances may exist [27]. For instance, in a sale
data warehouse, a fact may be related to a combination
of promotional offers rather than just one. Formally, here,
attributes ∆i (∀i ∈ [1, d]) may be multivalued.

2.2.2 Incomplete Hierarchy
A hierarchy is incomplete [4, 25], non-covering [1, 16, 30]

or ragged [27] if attribute Rij allows linking a hierarchy level
Hij to another hierarchy level Hij′ by “skipping” one or
more intermediary levels, i.e., Rij refers to IDij′ such that
j′ > j + 1. This occurs, for instance, if in a dimension de-
scribing stores, the store-city-state-country hierarchy allows
a store to be located in a given region without being related
to a city (stores in rural areas).

Similarly, facts may be described at heterogeneous gran-
ularity levels. For example, still in our sale data warehouse,
sale volume may be known at the store level in one part of
the world (e.g., Europe), but only at a more aggregate level
(e.g., country) in other geographical areas. This means that
∀i ∈ [1, d], δi ∈ dom(IDij) with j ∈ [1, ni] (constraint j = 1
is forsaken).

A particular case of incomplete hierarchies are called non-
onto [24], heterogeneous [10], unbalanced [9, 17] or asym-
metric [16] hierarchies. A hierarchy is non-onto when all
paths from the root to a leaf in the hierarchy do not have
equal lengths [24], but here, missing elements are always
child nodes, while they may be parent nodes in an incom-
plete hierarchy.

Note that some papers addressing the summarizability
problem differentiate between intradimensional relationships
and fact-to-dimension relationships [20]. By contrast, as
Pedersen et al. [24], we consider that summarizability issues
and solutions are the same in both cases, since facts may be
viewed as the very finer granularity in the dimension set.

2.3 Summarizability in MD Models
The notion of summarizability was introduced by Rafanelli

and Shoshani in the context of statistical databases [26],
where it refers to the correct computation of aggregate val-
ues with a coarser level of detail from aggregate values with
a finer level of detail. Then, Lenz and Shoshani defined three
constraints that guarantee summarizability in the MD con-



text [13]: (1) hierarchies must be strict; (2) hierarchies must
be complete; (3) aggregate data types must be compatible,
i.e., an aggregate function must be applicable to a given
measure for a given set of dimensions. For instance, a max-
imum sale amount is a meaningful aggregation, while a sum
of temperatures would be meaningless. These constraints
also hold for fact-to-dimension relationships [20]. In this
paper, we assume that the type compatibility constraint is
handled by users.

One way to ensure summarizability in a MD model is to
simply disallow complex hierarchies at design time, as in
the Dimensional Fact Model [5]. However, to support differ-
ent kinds of complex real-world situations, most MD models
do allow complex hierarchies. Thence, the summarizability
problem must be addressed. There are two main families
of approaches: schema normalization and data transforma-
tion, which are reviewed below. Both families of approaches
operate at design time.

More recent proposals operate at query time, but they are
very few. Guidelines have been proposed for tolerating and
displaying incorrect aggregation results [8], but they have
not been implemented. The generalized projection XOLAP
operator [22, 23] detects summarizability issues, but does
not solve them and returns an error flag instead.

Finally, the interested reader may find more details about
summarizability issues in the survey by Mazón et al. [21].

2.3.1 Schema Normalization
Two strategies may be used to achieve schema normaliza-

tion. The first strategy is based on the definition of con-
straints and transformation rules. For instance, Hurtado et
al. propose a class of integrity constraints to address in-
completeness, namely dimension constraints and frozen di-
mensions [10]. Frozen dimensions are minimal, complete
dimensions mixed up in incomplete dimensions using di-
mension constraints that help model incomplete hierarchy
schemas. From their part, Lechtenbörger and Vossen intro-
duce new MD normal forms (MNFs) [12]. 1MNF does not
allow non-strict hierarchies, while 2MNF and 3MNF permit
to model incomplete relationships using context dependen-
cies, i.e., dimension constraints. Specialization constructs
in dimensions can lead to incomplete relationships [13, 26]
and context dependencies enable an implicit representation
of such specializations.

The second strategy adds new structures into the model
in order to ensure summarizability. In relational implemen-
tations, bridge tables are used to capture non-strict fact-
to-dimension relationships via foreign keys that refer to the
dimension and fact tables [11, 29]. Arguing that bridge ta-
bles defined at the logical level make the modeling of com-
plex structures difficult, some authors introduce their equiv-
alent at the conceptual level [16, 20]. Such additional en-
tities/classes help store instances at the origin of incom-
pleteness and/or non-strictness. Finally, Mansmann and
Scholl propose a two-phase modeling approach that trans-
form incomplete hierarchies into a set of well-behaved sub-
hierarchies without summarizability problems [18, 19].

2.3.2 Data Transformation
The reference data transformation approach by Pedersen

et al. transforms dimension and fact instances to enforce
summarizability [24]. To solve incompleteness, all mappings
between hierarchical levels are transformed to be complete

with the help of an algorithm named MakeCovering. For
example, suppose that some addresses are missing in an
address-city-country hierarchy. MakeCovering inserts new
values into the missing hierarchical level address to ensure
that mappings to higher hierarchical levels are summariz-
able. MakeCovering exploits metadata and/or expert ad-
vice for this sake. For example, an expert would be required
to recover missing addresses in small streets in the USA
or Australia. The authors also propose a simplified ver-
sion of MakeCovering, MakeOnto, to handle summarizability
in non-onto hierarchies by replacing childless nodes by so-
called placeholder values.

Mappings are made strict with the help of another al-
gorithm named MakeStrict. MakeStrict avoids “double
counting” by “fusing” multiple values in a parent hierarchi-
cal level into one “fused” value, and then linking the child
value to the fused value. Fused values are inserted into a
new hierarchical level in-between the child and the parent.
Reusing this new level for computing higher-level aggregate
values leads to correct aggregation results.

Mansmann and Scholl further modify Pedersen et al.’s
algorithms to eliminate roll up/drill down incomplete and
non-strict hierarchies at the instance level [18, 19]. Finally,
Li et al. demonstrate that MakeCovering does not work
on some real-world cases, i.e., geographical hierarchies in
China [14]. They identify four types of incompleteness that
are specific to China and thence propose several variations
of MakeCovering to handle them.

3. QUERY-BASED COMPLEX HIERARCHY
MANAGEMENT IN XOLAP

3.1 Motivation and Contributions
In XML data warehouses and XOLAP, complex data struc-

tures, and especially complex hierarchies, are likely to be
present, and are likely to evolve with time faster than in
legacy decision-support systems. In such a context, sum-
marizability cannot be enforced through a costly [20] data
normalization process each time schema and data are up-
dated. Thus, as in the most recent existing approaches [8,
22, 23], we advocate for a run-time solution.

However, while existing run-time approaches do detect
summarizability issues and warn the user, they still output
incorrect or absent results. Our first contribution is thus to
complete the process and output correct results. To achieve
this goal, we adapt and automatize well-known solutions
from the literature (Sections 3.2 and 3.4). Since we oper-
ate at query time, we deliberately adopt simple and robust
solutions not to add too much overhead over summarizabil-
ity testing. Such reference approaches are still customarily
reused and adapted by recent approaches [18, 19].

Furthermore, all XOLAP approaches we are aware of pro-
pose operators under the form of ad-hoc programs, and rely
on relational database systems, including Pedersen et al.’s
[22, 23]. By contrast, we aim at contributing to build an XO-
LAP algebra that can later translate into standard XQuery
statements. Thus, our second contribution introduces data
and query models based on the data trees and tree patterns
used in XML processing [6], respectively (Section 3.3).

3.2 Principle of our Approach
To illustrate how our approach operates, let us consider

the example from Figure 1, which represents a complex



“project management” hierarchy at the instance level, adapted
from [18, 19]. This hierarchy is non-strict because teams
may manage several projects (Team 2 manages projects A
and B), while projects may be managed by several teams
(projects A and B are managed by teams 1 and 2, and teams
2 and 3, respectively). The hierarchy is also incomplete,
since Project D is not managed by any particular team; thus
it is complex.

Figure 1: Sample complex hierarchy

First, to handle non-strict hierarchies in a given dimen-
sion Di, we must avoid multiplying the aggregation of in-
stance measures of a hierarchy level Hij when rolling up
to level Hij+1. Thus, when building the set of groups G
with respect to a grouping criterion, we fuse multiple val-
ues in Hij+1 into one single “fused value”, i.e., we build
G =

⋃
l∈[1,hij ]

ρijl, where multivariate values of ρijl are con-

sidered as sets instead of single values. In our example, sup-
pose we are counting projects per teams for projects A and
B. Then GNS = {{Team 1, T eam 2}, {Team 2, T eam 3}}.
The number of projects in {Team 1, T eam 2} is 1, the num-
ber of projects in {Team 2, T eam 3} is 1, for a correct total
of 2. If GNS had been {Team 1, T eam 2, T eam 3}, the total
number of projects would have been wrong (1 + 2 + 1 = 4)
in H12.

Second, to handle incomplete hierarchies, we must, when
rolling up from a hierarchy level Hij to level Hij+1, still
aggregate measures of instances of Hij that are not present
inHij+1. Thus, when building G, all “missing instances” are
grouped into an artificial “Other” group, i.e., G =

⋃
l∈[1,hij ]

ρijl

∪{Other} such that ∃l′/ρijl = σi(j+1)l′ . In our example,
suppose we are again counting projects per teams, but for
projects C and D. Then GI = {Team 4, Other}. The num-
ber of projects in GI is 2, whereas it would have been wrong,
i.e., 1, if GI had been {Team 4} only.

Third, to handle complex hierarchies, we simply apply
both the managements of non-strict and incomplete hier-
archies. Thus, here, G =

⋃
l∈[1,hij ]

ρijl ∪ {Other} such that

∃L/ρijl =
⋃

l′∈L

σi(j+1)l′ . In our example, if we are now count-

ing projects per teams for all projects, then GC = GNS∪GI ,
and the number of projects in GC is correct, i.e., 4.

Finally, note that, beyond the expert-based preprocess-
ing vs. our automatic, on-the-fly approach, there is a sub-
stantial difference between our view of incomplete hierarchy
management and Pedersen et al.’s reference solution [24].
While they call to an expert to replace all “missing val-
ues” in G by actual values, we indeed automatically add an
“Other” group for all “missing values” of a given hierarchical
level. “Other” values from different hierarchy levels are of
course distinguished, e.g., Project[Other] is different from
Team[Other].

Thus, we presumably loose in semantical finesse, but we
spare the cost of the expert. Moreover, the simplicity of our
approach helps handle all cases of incompleteness identified
by Li et al. [14], while MakeCovering cannot.

3.3 Data and Query Models

3.3.1 Data Model
Since complex hierarchies have been shown to be better

represented in XML at the physical level [3], we choose XML
to model MD data. Thus, at the logical level, we choose
XML data trees to model MD structures. Data trees are in-
deed casually used to represent and manipulate XML doc-
uments, whose hierarchical structure is akin to a labeled
ordered, rooted tree [6]. Moreover, data trees allow model-
ing MD structures. Formally, a data tree t models an XML
document or a document fragment. It can be defined as a
triple t = (r,N,E), where N is the set of nodes, r ∈ N is
the root of t, and E is the set of edges stitching together
couples of nodes (ni, nj) ∈ N ×N .

Figure 2 shows how we logically model MD data with a
data tree. ∗-labeled edges indicate a one-to-many relation-
ship. The data tree root, W , models the data warehouse.
Its child nodes F model facts. Each fact is described by a
set of dimensions D and measures M . For a given fact, we
may have several dimensions (such as client, supplier...) and
several measures (such as account, quantity...). A dimension
hierarchy can have any number of levels H. The ∗ multiplic-
ity on the D-H edge allows facts to roll up to any number
of hierarchy levels, at any granularity (fact-to-dimension re-
lationships). The recursive edge on H allows any hierarchy
level to roll up to several higher levels, possibly skipping
any number of intermediary levels (intradimension relation-
ships). Thus, this representation permits to model complex
hierarchies.

Figure 2: Multidimensional data tree model

Figure 3 exemplifies the instantiation of our model by
elaborating on the complex hierarchy from Figure 1. Here,
facts are described by a project and a customer dimension,
and the only measure is cost.

3.3.2 Query Model
Since we use XML data trees as our logical data model, we

use XML tree patterns, which are the most efficient struc-
tures to query data trees [6], as our query model. A tree
pattern (TP) or tree pattern query is a pair (t, F ) where
t is a data tree (r,N,E). An edge in t may either be a



Figure 3: Sample multidimensional data tree

parent-child (pc for short, simple edge in XPath) node re-
lationship or an ancestor-descendant (ad for short, double
edge in XPath) node relationship. F is a formula that speci-
fies constraints on TP nodes. More explicitly, F is a boolean
combination of predicates on TP node values. For example,
the TP from Figure 4(a) selects all projects whose cost is
strictly greater than 1000. Matching this TP against the
data tree from Figure 3 outputs a new data tree, also called
witness tree (WT), which is depicted in Figure 4(b).

Figure 4: Sample pattern (a) and witness (b) trees

To help query MD data modeled w.r.t. Figure 2’s data
tree model, we propose the TP model depicted in Figure 5.
In this TP model, nodes connected to their parent nodes
with a dotted edge do not appear in the WT, unlike nodes
connected to their parent nodes with a solid edge. Moreover,
for each edge (u, v) where u is a parent (or an ancestor) of
v: a “+” label means that one or many matches of v are
allowed for each match of u in a WT; a “?” label means
that zero to one match of v is allowed for each match of
u in a WT; and a “1” label means that one and only one
match of v is allowed for each match of u in a WT. Nodes
from our TP model are tagged with $i (i being a number) or
with ∗. Nodes tagged with ∗ are always connected to their
parent nodes with a pc relationship (/). In XPath 2.0 [2],
a path x/∗ such that x is a node returns a different result
from the path x//∗. x/∗ returns the hierarchy connected
to x while x//∗ returns the same result as x/∗ but with
duplicate nodes. Thus, we choose to respect the XPath 2.0
standard.

Formula F precises how our TP model matches a MD
data tree, as follows. Node $1 matches one fact. Node $3
specifies one to many grouping elements (denoted GE in F ).
A grouping element $3 is a hierarchical level. Node $2 mod-
els all nodes that may exist between $1 and $3. Node $4
receives $3’s content in order to match only one node cor-

Figure 5: Multidimensional tree pattern model

responding to each grouping element. Node $4’s content
finally receives a group G (Section 3.2). Node $5 matches
all dimension hierarchical levels different from $4. These
matched nodes do not appear in the WT because the cor-
responding dimensions do not belong to grouping elements.
$6 specifies one to several measures required for aggregation
purposes. Node $7 stores the result of applying an aggrega-
tion function (e.g., sum, count, etc.) AF on nodes $6. There
is no guarantee that all the nodes output when matching the
∗ child nodes of $4 against a MD data tree appear in the
WT due to incomplete hierarchies. Thus, node $8 retains
the matching result of the ∗ child nodes of $1, except mea-
sures not used in any aggregation.

3.4 Grouping and Roll up Algorithms
In this section, we translate the principles from Section 3.2

into a grouping algorithm called Query-Based Summariz-
ability (QBS) that exploits the data and query models from
Section 3.3. Then, we devise a roll up operator based on
QBS.
QBS (Algorithm 1) essentially processes a “group by” query

with respect to any number of grouping criteria, and addi-
tionally handles summarizability issues on the fly. QBS in-
puts: (1) a data tree D modeled w.r.t. Figure 2’s data tree
model and (2) a TP TPQ modeled w.r.t. Figure 5’s TP
model. QBS outputs a list of WTs WTlist (i.e., a set of
at least one WT). QBS proceeds into two main steps: (1)
incompleteness and non-strictness management; (2) group
matching to construct correct aggregation results.

More precisely, QBS first initializesWTlist to empty. Then,
for each fact, a variable Group list, which stores together all
possible groups from different grouping elements, is also ini-
tialized to empty. Such groups are stored in the Group vari-
able, which comprises node values matched by $4 in TPQ



Algorithm 1 QBS grouping algorithm

1: Input:
2: D // Data tree
3: TPQ // Tree pattern
4: WTlist← ∅
5: for all $1 do
6: // Step #1: Summarizability processing
7: Group list ← ∅
8: for all $4 do
9: Group ← Group ∪ $4.value

10: if $4 /∈ $1.children() and Group.nbElements() <
$1.currentChild().nbChildren() then

11: Group ← Group ∪ “Other”
12: end if
13: Group list← Group list ∪Group
14: end for
15: // Step #2: Group matching
16: WT ←WTlist.exists(Group list)
17: if WT 6= ∅ then
18: WT .update($6, $7)
19: else
20: WT .create(D, TPQ)
21: WTlist←WTlist ∪WT
22: end if
23: end for

24: return product(WTlist)

(Step #1). In case of missing instances from a hierarchical
level of the grouping element (if statement on line 10), the
“Other” value is concatenated to Group. The test on line
10 means that $4 is not a child (i.e., dimension) node of the
current fact and the number of elements in Group is infe-
rior to the number of edges rooted at the current dimension
node (i.e., presence of an incomplete hierarchy). When a
new group list is about to be built, the algorithm tests its
existence in WTlist, i.e., it tests whether there exists a WT
from WTlist where a node tagged with the same grouping
elements has a value equal to the group list’s. If true, the
aggregation node is updated with current measures. Other-
wise, a new WT is added to WTlist w.r.t. TPQ. Finally,
all WTs are regrouped together under a unique root with
the help of the product() function.

The description of all functions called in QBS follows.

• x.children() returns the set of child nodes of node x.

• x.nbChildren() returns the number of children of node
x. If our context, this function returns the number of
edges rooted at x.

• x.currentChild() returns the current child of node x.

• G.nbElements() computes the number of elements in
group G.

• T list.exists(Glist) returns the data tree containing
group Glist from one of the trees of T list, and ∅ oth-
erwise.

• T .update(x, y) updates the value of node y from tree
T with the value of node x.

• T .create(D, TPQ) creates a tree T by matching TP
TPQ against data tree D.

• product(T list) regroups together all trees from tree
set T list under one single root.

Eventually, a roll up operation is simply achieved by call-
ing QBS several times, in sequence, with the output tree of
each stage becoming the input tree of the next stage (Fig-
ure 6). For example, let us consider the MD data tree from
Figure 3 and query Q1 = “total cost of projects per team
and per customer”, which translates into a TP whose for-
mula is provided in Figure 7.

Figure 7: Q1 TP formula

For fact Project[A], QBS builds Group = 1-2. A first WT
is thus created into WTlist w.r.t. Figure 7’s TP, with di-
mension nodes (grouping element instances) Team[1-2] and
Customer[α], and an aggregation node Sum[1000]. For fact
Project[B],Group = 2-3 is built. Then, the algorithm checks
whether there exists a WT inWTList containing theGroup list
(Team[2-3], Customer[α]). As the answer is no, a second
WT is created with dimension nodes Team[2-3] and Customer[α],
and aggregation node Sum[1500]. Similarly, for fact Project[C],
Group = 4 is built and a new WT is created with dimen-
sion nodes Team[4] and Customer[β], and aggregation node
Sum[500].

For fact Project[D], there is no grouping element. Thus,
we build Group = Other and a new WT is created with di-
mension nodes Team[Other] and Customer[γ], and aggrega-
tion node Sum[100]. Here, QBS traverses all elements of the
hierarchy associated to Project[D] before assigning “Other”
to Group. Finally, all created WTs in WTlist are appended
under the same root (Figure 8). Note that the hierarchy of
branches is always saved in WTs. QBS exploits the hierarchy
schema (metadata) to consider Group[Other] as the parent
element of Branch[I] in the corresponding WT.

To complete the roll up operation, i.e., aggregating on
branches from the aggregation already computed on groups,
QBS inputs a new TP corresponding to Q2 = “total cost of
projects per branch and per customer”, whose formula is
given in Figure 9, and the result tree from Figure 8.

Figure 9: Q2 TP formula

For fact Team[1-2], Group = I-II is built and a WT is
created with dimension nodes Branch[I-II] and Customer[α],
and aggregation node Sum[1000]. For fact Team[2-3], Group
= I-II is built. Then, QBS checks whetherGroup list (Branch



Figure 6: Roll up process

Figure 8: Sample roll up operation – Step #1

[I-II], Customer[α]) exists in WTlist. Here, the answer is
yes, and the value of the Sum node in the returned WT is up-
dated to 2500. For fact Group[4], Group = II is built. After
checking the presence ofGroup list (Branch[II], Customer[β])
in WTlist (which is negative), a new WT is created with
dimension nodes Branch[II] and Customer[β], and aggrega-
tion node Sum[500]. For fact Team[Other], a new WT is
created with dimension nodes Branch[I] and Customer[γ],
and aggregation node Sum[100]. Finally, all created WTs
in WTList are again appended under the same root (Fig-
ure 10).

4. VALIDATION
Although we should test our approach against other query-

based [8], and especially XOLAP [22, 23] approaches, these
approaches do detect summarizability issues, but then do
not output actual aggregates. Thus, though Pedersen et
al.’s reference approach [24] and its fairly recent enhance-
ments [18, 19] apply once a priori, we can only compare our
approach with it. Moreover, we particularly focus on the
MakeStrict and MakeCovering algorithms, since MakeCovering
generalizes MakeOnto. For conciseness, we label the combi-
nation of MakeStrict and MakeCovering as Pedersen in the
following.

4.1 Complexity Study
Let us recall Section 2.1’s notations: f is the number of

facts in the data warehouse and d the number of dimensions.
Moreover, let s be number of subdimensions, i.e., branches
in non-strict hierarchies. When processing summarizability
in QBS (Step #1 of the algorithm), for each fact and each
dimension, we need to check missing values in hierarchies
and replace them by “Other”, and then to check whether
the value exists in the current group. Thus, f × d× (1 + 2 +
...+ s− 1) tests must be performed in the worst case. Thus,
the complexity of summarizability processing is O(fds2).

Furthermore, when performing aggregation, for each fact,
we need to check whether a group exists. Following the
same reasoning, the complexity of group matching (Step #2
of QBS) is thus O(f2ds2). Thus, the global complexity of
QBS is O(f2ds2) +O(fds2) = O(f2ds2) ≈ O((fds)2).

Since fds represents the input size, if we state that n =

fds, then the worst-case complexity of QBS is O(n2), i.e.,
the same as Pedersen’s [24]. The worst case occurs when
using linear search in the algorithms. Using binary search
instead should bring complexity down to O(n log n) in most
realistic scenarios [24].

4.2 Experimental Validation

4.2.1 Experimental Setup
To compare QBS to Pedersen, we use the XWeB bench-

mark [15], which remodels the TPC-H [31] relational database
as a star XML schema. XWeB initially generates documents
scaling in size from 50,000 to 250,000 facts. The first and
second rows of Table 1 range generated data in number of
facts and kilobytes (mininum size is 13 MB and maximum
size 67 MB).

Then, since XWeB’s data warehouse is not modeled w.r.t.
our data tree model (Section 3.3.1), we must translate it.
Figure 11 depicts the XWeB data tree model, which con-
tains sale facts, four dimensions (part, customer, supplier
and date) and two measures (f quantity and f totalamount).
The third row of Table 1 lists the sizes of the correspond-
ing instances (minimum size is 27 MB and maximum size is
135 MB).

Figure 11: XWeB data tree model

Then again, XWeB’s data warehouse does not include
any complex hierarchy. Thus, we create variants of the



Figure 10: Sample roll up operation – Step #2

Table 1: Dataset size (KB)
No. Facts 50,000 100,000 150,000 200,000 250,000
XWeB 13,661 27,366 41,070 54,775 68,479
XWeB DT 27,700 55,390 82,800 110,577 138,015
Incomplete 5% 27,626 55,242 82,543 110,249 137,573
Non-strict 5% 28,669 57,328 85,671 114,422 142,786
Complex 5% 28,376 56,742 84,791 113,252 141,319
Incomplete 50% 25,020 50,030 74,769 99,842 124,601
Non-strict 50% 35,412 70,826 105,914 141,397 176,527
Complex 50% 32,522 65,031 97,263 129,839 162,088

dataset with different configurations of hierarchies: incom-
plete only, non-strict only and complex. Moreover, com-
plexity is distributed by percentage of total number of di-
mensional nodes. For example, in Table 1, which features
the sizes of these datasets (last six rows), “Complex 5%” on
50,000 facts means that among 200,000 dimensional nodes
(50, 000×4 since each fact refers to four dimensions), 10,000
nodes are made complex. Such nodes are randomly dis-
tributed among every 20 (100/5) dimensional nodes. More-
over, the value of each generated node is randomly selected
w.r.t. its dimensional applicable values, e.g., a month node
must contain numerical values between 1 and 12. Note that
although Table 1 shows data sizes only for the 5% and 50%
configurations, we also exploit intermediate configurations,
i.e., 10% and 20%. In Table 1, also note that data size ex-
pectingly decreases in incomplete configurations, since some
subnodes are deleted, while data size increases in non-strict
configurations, since subnodes are added to some dimen-
sional nodes. Globally, data size increases in complex con-
figurations since increases due to non-strictness are greater
than decreases due to incompleteness.

Among XWeB’s workload of queries, we focus on four
queries with various number of dimensions (labeled 1D to
4D), and select the most detailed hierarchy levels for group-
ing because they form more complex groups. As shown in
Table 2, we roll up to levels day, type3, nation and nation of
dimensions date, part, customer and supplier, respectively.
n represents the number of dimension involved in a given
query. The sum aggregation function is used in our experi-
ments to compute the total sale amount sum(f totalamount).
Any other aggregation function could be used, though.

Table 2: Group by n-dimensions queries
n part customer supplier date
1D day
2D type3 day
3D type3 nation day
4D type3 nation nation day

Finally, our experiments run on a Toshiba laptop with
an Intel(R) Core(TM) i7-2670QM CPU @ 2.20 GHz, 4 GB

memory and 64-bit Windows 7 Home Premium, Service
Pack 1. The QBS, MakeCovering and MakeStrict algorithms
are implemented in Java JDK 1.7, using the SAX parser to
read XML data. The only difference between our Java code
and Algorithm 1 is that the output tree is built on the fly
instead of applying a product on intermediary trees, to op-
timize performance.

4.3 Experimental Results
The following subsections present the results of our ex-

perimental comparison of QBS and Pedersen. To perform
this comparison, we created metadata so that MakeCovering
replaces incomplete values by “Other” like QBS does. For
Pedersen, we also differentiate between query execution time
and preprocessing overhead, while we cannot for QBS since it
operates at query time and overhead is confused with query
execution time.

4.3.1 Results on Simple Hierarchies
Figure 12 shows that QBS’ time performance increases lin-

early with data size (i.e., the number of facts) and the num-
ber of dimensions in the query, except for query 3D on 50,000
facts, which incidentally bears a lower grouping complexity.

Figure 12: QBS’ execution time according to the
numbers of facts and of dimensions

Figure 13 shows that the time performance of both ap-
proaches increases linearly w.r.t. data size and the number
of dimensions used in queries.



Figure 13: Comparison of QBS and Pedersen on simple
hierarchies

On average, the execution time of QBS is 2 times lower
than that of Pedersen with overhead, but it is 0.17 times
higher than that of Pedersen without overhead.

However, both QBS and Pedersen consume a lot of time,
especially when running the 4D query (about an hour). To
find out why, we perform two more experiments, dissociat-
ing complex hierarchy processing time (i.e., summarizability
processing time) from group matching time. This is possi-
ble because XWeB’s data are originally summarizable. Fig-
ure 14 shows that enforcing summarizability in QBS does not
affect time performance much, while group matching has a
great impact that increases with the number of dimensions.

Figure 14: Comparison of summarizability process-
ing time and group matching time in QBS

Figure 15 confirms that Pedersen also spends most of its
time processing group matching, while overhead consumes
little time. When processing group matching, we indeed
need to check whether the group exists.

Thus, we must check every hierarchy level instance in the
whole group, which contains several instances from all di-
mensions. Doing so is very time consuming comparing to
traditional aggregation, which only checks for the existing
group as a whole. However, no approach dealing with XML
grouping, and a fortiori no XOLAP approach, can avoid
this issue.

4.3.2 Results on Complex Hierarchies
Due to space limitations, we only present here our ex-

periments on 5% and 50% incomplete, non-strict and com-
plex hierarchies (the approximate minimum and maximum
scale), but we did go through the whole range.

Figure 15: Comparison of summarizability process-
ing time and group matching (overhead) time in
Pedersen

4.3.2.1 Incomplete Hierarchies.
The results from Figures 16 and 17 reveal two cases. When

the number of dimensions is small (up to query 2D), the ex-
ecution time of QBS is 0.9 times lower than that of Pedersen
with overhead, for both 5% and 50% hierarchies, on aver-
age.

Figure 16: Comparison of QBS and Pedersen on 5%
incomplete hierarchies

When overhead is not included in Pedersen, the execu-
tion time of QBS is 0.04 times lower (i.e., extremely close)
on 5% hierarchies and 0.02 times lower (i.e., extremely close)
on 50% hierarchies, on average. For a larger number of di-
mensions (query 3D), the execution time of QBS is the same
as Pedersen without overhead on 5% hierarchies and 0.06
times lower (i.e., extremely close) than that of Pedersen

without overhead on 50% hierarchies, on average. When
overhead is included in Pedersen, QBS’ execution time is on
average 0.2 and 0.06 times lower (i.e., extremely close), on
5% and 50% hierarchies, respectively. Both approaches ac-
tually have different tradeoffs. QBS takes less time when
reading incomplete data, but more time to solve incom-
pleteness, while the reverse is true for Pedersen where data
are normalized. Thus, when the number of dimensions in-
creases, QBS’ overhead when processing incomplete hierar-
chies at run-time is a handicap that evens global perfor-
mances w.r.t. Pedersen. Still, we can notice that both
approaches are affected by the poor performance of group
matching, which explains why we did not include query 4D
in these experiments.



Figure 17: Comparison of QBS and Pedersen on 50%
incomplete hierarchies

4.3.2.2 Non-Strict Hierarchies.
The results from Figures 18 and 19 show similar trends to

those of Figures 16 and 17, because the tradeoffs in QBS and
Pedersen are essentially the same for non-strictness man-
agement.

Figure 18: Comparison of QBS and Pedersen on 5%
non-strict hierarchies

Figure 19: Comparison of QBS and Pedersen on 50%
non-strict hierarchies

However, for QBS, non-strictness processing is 9 times higher
than incompleteness processing, on average (Figure 20). More-
over, non-strictness processing is 37 times higher than in-
completeness processing, on average (Figure 21).

Ultimately, the execution time of QBS is 0.1 times lower
than that of Pedersen with overhead (5% hierarchies) and

Figure 20: Evaluation of the three types of 5% hi-
erarchies in QBS

Figure 21: Evaluation of the three types of 50% hi-
erarchies in QBS

0.03 times lower (i.e., extremely close) than that of Pedersen
with overhead, on average (50% hierarchies). When over-
head is not included in Pedersen, the execution time of QBS
is on average 0.05 times lower (5% hierarchies) and 0.01
times lower (50% hierarchies) (i.e., extremely close).

4.3.2.3 Complex Hierarchies.
The results from Figures 22 and 23 bear similar results to

the non-strict case, again because the cost of non-strictness
processing is much higher than that of incompleteness pro-
cessing (Figures 20 and 21).

Group matching is indeed mainly impacted by non-strict
hierarchies. However, in some cases, such as in the 3D query
on 250,000 facts in Figure 20, QBS performs better in the
complex case than in the non-strict case, because non-strict
processing incidentally produces fewer complex groups, thus
simplifying group matching. For 5% hierarchies, QBS’ exe-
cution time is 1.8 times lower than that of Pedersen with

overhead and 0.01 times lower (i.e., extremely close) than
that of Pedersen without overhead, on average. For 50%
hierarchies, QBS’ execution time is 0.09 times lower (i.e., ex-
tremely close) than that of Pedersen with overhead and
0.05 lower (i.e., extremely close) than that of Pedersen without

overhead, on average.



Figure 22: Comparison of QBS and Pedersen on 5%
complex hierarchies

Figure 23: Comparison of QBS and Pedersen on 50%
complex hierarchies

5. CONCLUSION AND PERSPECTIVES
In this paper, we propose the first truly operational query-

based approach to solve summarizability issues in XML com-
plex hierarchies. With respect to existing approaches, ours
(1) modifies neither schema nor data, and thus has no space
overhead and does not alter schema nor data semantics;
(2) does not require any expertise beyond the user’s, thus
sparing the cost of expert intervention; (3) is dynamic w.r.t.
schema and data evolution, thus favoring scalability.

We indeed experimentally demonstrate that the overhead
induced by managing hierarchy complexity at run-time is
totally acceptable. The performance, in terms of query
response time, of our QBS algorithm is indeed comparable
to that of Pedersen et al.’s reference algorithms. However,
our comparison holds when the dataset is static. If schema
or data updates were made, complex hierarchy processing
would take place at regular intervals of time with Pedersen

(instead of once in our experiments). By contrast, QBS would
not have any further overhead, and should thus become more
efficient.

Finally, our approach is implemented as a free Java pro-
totype that is available online, along with our experimental
datasets and the source code of the QBS and Pedersen algo-
rithms1.

The perspectives of this work are twofold. First, although
XML is the best-suited format to represent complex hier-
archy structures, our experiments show that summarizabil-
ity management approaches are still too costly for realistic
OLAP processing, which is supposed to run online, due to

1http://eric.univ-lyon2.fr/~mhachicha/XOLAP.zip

group matching cost. Thus, it is crucial to optimize the
performance of our approach, e.g., by storing data in a non
XML native fashion and/or using effective sorting, indexing
and parallel processing techniques in group matching.

In a second step, we aim to define other XOLAP operators
(cube, drill down, etc.) over complex hierarchies in order to
complete an algebra, and implement them in our software
prototype to provide a fully operational XOLAP framework.
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