

Mémoire de DEA

DEA Informatique et Ingénierie
Option Informatique des Systèmes de Production

présenté au

Laboratoire d'Informatique

Université Blaise Pascal

Clermont-Ferrand II

par

Jérôme Darmont

Sujet : Comparaison de trois méthodes de groupement d'enregistrements

(clustering) pour des bases de données orientées-objet en termes de temps

de réponse et d'occupation disque.

University of Oklahoma

School of Computer Science Février-Juin 1994

Norman, Oklahoma

Abstract

 The aim of this study is to compare three clustering methods designed for object-oriented

databases (Cactis, CK and ORION) in terms of response time and disk space.

 The three algorithms have first been studied in detail, then a comparison methodology for

clustering techniques has designed. The actual comparison of the three algorithms has been

performed using simulation. Simulation was performed with SLAM II on DECstation 5000/25

workstations.

 Simulation experiments we performed showed that Cactis algorithm is better than ORION

algorithm and that CK algorithm totally outperforms both other algorithms in terms of response

time and clustering overhead.

Keywords: Cactis, CK, Clustering, Object-Oriented Databases, ORION, Simulation,

 SLAM II

Résumé

 Le but de cette étude est la comparaison de trois méthodes de groupement d'enregistrements

(clustering) pour des bases de données orientées-objet (Cactis, CK et ORION) en termes de temps

de réponse et d'occupation disque.

 Après une étude détaillée de chaque algorithme, une méthodologie de comparaison des

techniques de clustering a été élaborée, puis appliquée aux trois algorithmes étudiés. Elle utilise la

simulation. Les simulations ont été effectuées avec le logiciel SLAM II sur des stations de travail

DECstation 5000/25.

 Les simulations que nous avons effectuées ont montré que Cactis est un algorithme plus

performant qu'ORION, mais que CK est de loin l'algorithme le plus performant en termes de temps

de réponse et de surcharge due au clustering.

Mots-clés : Bases de données orientées-objet, Cactis, CK, Clustering, ORION,

 Simulation, SLAM II

à Anne-Gaëlle

Acknowledgments

 I first would like to thank my tutor professor Dr. Le Gruenwald for her kindness and patience

while I was working with her.

 I also have to thank all the people of the OIP (Office of International Programs) for their warm

welcome, and especially Seymour Feiler with who having lunch has always been a great pleasure;

along with the Dean of the College of Engineering Dr. Billy Crynes.

 Special appreciation to my roommate Jesus Fernando Sotelo who introduced me to the greatest

shows on American TV, i.e., NBA basketball plays (Go Bulls!) and "Beavis and Butt-Head" on

MTV (Huh huh. This roommate dude was cool!).

 I eventually thank Mr. Ammar Attoui and Miss Frédérique Bullat from Blaise Pascal who

stayed in contact with me and provided help via E-Mail during this internship.

Table of Contents

Introduction 1

The University of Oklahoma 3

 I- The University 3

 II- Norman Campus 3

 III- The College of Engineering 4

 IV- The School of Computer Science 5

Clustering Algorithms 7

 I- Introduction 7

 1/ OODB concepts 7

 2/ Clustering in OODBs 9

 II- Cactis Clustering Algorithm 12

 1/ Algorithm presentation 12

 2/ Clustering example 13

 3/ Remarks 14

 III- ORION Clustering Method 14

 IV- CK Clustering Algorithm 16

 1/ Structural relationships 16

 2/ Instance-to-instance inheritance 17

 3/ Algorithm presentation 18

 4/ Clustering example 18

OODB Performance Measurement 24

 I- Performance Benchmarks 24

 1/ The HyperModel Benchmark 24

 2/ The CluB-0 Benchmark 28

 3/ The Synthetic Benchmark 28

 4/ The OO1 Benchmark 29

 II- Simulation 30

 1/ Object base 30

 2/ Queries 30

 3/ Performance measurements 32

 III- Clustering Algorithms Comparison Methodology 33

 1/ Object base 34

 2/ Query generation 35

 3/ Terminology 40

SLAM II Simulation Language 41

 I- Introduction to Modeling 41

 1/ Model building 41

 2/ The Simulation Process 41

 II- Simulation 43

 1/ Simulation definition 43

 2/ The different kinds of simulation 44

 3/ SLAM II approach 46

Simulation Model 49

 I- Conceptual Model 49

 1/ Overall Model 49

 2/ Client module 50

 3/ Transaction Manager module 50

 4/ Buffering Manager module 55

 5/ I/O Subsystem module 55

 6/ Clustering Manager module 56

 II- Simulation Parameters 60

 1/ Static parameters 60

 2/ Dynamic parameters 61

 III- SLAM II Implementation 62

Simulation Results 63

 I- Performance measurements 63

 II- Results 64

 1/ Effect of the number of objects in the database 64

 2/ Effect of the memory buffer size 72

 3/ Effect of the Read/Write ratio 76

 III- Conclusions 80

Conclusion 82

Bibliography 84

Appendix: Paper extracted from the Study 92

- 1 -

Introduction

 This research internship has been performed in order for me to obtain the French DEA

(qualifying degree for research) in Computer Science. It lasted for five months (from February

1994 to June 1994) and took place at the School of Computer Science of the University of

Oklahoma. My tutor professor was Dr. Le Gruenwald.

 Database Management Systems (DBMSs) have long been successful in business, but they have

not been fully utilized for advanced applications, such as Office Information Systems (OIS) and

Computer-Aided Design (CAD). These applications have new requirements in design

environments, transactions mechanisms and complex or multimedia types. Object-Oriented

Databases (OODBs), integrating techniques from databases, object-oriented languages,

programming environments and user interfaces, are built with such advanced applications in mind.

 This study deals with clustering in the field of OODBs. There are several ways to improve

response time (i.e., to limit the number of disk Input/Output) in a DBMS. Indexing, clustering (i.e.,

storing related entities close together on secondary storage) and buffering (i.e., fetching clustered

entities at the same time and setting up replacement strategies) are widely used techniques in

conventional DBMSs. However, OODBs present additional semantics like structural properties

(inheritance, composite objects) and interrelationships between objects. New techniques have then

to be thought of.

 It is widely acknowledged that good object clustering is critical to the performance of OODBs

[TSANGARIS91]. Clustering means storing related objects close together on secondary storage

so that when one object is accessed from disk, all its related objects are also brought into memory.

Then access to these related objects is a main memory access that is much faster than a disk access.

Clustering is used to minimize I/O when retrieving a set of related objects.

 We have chosen to study three clustering algorithms found in the literature that we consider to

be different enough to be representative of the current research on clustering techniques in OODBs

(Cactis, CK and ORION clustering algorithms). The Cactis and ORION clustering algorithms are

already implemented in DBMSs.

- 2 -

 These particular algorithms have been selected because they present characteristics that are

interesting to compare. For instance, the CK and ORION are dynamic clustering algorithms as

Cactis clustering algorithm is static. ORION also uses only users’ hints to cluster a database; the

Cactis clustering algorithm uses only statistics about the database and the CK algorithm makes use

of both.

 Furthermore, the aim of previous performance evaluations performed on these algorithms was

only to compare the effects of one particular clustering strategy to those of a "no clustering" policy.

We intend to compare each of these three algorithms to each other to determine which one performs

the best in a given environment.

 The motivation of this research is to find which algorithm is the best, since each of them has

until now only been evaluated separately. The characteristics that make this algorithm the best

should be isolated. Then this algorithm might be modified to make it even better by investigating

its weaknesses and maybe compensating these weaknesses using the other algorithms’ strengths.

 The first step of this work was to study each clustering algorithm to well understand how it

works and to later be able to implement it in a simulation model. At the same time, other papers

about various clustering strategies used in OODBs have been collected.

 Then comparison criteria have been selected and a comparison methodology has been designed

to compare performances of the three algorithms. A literature survey about existing simulation

models, performance measurements and performance benchmarks has been gathered at this time.

 The actual comparison was done using simulation.

 The schedule we adopted is the following:

 - study of the three clustering algorithms: one month (February);

 - design of a comparison method for the algorithms: one month (March);

 - design of the simulation models (conceptual models first then implementation in SLAM II

simulation language), simulation results gathering: two months (April and May);

 - last simulation results, report and paper writing: one month (June).

- 3 -

The University of Oklahoma

I- The University

 The University of Oklahoma (OU) is a major national research university serving the

educational, cultural and economic needs of the state, region and nation. OU was created by the

Oklahoma Territorial Legislature in 1890, 17 years before Oklahoma became a state. Today the

University offers a wide range of academic programs in many different areas. There are 125 degree

programs at the undergraduate level, 129 at the master's level, 81 doctoral programs and

professional or combined doctoral/professional degrees in 14 areas. OU enrolls more than 24,000

students on campuses in Norman, Oklahoma City and Tulsa and has approximately 1,500 full-time

faculty members. The university's annual operating budget is almost $500 million.

 The main part of the University is located on the 381 acre (154 ha) Norman Campus. It houses

11 colleges. The North Campus, also in Norman, includes an industrial park and the university

airport. The medical and health-related colleges of the university are located on the Health Science

Center Campus (HSC) in Oklahoma City.

II- Norman Campus

 Today Norman has a population of 79,000 and is thereby the fourth biggest city in Oklahoma

after Oklahoma City, Tulsa and Lawton. Norman is located 15 miles (25 km) south of Oklahoma

City on Interstate I-35.

 About 20,000 students are enrolled on the Norman Campus. Almost 85% of them are from

Oklahoma. The number of international students is approximately 1,200. In the American school

system, "University" is always an institution that consists of different "Colleges". Each student is

enrolled in one college and thereby a student of the university. There are 15 colleges on the Norman

campus: College of Architecture, College of Arts and Sciences, College of Business

Administration, College of Education, College of

- 4 -

Engineering, College of Fine Arts, College of Geosciences, College of Law and College of Liberal

Studies. There are also the University College and the Graduate College. Some colleges are further

divided into schools and departments. The six medical and health-related colleges are located on

the Health Science Center Campus in Oklahoma City.

III- The College of Engineering

 The College of Engineering has long promoted Oklahoma's economy through research,

instruction and public service. It is the largest engineering program in Oklahoma with 2,300

undergraduate students, 700 graduate students and 100 faculty. It was the first in the USA to offer

engineering physics and it is the only public institution in Oklahoma to offer aerospace, petroleum

and geological engineering degrees. The College has an excellent engineering computer network

(ECN) for research and instruction. Its degrees and continuing education courses are delivered

worldwide on-site, by talkback television and satellite systems. All of its programs contribute to

the $50 million Sarkeys Energy Center activities. The active faculty has authored 89 books. There

are 29 professional society fellows, 51 professionally registered engineers in 14 states, 69 listed in

"Engineering Who's Who" and 20 named chairs and professorships.

 The College of Engineering is divided into nine schools and departments:

 - Aerospace & Mechanical Engineering (AME),

 - Civil Engineering & Environmental Science (CEES),

 - Chemical Engineering & Materials Science (CEMS),

 - Electrical Engineering (EE),

 - Computer Science (CS),

 - Industrial Engineering (IE),

 - Petroleum & Geological Engineering (PGE),

 - General Engineering (GE),

 - Engineering Physics (EP).

- 5 -

IV- The School of Computer Science

 The School of Computer Science became an independent unit in the College of Engineering in

1992. The school has created a broad-based program committed to excellence in teaching, quality

research on the leading edge of technology and the professional development of students. Degrees

offered by the School of Computer Science are: Bachelor of Science in Computer Science, Master

of Science, Doctor of Philosophy and Doctor of Engineering.

 Faculty research spans a broad spectrum including:

 • Artificial Intelligence-Expert Systems, Knowledge Based Systems, Logic Programming,

Computer Vision;

 • Database Management-Knowledge Databases and Query Languages, Database Design;

 • Operating Systems and Computer Architecture-Scheduling Algorithms, Performance

Evaluation, Design Automation for VLSI Architecture;

 • Parallel Processing-Large Scale Scientific Computing, Algorithms, Interconnection

Networks and Distributed Computing;

 • Software Engineering-Software Metrics, Program Verification, Ada Environment and

Software Tools,

 • Theory of Computing-Computational Complexity, Automata and Formal Languages,

Algorithms and Data Structure Theory, VLSI Theory.

 Students may participate in many professional activities and organizations that include the

student chapter of the Association of Computing Machinery (ACM). Each year students are

selected to participate in regional and national professional programming contests.

- 6 -

 The School operates a number of special purpose and research laboratories for senior and

graduate students. These laboratories are designed to afford experience in particular fields of

specialization selected by students.

 • Computer facilities

 The central computing facility at the University of Oklahoma has an IBM system 3081, which

can be accessed from a variety of buildings through remote terminals. The College of Engineering

commissioned the Engineering Computer Network (ECN). The nucleus of this system is an Encore

minicomputer, supplemented by an array of tape and disk drives. ECN is essentially a terminal-

oriented system supporting a variety of programming languages such as C, FORTRAN, Basic,

APL, LISP, SNOBOL-4. This system is easily accessible to all Computer Science students.

Computer Science and Engineering students can use the system for their regular classwork, special

software oriented term projects or thesis work.

 • Artificial Intelligence Laboratory

 The primary goal of the Artificial Intelligence (AI) Laboratory is to establish a forum in which

interdisciplinary research and rapid software prototype development can be achieved through

collaborations between faculty members and industrial partners. Facilities at the AI Laboratory

include several TI Explorers, PCs and workstations. Present activities are strongly funded by many

grants and contracts.

 • Parallel Processing Institute

 The aim of the Parallel Processing Institute (PPI) is to provide a forum for organized research,

education and training on all aspects relating to Parallel Processing. It consists of members of the

Computer Science faculty with research interests related to parallel algorithm development,

parallel architectures and interconnection networks for parallel computers, VLSI algorithms, etc.

Members of the PPI and their students have access to a wide variety of parallel architectures

including the Multimax and Alliant at the University of Oklahoma, 128-node Inter Hypercube at

the Argonne National Laboratory and the 64-node N CUBE system at the AMOCO Research

Center in Tulsa, Oklahoma.

- 7 -

Clustering Algorithms

I- Introduction

 1/ OODB concepts [TSANGARIS92b]

 The notion of object abstraction was first introduced by object-oriented programming

languages. Recently, OODBs have added database functionality to this abstraction as an attempt

to increase the modeling power and the applicability of databases. The object-oriented

programming language object abstraction is an extension of the data structure concept with the

following basic characteristics:

 • structure: consisting of components that can be atomic (i.e., flat attributes like integers, reals,

or strings), objects (i.e., other objects) or object identifiers (i.e., “pointers” to other objects); unlike

data structures, the object state (i.e., values of the structure components) is neither directly

changeable nor visible to the user;

 • behavior: determined by methods, predefined fragments of code that manipulate and export

the object state (unlike conventional languages that allow arbitrary code to manipulate data

structures);

 • type: prescribing the “structure” and the “behavior” of an object through the specification of

its components and its methods;

 • identity: naming and locating an object in a manner independent of its state; identity is

typically supported identifying objects by an unique number, the object identifier (OID); OIDs are

assigned by the system at object creation time and cannot be reused, changed or synthesized.

 Conceptually, objects can be viewed as vertices of a directed and possibly cyclic graph: the

Object Graph. The directed edges of the graph represent the object to object references and they

are labelled by the names of their components (cf. figure 1).

- 8 -

Figure 1: Sample Object Graph

 OODBs support additional database functionality:

 • persistence: i.e., the ability of objects to maintain their state even after the termination of the

program that has created them; unlike object-oriented programming languages that only support

as many objects as can fit into main memory, OODBs provide access to large collections of objects

stored in “stable” secondary storage;

 • storage management: efficient ways to represent objects in main memory, store them to disk

and distribute them to servers; that way OODBs relieve the clients from the burden of storing and

retrieving objects from secondary storage, managing main memory as well as the secondary

memory;

- 9 -

 • concurrency control and recovery: to allow concurrent accesses to the objects, and still

ensure their integrity; the state of the object base is guaranteed to change only in a consistent

manner and is immune to client failures;

 • ad-hoc query facilities: declarative languages to efficiently apply operations on large sets of

objects.

 2/ Clustering in OODBs

 a) Clustering principles

 The goal of object clustering is to reduce the number of disk I/Os for object retrieval. Typically,

the unit of data transferred from disk is a page instead of an individual object. If two objects are

clustered on the same page, it will take only one disk I/O to access both objects successively.

[HURSON93]

 Clustering algorithms attempt to improve the performance of object-oriented database systems

by placing on the same page related sets of objects [TSANGARIS92a]. In object-oriented

databases, complex objects are the basic units of data manipulation. The subobjects of a complex

object may come from different classes. Traditional storage systems tend to group records of the

same type physically close to each other on disk. This results on tedious and expensive

reconstruction procedures (such as join operations) to retrieve complex objects. Therefore, it

sounds logical to cluster related objects of different classes together to achieve acceptable

performance. [HURSON93]

 The problem of clustering can be seen as a graph partitioning problem. The nodes of the graph

are the objects and the edges are the links between objects. This problem is NP-complete. However,

as the graph of objects represents the database state, all is needed is an incremental solution where

new objects are placed at the “right place”. Most of the algorithms used can be classified as greedy

algorithms: they scan the objects according to their links and try to place them into the same cluster

unit. Thus the cost of clustering has no major impact on the overall system. [BENZAKEN90a]

- 10 -

 b) Clustering strategies [CATTELL91a]

 Clustering in an OODB can actually be performed in many different ways:

 • composite objects: objects can be clustered according to aggregation relationships; such

clustering may be defined at run time, by identifying particular composite objects to cluster, or the

OODB may be given a “hint” in the schema definition that clustering should be performed using

particular aggregation relationships;

 • references: some OODBs allow objects to be clustered according to relationships with other

objects; composite objects clustering is, in fact, a special case of this, clustered by the aggregation

relationship;

 • object types: objects may also be clustered by their type; if there is a generalization hierarchy,

subtype instances may also be clustered in the same segment; most relational DBMSs cluster by

type (relation) by default; however this form of clustering is usually not useful unless repeated

access is expected to objects of just one type;

 • indexes: as in relational DBMSs, it may be possible to cluster objects by an index on their

attributes; for example, some documents may be clustered using an index on their title; this can be

efficient if documents are accessed frequently in alphabetical order;

 • custom: some OODBs allow clustering to be performed “on the fly”; in Objectivity/DB, for

example, an existing object may be supplied as a parameter to the new-object procedure and the

system attempts to create the new object physically close to the existing one.

 Unless objects are stored redundantly, an object can generally be clustered according to one of

these rules. Where the rules do not conflict, however, it is possible to follow multiple clustering

rules. For example, chapters may be clustered within a single segment for objects of type chapter,

and within the segment according to the document to which they belong.

 This example illustrates that clustering may be performed at two levels:

- 11 -

 • pages: objects may be clustered according to the smallest physical unit read from disk, which

is normally a page; this type of clustering can produce the greatest gains in performance when a

“working set” of objects cannot be precisely defined for all applications; page clustering is more

useful for clustering by index, reference and composite objects;

 • segments: objects may be clustered in larger units, when the user is able to specify a

meaningful logical grouping for segmentation; segment clustering is most useful for type

clustering; it may also be used for composite objects, if used at a sufficiently course grain.

 The largest performance gains are generally afforded by page clustering, since pages are the

unit of access from the disk and a “working set” of pages is selected dynamically according to the

access characteristics of an application program. Segment clustering produces efficiency gains

only if relatively large contiguous units are transferred from disk, or when efficiency gains can be

made through grouping operations (for example, for composite objects deletion).

 c) Users’ hints

 To expedite the retrieval of related data, database systems often take hints from the user (or

database administrator) to store related data physically close together [KIM90b]. For example, the

GemStone database administrator, or a savvy application programmer can hint GemStone that

certain objects are often used together and so should be clustered on the disk [MAIER86]. The

VBASE system allows explicit clustering hints when objects are created [ANDREWS91a]. The

strategy adopted in ONTOS is to allow the programmer to specify clustering and to provide tools

for reclustering when more experience with the applications permits better choices to be made

[ANDREWS91b].

 d) Static versus dynamic clustering

 In the static case, clustering is done at the time objects are created and no reorganization is

implied when the links between objects are updated [BENZAKEN90a]. A static clustering scheme

offers a good placement policy for complex objects but does not take into account the dynamic

evolution of objects. In applications such as design databases, objects are constantly updated

during early parts of the design cycle. Frequent updates may destroy the initially clustered structure.

To keep the object structure optimized, reorganization might be necessary for efficient future

accesses [DEUX90].

- 12 -

 Dynamic clustering is done at run time when objects are accessed concurrently and becomes

attractive in an environment where the read operations dominate the write operations

[BENZAKEN90a]. A dynamic clustering scheme should try to recluster scattered access cost

becomes too high. However, reclustering will generate overhead such as extra disk I/O, so it is

important to determine when a reorganization should occur. If the overhead is not justified,

reclustering may actually degrade the performance [CHENG91].

II- Cactis Clustering Algorithm

 1/ Algorithm presentation [HUDSON89]

 Cactis is an object-oriented, multi-user DBMS developed at the University of Colorado. It is

designed to support applications that require rich data modeling capabilities and the ability to

specify functionally-defined data.

 The Cactis clustering algorithm is designed to place objects that are frequently referenced

together into the same block (i.e., page, i.e., I/O unit) on secondary storage. It can improve response

time up to 60%.

 In order to improve the locality of data references, data is clustered on the basis of usage

patterns. A count of the total number of times each object in the database is accessed is kept, as

well as the number of times each relationship between objects in the process of attribute evaluation

or marking out-of-date is crossed. Then, the database is periodically reorganized on the basis of

this information. The database is packed into blocks using the greedy algorithm shown in figure 2.

 This clustering algorithm is also implemented in the Zeitgeist system [FORD88].

- 13 -

Repeat

 Choose the most referenced object in the database that has not yet been assigned a block.

 Place this object into a new block.

 Repeat

 Choose the relationship belonging to some object assigned to the block such that:

 (1) the relationship is connected to an unassigned object outside the block and,

 (2) the total usage count for the relationship is the highest.

 Assign the object attached to this relationship to the block.

 Until the block is full.
Until all objects are assigned blocks.

Figure 2: Cactis clustering algorithm

 2/ Clustering example

 Let us say we want to cluster six objects into blocks of size 10. The objects' characteristics are

given by table 1. It gives for each object its size, the number of times it has been accessed, a list

of objects with which it is related and the number of times each of these relationships has been

crossed.

Object name Size Number of times

accessed

Relationships Number of times

crossed

O1 7 90 O3

O4

30

80

O2 2 200 O3

O6

70

200

O3 5 80 O1

O2

30

70

O4 6 50 O1

O5

80

100

O5 4 300 O4

O6

100

50

O6 3 170 O2

O5

200

50

Table 1: Objects' characteristics for clustering example with the Cactis algorithm

Algorithm trace:

NEW BLOC O5 selected

 O5-O4 relationship selected, O4 selected, block full

NEW BLOC O2 selected

 O2-O6 relationship selected, O6 selected

 O2-O3 relationship selected, O3 selected, block full

NEW BLOC O1 selected, all objects clustered

- 14 -

 3/ Remarks

• The Cactis clustering algorithm is a static algorithm since it is periodically used to recluster

the database when the database is idle. This implies that the database is not clustered on first run

because no information about the database is available [CHABRIDON92].

• This algorithm does not require users' hints. This is an advantage since no arbitrary choice has

to be made by the user [CHABRIDON93]. But it also implies some time overhead (time to

compute total number of times each object is accessed and number of times each relationship is

crossed) and space overhead (the main memory space used to store the counters grows with the

database size). It also raises the problem of getting pertinent statistics about the database.

III- ORION Clustering Method

 ORION is a series of next-generation database systems that have been prototyped at MCC

(Microelectronics Computer Technology Corp.) as vehicles for research into the next-generation

database architecture and into the integration of programming languages and databases [KIM90a].

ORION has been designed for Artificial Intelligence (AI), Computer-Aided Design and

Manufacturing (CAD/CAM) and Office Information System (IOS) applications [BANERJEE87].

 ORION supports only a simple clustering scheme. Instances of the same class are clustered in

the same physical segment (i.e., a number of blocks or pages). Each class is associated with one

single segment. [KIM90a]

 But ORION also provides direct support for composite objects, i.e., objects with a hierarchy

of exclusive component objects (cf. figure 3). The hierarchy of classes to which the objects belong

is a composite object hierarchy. The object-oriented data model, in its conventional form, is

sufficient to represent a collection of related objects. However, it does not capture the IS-PART-

OF relationship between objects; one object simply references, but does not own, other objects. A

composite object hierarchy captures the IS-PART-OF relationship between a parent class and its

component classes, whereas a class

- 15 -

hierarchy represents the IS-A relationship between a superclass and its subclasses. [BANERJEE87]

Figure 3: Example of composite object

 Then it becomes advantageous to store instances of multiple classes in the same segment. User

assistance is required to determine which classes should share the segment. The user can

dynamically issue a Cluster message containing a “ListOfClassNames” argument specifying the

classes that are to be placed in the same segment. [BANERJEE87]

 In ORION, segments have a fixed size. So the number of pages they contain gives the number

of I/O necessary to load the segment. When a segment is full, a new page is allocated and linked

to the segment (A pointer must be maintained in the segment descriptor.). This implies some

overhead to find the address of each additional page [CHABRIDON92].

 The advantage of this method is its simplicity that makes the method fast and easy to implement

since no cost model is defined and no overhead is implied to determine what is the optimal storage

unit for an object. But simplicity also turns to a limitation since users' hints can only be based on

the static information given by the data model and not on some information determined by the

database usage and which could lead to a better clustering. [CHABRIDON93]

- 16 -

IV- CK Clustering Algorithm

 The CK algorithm (from its authors' names: Chang and Katz) is defined in the CAD/CAM

context. It can improve response time up to 200% when the Read/Write ratio is high (which is true

for real CAD applications) [CHANG89b]. The CK algorithm makes use of several new concepts,

such as structural relationships and instance-to-instance inheritance.

 1/ Structural relationships

 a) Versions

 Objects sharing the same interface but having different implementation are called versions

[BATORY85]. They represent different design alternatives. E.g., if an object is identified by the

pattern: Name[Version].Type where "Name" is the object name, "Version" its version number and

"Type" its type; Nice[1].car, Nice[2].car and Nice[3].car would be three versions of the same object

"Nice" which type is "car".

 b) Configurations

 A very important characteristic of OODBs is the presence of composite (complex or nested)

objects. This concept is represented through composite/component relationships among objects.

Coupling the concept of versions with composite objects leads to configurations. A configuration

is a composite unit whose components are bound to specific versions (cf. figure 4) [CHANG90].

 c) Equivalence

 If two objects are alternative representations of the same real world entity, they are equivalent.

- 17 -

Figure 4: Example of configurations

 2/ Instance-to-instance inheritance

 Besides structural relationships, inheritance provides additional semantics. As in object-

oriented programming languages, a class/subclass hierarchy can be defined for an OODB based

on the IS-A relationship. A subclass inherits the structure (i.e., attributes' definitions) and the

methods of its superclass. However, in OODBs, this form of inheritance (called type inheritance)

is not sufficient. [CHABRIDON92]

 The CK algorithm also uses instance-to-instance inheritance that not only transfers the

existence of attributes from one object to another (like type inheritance), but moreover the values

of these attributes [WILKES88].

 Instance-to-instance inheritance is important in computer-aided design databases, since a new

version tends to resemble its immediate ancestor. It is useful if a new version can inherit its

attributes' values, and more importantly its constraints, from its ancestor. [KATZ91]

- 18 -

 3/ Algorithm Presentation [CHANG90]

 Instance-to-instance inheritance introduces more complexity because it allows attributes to be

selectively inherited at run-time. This run-time flexibility requires a sophisticated approach for

clustering. The CK algorithm is based on inter-objects access frequencies (given by the user at

data type creation time) for each kind of structural relationship, e.g., 20% of access along version

relationships, 75% of access along configuration relationships and 5% of access along equivalence

relationships.

 When a new object is created, the algorithm chooses an initial placement based on which

relationship is most frequently used to reach the object (In the above example, a new instance

would probably be placed in the same page as its composite objects.). Then, for each inherited

attribute, cost formulas are used to choose between implementation by copy or by reference. The

augmented access frequencies (i.e., relationship traversal frequencies plus inheritance traversal

frequencies) may change the initial placement. The clustering algorithm pseudo code is given by

figure 5.

 Then, if the best candidate page is full, either the next best candidate page is chosen or the page

is split if the expected access cost resulting from the split is an improvement over placement in the

next best candidate page.

 Page splitting is performed by a greedy algorithm that partitions the inheritance-dependency

graph into two sub-graphs that each fit into one page. This algorithm is not optimal, but it is linear

(whereas an exact partitioning algorithm would be NP-complete). It is described in figure 6.

 4/ Clustering example

 Let us consider the object hierarchy given by figure 7. Objects are represented according to the

following format: Name[Version].Type where "Name" is the object name, "Version" its version

number and "Type" its type. Numbers above arcs represent the run-time look-up cost of the

structural relationship.

 We want to cluster these objects in pages of size 10. Table 2 gives types’ characteristics. Objects

are clustered in their creation order.

- 19 -

PROCEDURE cluster_object(target_objet)

BEGIN

 /* step 1: get initial information */

 cluster_policy:=get_policy(); /* Is page splitting enabled? */

 copy_set:=get_by_copy_set(); /* Inherited attributes implemented by copy. */

 ref_set:=get_by_ref_set(); /* Inherited attributes implemented by reference. */

 inh_page_set:=get_all_inh_page(); /* Source pages for inherited attributes. */

 struct_page_set:=get_all_struct_page(); /* Source pages for structural objects. */

 page_set:=inh_page_set+struct_page_set;

 /* step 2: calculate ref_set lookup cost for each page */

 FOR p IN page_set /* If by-reference attribute r is */

 FOR r IN ref_set /* not in page p, storing target object */

 IF r NOT_IN p /* in page p requires one run-time */

 BEGIN /* lookup for attribute r. */

 weight(p):=1/(prob(p,struct_rel));

 Ref_LookUp(p):=Ref_LookUp(p)+weight(p);

 END;

 /* step 3: calculate copy_set lookup and storage cost for each page */

 FOR c IN copy_set /* If by-copy attribute c is not in page */

 FOR p IN page_set /* p, we could either cache it in page p */

 IF c NOT_IN p /* or change its implementation to be */

 BEGIN /* by-reference. */

 weight(p):=1/(prob(p,struct_rel));

 Copy_storage(p):=Copy_storage(p)+size_of(c);

 Copy_LookUp(p):=Copy_LookUp(p)+weight(p);

 END;

 /* step 4: calculate total cost of every page. If by-copy attributes are */

 /* implemented by reference, the total cost of storing target object */

 /* in page p is represented by Total(p,1). Otherwise, the cost */

 /* is represented by Total(p,2). */

 FOR p IN page_set

 Total_cost(p,1):=Ref_LookUp(p)*Lookup_cost+Copy_LookUp(p)*Lookup_cost;

 Total_cost(p,2):=Ref_LookUp(p)*Lookup_cost+Copy_storage(p)*Storage_cost;

 /* step 5: pick up best candidate page and try to insert the object */

 candidate_page:=Minimum(Total_cost);

 IF (cluster_policy EQ no_split)

 WHILE (NOT_FIT(candidate_page))

 candidate_page:=Next_Min(Total_cost);

 IF ((cluster_policy EQ page_split) AND (NOT_FIT(candidate_page))

 Split_page(candidate_page);

END;

Figure 5: Pseudo code for the CK clustering algorithm

- 20 -

 The Page_split algorithm assumes that the arc costs Cei (i.e., run-time lookup cost) between objects are always

maintained and sorted. The node capacity Capvi (i.e., the object size) is also maintained. Subset A and B represent the

sets of objects assigned to the new pages after splitting. Both subsets are empty ate the beginning. E is the initial set

of arcs relating the objects.

• Step (1): Select the maximum value arc from E as etarget and set E to be (E - {etarget}). Let vhead and vtail be the

head and the tail nodes of etarget.
• Step (2): Supposed both vhead and vtail are new to subsets A and B. Insert vhead and vtail in subset A if Capvhead

plus Capvtail is less than the remaining capacity of subset A. Otherwise, insert vhead and vtail in subset B if subset B

has space for these nodes. If neither subset A or B could accommodate both vhead and vtail, a broken arc is found and

Cetarget is added into Ctotal.
• Step (3): Supposed vhead is in subset A and vtail is not in subset A or B. Insert vtail into subset A if feasible.

Otherwise, a broken arc is found and Cetarget is added into Ctotal.
• Step (4): Supposed both vhead and vtail are visited before, a broken arc is found and Cetarget is added into Ctotal.
• Step (5): Look back to step (1) until arc set E is empty.

Figure 6: Page_split algorithm

Figure 7: Sample object hierarchy

Type Object size Access along

versions

Access along

configurations

Access along

equivalences

Ferrari 3 20 % 10 % 70 %

car 3 65 % 30 % 5 %

body 2 25 % 75 % 0 %

drivetrain 2 30 % 70 % 0 %

chassis 3 40 % 60 % 0 %

doors 1 15 % 85 % 0 %

engine 4 20 % 80 % 0 %

transmission 4 35 % 65 % 0 %

Table 2: Types characteristics for clustering example with the CK algorithm

 a) Algorithm trace, Cluster policy = NO PAGE SPLITTING

- 21 -

• Nice[1].car, New page (Page #1), Space left in Page #1 = 7

• Testarossa[0].Ferrari, Page #1, Space left in Page #1 = 4

• Good[3].drivetrain, Page #1, Space left in Page #1 = 2

• Big[5].engine, Page #1 full, no other candidate page => New page (Page #2), Space left in Page

#2 = 6

• Cool[3].transmission, Page #1 full, no other candidate page => New page (Page #3), Space left

in Page #3 = 6

• Sport[2].body, Page #1, Space left in Page #1 = 0

• Plastic[1].chassis, Page #1 full, no other candidate page => New page (Page #4), Space left in

Page #4 = 7

• Fun[2].doors, Page #1 full, no other candidate page => New page (Page #5), Space left in Page

#5 = 9

• Nice[2].car, Page #1 full, no other candidate page => New page (Page #6), Space left in Page #6

= 7

• Sport[3].body, Candidate pages = #6 / #1, Page #1 is full => Page #6, Space left in Page #6 = 5

• Plastic[2].chassis, Candidate pages = #6 / #4, Cost formulas give Page #4, Space left in Page #4

= 4

• Fun[3].doors, Candidate pages = #6 / #4, Cost formulas give Page #6, Space left in Page #6 = 4

- 22 -

 b) Algorithm trace, Cluster policy = PAGE SPLITTING ENABLED

• Nice[1].car, New page (Page #1), Space left in Page #1 = 7

• Testarossa[0].Ferrari, Page #1, Space left in Page #1 = 4

• Good[3].drivetrain, Page #1, Space left in Page #1 = 2

• Big[5].engine, Page #1 full => PAGE SPLIT (cf. figure 8)

• Cool[3].transmission, Page #1 full => PAGE SPLIT (cf. figure 9)

• Sport[2].body, Page #1 full => PAGE SPLIT (cf. figure 10)

• Plastic[1].chassis, Page #1, Space left in Page #1 = 2

• Fun[2].doors, Page #1, Space left in Page #1 = 1

• Nice[2].car, Page #1 full => PAGE SPLIT (cf. figure 11)

• Sport[3].body, Candidate pages = #5 / #1, Cost formulas give Page #5, Space left in Page #5 = 5

• Plastic[2].chassis, Candidate pages = #5 / #1, Cost formulas give Page #5, Space left in Page #5

= 2

• Fun[3].doors, Candidate pages = #5 / #1, Cost formulas give Page #1, Space left in Page #1 = 0

Figure 8: Page splitting #1

- 23 -

Figure 9: Page splitting #2

Figure 10: Page splitting #3

Figure 11: Page splitting #4

- 24 -

OODB Performance Measurement

 Performance is a major issue in the acceptance of object-oriented database systems aimed at

engineering applications such as Computer-Aided Software Engineering (CASE) and Computer-

Aided Design (CAD). There are two main means to evaluate OODBs performance. Either a

benchmark can be run on an existing DBMS or an experimental DBMS behavior can be simulated.

In both cases, designing the object base and generating queries the major issues. A third way of

evaluating in advance the complexity of specific algorithms (such as clustering or buffering

algorithms) is mathematical analysis as it is performed in [CHABRIDON92].

I- Performance Benchmarks

 1/ The HyperModel Benchmark [ANDERSON90, BERRE91]

 The HyperModel Benchmark (also called the Tektronix Benchmark) is based on an extended

hypertext model. Hypertext is a generic graph structure consisting of nodes and links. The nodes

may contain text or other kinds of data such as bitmaps. The links are used to describe references

between the nodes. Hypertext has been proposed as a good model for use in CASE because it is

possible to store software and documentation as hypertext graphs.

 a) Conceptual schema

 Figure 12 provides a conceptual schema for the HyperModel Benchmark using the Object

Modeling Technique (OMT).

- 25 -

Figure 12: The HyperModel schema

 A hypermodel document consists of a number of sections and each section is represented by

an object of type Node. There are two subtypes of Node: TextNode and FormNode. Node is not an

"abstract" type; there are Node instances which are neither TextNodes nor FormNodes. There are

five attributes (called uniqueId, ten, hundred, thousand and million) associated with each Node. In

addition, a TextNode has a text attribute and a FormNode has a bitmap, width and height attribute.

- 26 -

 Nodes are interrelated by three relationships: the parent/children relationship, the partOf/parts

relationship and the refTo/refFrom relationship. The parent/children relationship is 1-N and is used

to model the recursive aggregation structure of sections within a document. Furthermore, the

children of a given parent are ordered. The partOf/parts relationship is an M-N relationship that is

constrained to be hierarchical. That is, although parts may share subparts, the partOf/parts

relationship is acyclic. Finally, the refTo/refFrom relationship is an arbitrary M-N relationship.

 The refTo/refFrom relationship is designed to model Hypertext links, in which attributes are

attached to each link to describe the offset (i.e., position) of each endpoint within a node.

Associated with each refTo/refFrom link are two attributes: offsetFrom and offsetTo. For example,

offsetFrom might represent the character position within a TextNode of the tail of the link.

 Considering the parent/children relationship, a document can be viewed as a tree. The internal

nodes of the tree are instances of the class Node while the leaves are either TextNodes or

FormNodes depending on their contents (text or bitmaps).

 b) Test database generation

 A hypermodel database consists of a single document which is comprised of a network of

nodes with the relationships described above. The test database has a fan-out of five nodes at each

level in the tree structure described by the parent/children relationship (see figure 13). A document

will normally contain seven generations.

Figure 13: Part of the 7-level parent/children hierarchy

- 27 -

 The partOf/parts relation is created by relating each node at level k to five randomly chosen

nodes from level k+1 in the tree structure created by the parent/children relation. The number of

parent/children relationships and partOf/parts relationships are both one less than the total number

of nodes. The refTo/refFrom relation is created by visiting each node once and creating a reference

to another node chosen randomly from the entire tree. The number of refTo/refFrom relationships

is consequently equal to the number of nodes. The values of offsetTo and offsetFrom attributes are

initialized random integers between 0 and 10.

 c) Operations

 The benchmark consists of 20 operations. To measure the time to perform each operation, the

following sequence must be followed:

 Setup: prepare 50 inputs to the operations (the setup is not timed);

 Cold Run: run the operation 50 times, on the 50 inputs precomputed in the setup phase; then,

if the operation is an update operation, commit the changes once for all 50 operations;

 Warm Run: Repeat the operation 50 times with the same inputs to test the effect of caching;

again, perform a commit if the operation was an update.

 The entire cold run, including the commit (if any), is timed and the mean time per operation is

computed by dividing by 50. Likewise, the mean time per operation for the warm run is computed

and reported.

 The 20 operations are divided into seven kinds:

 • Name Lookup Operations: retrieve one randomly selected node;

 • Range Lookup Operations: retrieve the nodes satisfying a range predicate based on an

attribute value;

 • Group Lookup Operations: follow the relationships one level from a randomly selected node;

 • Reference Lookup Operations: same as group lookup but in the inverse direction;

 • Sequential Scan: all nodes are visited;

 • Closure Traversal Operations: similar to Group Lookup Operations but at a predefined depth;

 • Editing Operations: retrieve a node and update it.

- 28 -

 2/ The CluB-0 Benchmark [BANCILHON92]

 CluB-0 was designed to benchmark O2 clustering algorithm. It is based on the HyperModel

Benchmark.

 The structure of the CluB-0 Benchmark composition graph is as follows. Only one class N is

used. The type inheritance graph for this class is shown in figure 14. The database consists of

objects of class N, called nodes, that form a tree (relationship T) with a constant fan-out f,

overlapping with a graph (relationship G). Each internal node of T, say a node at depth i, is

connected to exactly f distinct nodes randomly chosen from the set of nodes at depth i+1 (each

branch in the tree has the same depth). Of course, at level 0, the two kinds of links are the same.

At any other level, objects can be shared inside the graph induced by G.

Figure 14: The type inheritance graph for class N

 3/ The Synthetic Benchmark [KIM90]

 The Synthetic Benchmark is one of the benchmarks that have been used to evaluate ORION

performances. A synthetic database is created to perform three sets of ORION operations: basic

object manipulation, basic operations on objects with index support, and queries. The database is

created for a 10% selectivity for queries.

- 29 -

 Basic Object Manipulation

 • Create five classes with similar structure (ten attributes) and populate each class with 1000

instances.

 • Access all instances of the classes in the order of creation and in random order.

 Index Overhead

 • Create five classes, each with ten attributes, of which two are indexed; and populate each

class with 1000 instances.

 • Update all indexed attributes of all instances of the classes in the order of creation and in

some random order.

 Queries

 • Query a class on an indexed attribute.

 • Query a class on an non-indexed attribute.

 The execution of each operation of this benchmark starts from a cold state (i.e., database restart)

and has to be repeated twelve times to reduce the effects of variations.

 4/ The OO1 Benchmark [CATTELL91b]

 This benchmark, named OO1 (Object Operations version 1), sometimes called the "Cattell

Benchmark", has been run on a dozen of both relational and object-oriented DBMSs.

 a) Database

 The OO1 Database is independent of the data model provided by the DBMS. It is defined as

two logical records.

create table part (id integer not null primary key,

 type char(10) not null,

 x integer not null,

 y integer not null,

 build datetime not null

);

- 30 -

create table connection (

 from integer foreign key reference (part.id),

 to integer foreign key reference (part.id),

 length integer not null,

 type char(10) not null,

 primary key (from, to, length)

);

 A database of N parts will have a dense unique part number (part.id) in the range [1..N]. Such

a database will have 3N connections, with exactly three connections from each part to other

(randomly selected) parts. The x, y, and length field values are randomly distributed in the range

[0..99999], the type fields have values randomly selected from the strings {"part-type0" ...

"part-type9"}, and the build date is randomly distributed in a ten-year range. The random

connections between parts are selected by an algorithm to produce some locality of reference.

 b) Measures

 The following three operations are the OO1 Benchmark measures. Each measure is run ten

times, measuring response time for each run to check consistency and caching behavior.

• Lookup. Generate 1000 random part IDs, and fetch the corresponding parts from the database.

For each part, call a null procedure written in any host programming language, passing the x,y

position and type of the part.

• Traversal. Find all parts connected to a randomly selected part, or to a part connected with it,

and so on, up to seven hops (total of 3280 parts, with possible duplicates). For each part, call a null

programming language procedure with the value of the x and y fields and the part type. Perform

the traversal depth-first. Also measure time for reverse traversal, swapping "from" and "to"

directions, to compare the results obtained.

• Insert. Enter 100 parts and three connections from each to other randomly selected parts. Time

must be included to update indices or other access structures used in the extension of lookup and

traversal. Call a programming language procedure to obtain the x,y position for each insert.

Commit the changes to the disk.

- 31 -

II- Simulation

 1/ Object Base

 In [HE93], two kinds of database generators are proposed. One of them generates totally

random graph for the object references. This simulates random user queries for different objects

in the system. The object reference requests are distributed randomly over the object cluster. The

second request generator creates a Directed Acyclic Graph (DAG). Need for the second request

generator arises from the fact that in real world OODB request patterns for the object resemble to

a DAG. Once a particular object is referred, probability of a related object to currently referred

object is very high and this generates a DAG.

 [TSANGARIS92b] used in his simulations the same object base that the one proposed by the

CluB-0 Benchmark we described above.

 2/ Queries

 In simulations performed to evaluate the performances of the CK clustering algorithm

[CHANG89b], the checkin and checkout operations are modeled by seven different types of

queries:

 - simple object lookup,

 - component object retrieval,

 - composite object retrieval,

 - descendant version retrieval,

 - ancestor version retrieval,

 - corresponding objects retrieval,

 - object insertion/deletion/updating.

 For example, a checkout operation may consist of several component object retrievals and one

corresponding object retrieval. Similarly, a checkin operation invokes several object insertions and

updating.

- 32 -

 In [TSANGARIS92b], two access models are presented: IID (Independent and Identically

Distributed) and SMC/HMC (Simple Markov Chain/Higher order Markov Chain). In IID access

model, objects are accessed in a random order. In SMC access model, the probability of accessing

an object depends only on the previous objects accessed. Finally, in HMC, the probability of

accessing an object depends on the N last accessed objects, where N is the pre-selected order.

Although these access models are used as input by stochastic clustering algorithms, they could

also be used to generate access patterns for queries. IID and SMC access models are shown for a

set of six objects {a, b, c, d, e, f} by figure 15. Fractions represent the objects' access probabilities.

Figure 15: IID and SMC access models

 3/ Performance measurements

 Response time is measured most of the time [CHANG89b, TSANGARIS92b]. Number of

pages accessed on disk [TSANGARIS92b], I/O counts [HUDSON89] and average access time

per object [CHENG91] can also be evaluated. In a distributed environment, network traffic (i.e.,

number of objects fetched from other sites) is used [HE93].

 [TSANGARIS92a] also introduces a performance metric that expresses the "packing

capability" of clustering algorithms: the Expansion Factor (EF). Given a set of objects Q that maps

to N(Q) distinct pages, EF is defined as:

.

- 33 -

where the denominator is the size of ideal packing of ||Q|| objects to pages of L objects each. If

each query Qi is associated with a probability P(Qi), an average EF can be defined:

 For a given set of queries and their probabilities, the ideal clustering mapping minimizes EF.

Although it is easy to avoid bad clustering mappings of EF = , in general it is very hard to find a

clustering mapping of EF = 1.

 Although this definition makes sense for records and queries, EF alone is not an adequate

metric for clustering. The EF measures the distribution of objects to pages, but does not take into

account the order and frequency with which each object is accessed. There are a large number of

possible clustering mappings that have the same EF. However, not all of them achieve the same

performance.

III- Clustering Algorithms Comparison Methodology

 Several reasons made us choose to use simulation to compare Cactis clustering algorithm, CK

clustering algorithm and ORION clustering method. First of all, it is important for the results to be

meaningful that the performance evaluation is done using the same "environment" for each

algorithm, since we focus specifically on clustering. Therefore we could not have benchmarked

each OODB since Cactis and ORION use, for example, different buffering and caching strategies.

Furthermore, CK clustering algorithm is not implemented in an OODB yet. Building our own

simulation model allows us to ensure that the algorithms are compared in the same conditions.

 Mathematical analysis has also already been performed on these three algorithms

[CHABRIDON92]. Although it provides exact results, it only gives a general idea of the algorithm

performances and cannot detect in which specific cases an algorithm performs better than an other

as simulation can.

- 34 -

 1/ Object base

 Unlike what is done in [TSANGARIS92b], we could not use the kind of database used by

benchmarks such as CluB-0. These benchmarks use only a few classes and their schema do not

offer as many relationships as we need to model both the class hierarchy (superclass/subclass

relationship) and the structural relationships between objects (version, configuration and

equivalence relationships). Therefore we decided to use a random object base which class

hierarchy forms a DAG, as in [HE93].

 The database generation was performed in two phases:

 - generate class hierarchies and class definition,

 - generate instances for these classes.

 a) Class hierarchy generation

 Given a number of classes, we first build a class hierarchy that includes versions (1). Then we

build a composite hierarchy and add equivalence relationships (2).

(1) A new class is added.

 A random number of versions of this class is added (descendant versions).

 If the new class has a superclass (given a probability of having a superclass) then

 randomly select a superclass among the existing classes,

 inherit attributes and methods of the superclass,

 for each additional version of the class:

 randomly select a superclass among the initial class superclass descendant

 versions,

 inherit attributes and methods of the superclass.

 Add additional random attributes and methods to all versions

 (sizes of attributes and methods are assigned randomly).

 Compute object size for these classes.

(2) Scan all the classes.

 For each class:

 If it is a component of one class (given a probability of being component) then

 randomly select a class composed of the new class.

 If it has an equivalent class (given a probability of having an equivalent) then

 randomly select an equivalent class.

- 35 -

 To simplify the class hierarchy, we did not take into account multiple inheritance because it

has no effect on clustering. We also assumed that a given class had one single ancestor version and

one single descendant version but could have several component classes or equivalent classes.

 b) Instances generation

 Instance creation has been designed as a special kind of query. However, the initial database is

to be created before any other query can occur, given an initial number of objects. The method we

used to generate instances is the following.

For each new object:

 Randomly select a class.

 If the new object class is a component of another class then

 randomly select an instance of this class (if any) to be composed of the new object.

 If the new object class is a version then

 randomly select one ancestor object in the new object class ancestor class,

 If using CK, inherit values of common attributes (either by copy or by reference).

 If the new object class has an equivalent class then

 randomly select one equivalent object among instances of the equivalent class.

 2/ Query generation

 a) Transactions

 The HyperModel Benchmark [ANDERSON90, BERRE91] provides 20 different types of

transactions. From those 20, we have isolated 15 types of transactions (some of them are slightly

modified to match the structural relationships we use).

• Name Lookup: Retrieve a randomly selected object; fetch one of its (randomly selected)

attribute value.

• Range Lookup: Select a class at random; select one of its attribute at random; determine

randomly two test values; fetch all the attributes of all the instances of the class whose selected

attribute value are in the range defined by the test values.

- 36 -

• Group Lookup: Given a randomly selected starting object, fetch all the attributes of either:

 - all its component objects,

 - all its equivalent objects,

 - all its descendant versions.

• Reference Lookup: Given a randomly selected starting object, fetch all the attributes of either:

 - its composite object,

 - all its ancestor versions.

• Sequential Scan: Select a class at random; select one of its attribute at random; fetch this

attribute's values for every instance of the class.

• Closure Traversal: Given a randomly selected starting object, follow one of the three structural

relationships (i.e., version, configuration or equivalence)* to a certain predefined (random) depth

D; fetch a random attribute from the resulting object; * the followed relationship can be either

always the same or randomly selected.

• Editing: Select an object at random; update one of its attribute (randomly chosen) with a random

value.

+ Object Creation: Creation of a new object (cf. Object base generation). This activates the CK

clustering algorithm.

+ Reclustering: ORION clustering algorithm needs a “Cluster message” to be dynamically

activated [BANERJEE87]. Cactis clustering algorithm is static. We can assume it will also wait

for a cluster message before reorganizing the database. However, cluster messages for the Cactis

algorithm should be far less frequent than cluster messages for the ORION algorithm since the

Cactis clustering algorithm is supposed to run when the database is idle [HUDSON89].

- 37 -

 b) Transaction generation

 Each kind of transaction should be given a probability of being processed (e.g., 10% for Name

Lookup, 7% for Range Lookup, 16% for Group Lookup, etc.). After a random think time, a

transaction should be selected according to these probabilities and submitted to the system.

 c) Transactions detailed operations

 Each transaction is a series of low-level operations (i.e., read or write operations either in

memory or on disk). Detailed operations (both I/Os and main memory accesses) necessary to

perform the transactions are shown in table 3.

 Assumptions:

• Objects OIDs are composed of a class ID and an instance ID, like in ORION [KIM90a].

• Address translation from logical object address (OID) to physical address (physical page

address and offset) is performed with three memory accesses to different tables

[GRUENWALD91].

• We can access a table showing all pages in the memory buffer. If the buffer's size is B pages,

the table will be B memory words in size given that the page number fits in one memory word.

The number of memory accesses to scan this table is B at worst, and the average number of

memory accesses is B/2.

• Since size of data concerning classes (i.e., all structural links, list of instances, etc.) is small

compared to size of instances' data kept on disk, we assume that all data concerning classes is kept

in main memory.

• Let A be the attribute average size.

Transaction Operation Cost

- 38 -

1/ Name Lookup Access to object page number

Check if page in buffer

If page not in buffer

Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

2/ Range Lookup For all N instances of the class:

Access to object OID

Access to object page number

Check if page in buffer

If page not in buffer

Read attribute value to be tested

Compare to test value

For all other nA-1 attributes:

 Read attribute value

N times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

1 test

[nA-1 times:

 A memory accesses]

3/ Group Lookup along versions Access to starting object page #

Check if page in buffer

If page not in buffer

For all D descendant objects:

Access to descendant OID

Access to descendant page #

Check if page in buffer

If page not in buffer

For all nA attributes:

 Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

D times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

nA times:

 A memory accesses

4/ Group Lookup along

configurations

Access to starting object page #

Check if page in buffer

If page not in buffer

For all C component objects:

Access to component OID

Access to component page #

Check if page in buffer

If page not in buffer

For all nA attributes:

 Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

C times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

nA times:

 A memory accesses

5/ Group Lookup along

equivalences

Access to starting object page #

Check if page in buffer

If page not in buffer

For all E equivalent objects:

Access to equivalent OID

Access to equivalent page #

Check if page in buffer

If page not in buffer

For all nA attributes:

 Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

E times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

nA times:

 A memory accesses

6/ Reference Lookup along

versions

Access to starting object page #

Check if page in buffer

If page not in buffer

For all N ancestor objects:

Access to ancestor OID

Access to ancestor page number

Check if page in buffer

If page not in buffer

For all nA attributes:

 Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

N times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

nA times:

 A memory accesses

- 39 -

Transaction Operation Cost

7/ Reference Lookup along

configurations

Access to starting object page #

Check if page in buffer

If page not in buffer

Access to composite object OID

Access to composite page number

Check if page in buffer

If page not in buffer

For all nA attributes:

 Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

nA times:

A memory accesses

8/ Sequential Scan For all N instances of the class:

Access to object OID

Access to object page number

Check if page in buffer

If page not in buffer

Read attribute value

N times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

9/ Closure Traversal along versions Access to starting object page #

Check if page in buffer

If page not in buffer

depth=D, do D times:

Access to descendant object OID

Access to descendant page #

Check if page in buffer

If page not in buffer

For last object accessed:

Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

at most D times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

10/ Closure Traversal along

configurations

Access to starting object page #

Check if page in buffer

If page not in buffer

depth=D, do D times:

Access to one component OID
Access to component page #

Check if page in buffer

If page not in buffer

For last object accessed:

Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

at most D times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

11/ Closure Traversal along

equivalences

Access to starting object page #

Check if page in buffer

If page not in buffer

depth=D, do D times:

Access to one equivalent OID
Access to equivalent page #

Check if page in buffer

If page not in buffer

For last object accessed:

Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

at most D times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

- 40 -

Transaction Operation Cost

12/ Random Closure Traversal Access to starting object page #

Check if page in buffer

If page not in buffer

depth=D, do D times:

Access to one descendant,

component or equivalent OID

Access to this object page #

Check if page in buffer

If page not in buffer

For last object accessed:

Read attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

at most D times:

1 memory access

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

13/ Editing Access to object page number

Check if page in buffer

If page not in buffer

Write new attribute value

3 memory accesses

B/2 memory accesses, B/2 tests

[1 I/O]

A memory accesses

14/ Object Creation Cluster new object Depends on the clustering

algorithm used

15/ Reclustering Cluster database Depends on the clustering

algorithm used

Table 3: Transactions detailed operations

 3/ Terminology

 Let us state what terms we will use in the following chapters.

 • A class superclass is its parent class along the class hierarchy.

 • A class subclass is one of its child class along the class hierarchy.

 • A class ancestor class is its parent class along the version structural relationship.

 • A class descendant class is its child class along the version structural relationship.

 • A class composite class is its parent class along the configuration structural relationship.

 • A class component class is one of its child class along the configuration structural

relationship.

 • A class equivalent class is one of its target class along the equivalent structural relationship.

 • An object ancestor object is its previous version.

 • An object descendant object is its next version.

 • An object composite object is the object that is composed of it.

 • An object component object is an object that is a part of it.

 An object equivalent object is an object that is an equivalent to it.

- 41 -

SLAM II Simulation Language

 SLAM II is an advanced FORTRAN based simulation language that allows models to be built

based on three different world views. It provides network symbols for building graphical models

that are easily translated into input statements for direct computer processing. It contains

subprograms that support both discrete event and continuous model developments. By combining

network, discrete event, and continuous modeling capabilities, SLAM II is a Simulation Language

for Alternative Modeling.

I- Introduction to Modeling [PRITSKER86]

 1/ Model building

 Since a model is a description of a system, it is also an abstraction of a system. To develop an

abstraction, a model builder must decide on the elements of the system to include in the model. To

make such decisions, a purpose for model building should be established. Reference to this purpose

should be made when deciding if an element of a system is significant and, hence, should be

modeled. A model building approach is presented in figure 16.

 2/ The simulation process

 The iterative simulation process can be subdivided into the following stages of development:

 • Problem Formulation: definition of the problem to be studied including a statement of the

problem-solving objective;

 • Model Building: abstraction of the system into mathematical-logical relationships in

accordance with the problem formulation;

- 42 -

Figure 16: Model building approach

 • Data Acquisition: identification, specification and collection of data;

 • Model Translation: preparation of the model for computer processing;

 • Verification: process of establishing that the computer program executes as intended;

 • Validation: process of establishing that a desired accuracy or correspondence exists between

the simulation model and the real system;

 • Strategic and Tactical Planning: process of establishing the experimental conditions for

using the model;

 • Experimentation: execution of the simulation model to obtain output values;

 • Analysis of Results: process of analyzing the simulation outputs to draw inferences and make

recommendations for problem resolution;

 • Implementation and Documentation: process of implementing decisions resulting from the

simulation and documenting the model and its use.

- 43 -

 The iterative simulation process is summarized by figure 17.

Figure 17: Iterative simulation process

II- Simulation [PRITSKER86]

 1/ Simulation Definition

 In its broadest sense, simulation is the process of designing a mathematical-logical model of a

real system and experimenting with this model on a computer. Thus simulation encompasses a

model building process as well as the design and implementation of an appropriate experiment

involving that model. These experiments, or simulations, permit inferences to be drawn about

systems

 • without building them, if they are only proposed systems;

 • without disturbing them, if they are operating systems that are costly or unsafe to experiment

with;

 • without destroying them, if the object of an experiment is to determine their limits of stress.

 In this way, simulation models can be used for design, procedural analysis and performance

assessment.

- 44 -

 2/ The different kinds of simulation

 Models of systems can be classified either as discrete change or continuous change. In fact, it

may be possible to model the same system with either a discrete change (discrete) or a continuous

change (continuous) model. In most simulations, time is the major independent variable. Other

variables included in the simulation are functions of time and are the dependent variables. The

adjectives discrete and continuous when modifying simulation refer to the behavior of the

dependent variables.

 a) Discrete Simulation

 Discrete simulation occurs when the dependent variables change discretely at specified points

in simulated time referred to as event times. The aim of a discrete simulation model is to reproduce

the activities that the entities engage in and thereby learn something about the behavior and

performance potential of the system. This is done by defining the states of the system and

constructing activities that move it from state to state. The state of a system is defined in terms of

the numeric values assigned to the attributes of the entities.

 A discrete simulation model can be formulated by: 1) defining the changes in state that occur

at each event time (event orientation); 2) describing the activities in which the entities in the system

engage (activity scanning orientation); or 3) describing the process through which the entities in

the system flow (process orientation). The relationship between event, activity and a process is

depicted in figure 18.

Figure 18: Relationship of events, activities and processes

- 45 -

 b) Continuous Simulation

 In continuous simulation, the dependent variables of the model may change continuously over

simulated time. A continuous simulation model is constructed by defining equations for a set of

state variables whose dynamic behavior simulates the real system.

 Models of continuous systems are frequently written in terms of differential equations of the

state variable. The reason for this is that it is often easier to construct a relationship for the rate of

change of the state variable than to devise a relationship for the state variable directly. For example,

the following differential equation could be used for the state variable s, over time t, together with

an initial condition a time 0.

 The first equation specifies the rate of change of s as a function of s and t and the second

equation specifies the initial condition for the state variable. In some cases, it is possible to

determine an analytical expression for the state variable s, given an equation for ds/dt. However,

in many cases of practical importance, an analytical solution for s will not be known. As a result,

the response s must be obtained by integrating ds/dt over time using an equation of the following

type:

 Sometimes a continuous system is modeled using difference equations. In these models, the

time axis is decomposed into time periods of length ∆t. The dynamics of the state variables are

described by specifying an equation which calculates the value of the state variable at period k+1

from the value of the state variable at period k. For example, the following difference equation

could be employed to describe the dynamics of the state variable s:

 When using difference equations, the essential structure of a continuous simulation model is

often reflected in the relationship between the state r used to project the state variable at period

k+1 from the value sk of the state variable at period k.

- 46 -

 b) Combined Simulation

 Combined simulation can also be performed if the dependent variables may change discretely,

continuously or continuously with discrete jumps superimposed. There are two types of events that

can occur in combined simulations. Time-events are those events which are scheduled to occur at

specified points in time. They are commonly thought of in terms of discrete simulation models. In

contrast, state-events are not scheduled, but occur when the system reaches a particular state. The

possible occurrence of a state-event must be tested at each time advance in the simulation. For

example, as illustrated in figure 19, a state-event could be specified to occur whenever state

variable SS(1) crosses state variable SS(2) in the positive direction.

Figure 19: Example of a state-event occurence

 In these three cases (discrete, continuous and combined simulation), the time variable may be

either continuous or discrete, depending on whether the discrete changes in the independent

variable can occur at any point in time or only at specified points.

 3/ SLAM II approach

 In SLAM II, the alternative modeling world views are combined to provide a unified modeling

framework. A discrete change system can be modeled within an event orientation, process

orientation or both. Continuous change systems can be modeled using either differential or

difference equations. Combined discrete-continuous change systems can be modeled by

combining the event and/or process orientation with the continuous orientation. In addition, SLAM

II incorporates a number of features which correspond to the activity scanning orientation.

- 47 -

 The process orientation of SLAM II employs a network structure which consists of specialized

symbols called nodes and branches. These symbols model elements in a process such as queues,

servers and decision points. The entities in the system flow through the network model.

 In the event orientation of SLAM II, the modeler defines the events and the potential changes

to the system when an event occurs. The mathematical-logical relationships prescribing the

changes associated with each event type are coded by the modeler as FORTRAN subroutines. A

set of standard subprograms is provided by SLAM II for use by the modeler to perform common

discrete event functions such as event scheduling, file manipulations, statistics collection and

random sample generation. The executive control program of SLAM II controls the simulation by

advancing time and initiating calls to the appropriate event subroutines at the proper points in

simulated time.

 A continuous model is coded in SLAM II by specifying the differential or difference equations

which describe the dynamic behavior of the state variables. These equations are coded by the

modeler in FORTRAN by employing a set of special SLAM II defined storage arrays. When

differential equations are included in the continuous model, they are automatically integrated by

SLAM II to calculate the values of the state variables within an accuracy prescribed by the modeler.

 An important aspect of SLAM II is that alternate world views can be combined within the same

simulation model. There are six specific interactions which can take place between the network,

discrete event and continuous world views of SLAM II:

 - entities in the network model can initiate the occurrence of discrete events;

 - events can alter the flow of entities in the network model;

 - entities in the network model can cause instantaneous changes to values of the state variables;

 - state variables reaching prescribed threshold values can initiate entities in the network model;

 - events can cause instantaneous changes to the values of state variables;

 - state variables reaching prescribed threshold values can initiate events.

- 48 -

 In SLAM II, a sequence of events, activities and decisions is referred to as a process. Entities

flow through a process. This, items are considered as entities. An entity can be assigned attribute

values that enable to distinguish between individual entities of the same type or between entities

of different types. For example, the time an entity enters the system could be an attribute of the

entity. Such attributes are attached to the entity as it flows through the network. The resources of

the system could be servers, tools or the like for which entities compete while flowing through the

system. A resource is busy when processing an entity, otherwise it is idle.

- 49 -

Simulation Model

I- Conceptual model

 1/ Overall model

 The overall simulation model is inspired by the one provided in [CHANG89a]. It is composed

as follows (cf. figure 20).

• Client module: After a predefined think time, the client issues the transactions to the Transaction

Manager according to some frequencies of appearance.

• Transaction Manager module: The transaction manager extracts from the transactions which

objects have to be accessed or updated, and performs the operations. In the case of a regular

operation, object requests are sent to the Buffering Manager. In the case of instance creation or a

Cluster message, the Clustering Manager is invoked.

• Buffering Manager: The Buffering Manager checks if an object is in main memory and requests

it from disk to the I/O Subsystem if it is not. It also deals with page replacement strategies.

• Clustering Manager: The Clustering Manager is activated depending on the algorithm (i.e.,

Cactis, CK or ORION) it implements. It deals with reorganizing the database on secondary storage

to achieve better performance.

• I/O Subsystem: This module deals with physical accesses to secondary storage.

 In the following paragraphs are presented a pseudo-code description for each of the overall

model modules.

- 50 -

Figure 20: Overall simulation model

 2/ Client module (cf. figure 21)

think_time:=rnd(avg_think_time); /* determine think time at random */

wait(think_time);

transtype:=rnd(set_of_probabilities); /* determine transaction type at random */

starting_object:=rnd(number_of_objects); /* determine starting object at random */

submit(trans_type,starting_object); /* to the Transaction Manager */

Figure 21: Client pseudo code

 3/ Transaction Manager module (cf. figure 22)

accept(trans_type,starting_object); /* from Client */

case trans_type

 1: begin /* Name Lookup */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 attr:=rnd(starting_object.class.number_of_attributes); /* attribute to read selected at random */

 get_value(attr); /* read attribute value */

 end

 2: begin /* Range Lookup */
 attr:=rnd(starting_object.class.number_of_attributes); /* attribute to read selected at random */

 min:=rnd(attr.domain); /* minimum range value */

 max:=rnd(attr.domain); /* maximum range value */

 for all objects in starting_object.class do

- 51 -

 fetch(object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 val:=get_value(attr); /* read attribute value */

 if (val≤max and val≥min) then
 for all other attributes do
 get_value(attribute); /* read attribute value */

 enddo

 endif

 enddo

 end

 3: begin /* Group Lookup along versions */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 while starting_object.descendant≠NIL do
 fetch(starting_object.descendant); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all starting_object.descendant attributes do
 get_value(attribute); /* read attribute value */

 enddo

 starting_object:=starting_object.descendant; /* next descendant version */

 enddo

 end

 4: begin /* Group Lookup along configurations */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all objects in starting_object.list_of_components do
 fetch(object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all object attributes do
 get_value(attribute); /* read attribute value */

 enddo

 enddo

 end

 5: begin /* Group Lookup along equivalences */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all objects in starting_object.list_of_equivalents do
 fetch(object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all object attributes do
 get_value(attribute); /* read attribute value */

 enddo

 enddo

 end

 6: begin /* Reference Lookup along versions */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 while starting_object.ancestor≠NIL do
 fetch(starting_object.ancestor); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all starting_object.ancestor attributes do
 get_value(attribute); /* read attribute value */

 enddo

 starting_object:=starting_object.ancestor; /* next ancestor version */

- 52 -

 enddo

 end

 7: begin /* Reference Lookup along configurations */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 if starting_object.composite≠NIL then
 fetch(starting_object.composite); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 for all starting_object.composite attributes do
 get_value(attribute); /* read attribute value */

 enddo

 endif

 end

 8: begin /* Sequential Scan */
 attr:=rnd(starting_object.class.number_of_attributes); /* attribute to read selected at random */

 for all objects in starting_object.class do
 fetch(object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 get_value(attr); /* read attribute value */

 enddo

 end

 9: begin /* Closure Traversal along versions */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 depth:=rnd(); /* depth determined at random */

 d:=depth;

 current_object:=starting_object;

 while (d>0 and current_object.descendant≠NIL) do
 fetch(current_object.descendant); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 d:=d-1;

 current_object:=current_object.descendant; /* next descendant version */

 enddo

 if d≠depth then /* at least one step performed */
 for all current_object attributes do
 get_value(attribute); /* read attribute value */

 enddo

 endif

 end

 10: begin /* Closure Traversal along configurations */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 depth:=rnd(); /* depth determined at random */

 d:=depth;

 current_object:=starting_object;

 while (d>0 and current_object.list_of_components≠Ø) do
 obj:=rnd(current_object.list_of_components); /* random object in list of components */

 fetch(obj); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 d:=d-1;

 current_object:=obj; /* next step */

 enddo

 if d≠depth then /* at least one step performed performed */
 for all current_object attributes do

- 53 -

 get_value(attribute); /* read attribute value */

 enddo

 endif

 end

 11: begin /* Closure Traversal along equivalences */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 depth:=rnd(); /* depth determined at random */

 d:=depth;

 current_object:=starting_object;

 while (d>0 and current_object.list_of_equivalents≠Ø) do
 obj:=rnd(current_object.list_of_equivalents); /* random object in list of equivalents */

 fetch(obj); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 d:=d-1;

 current_object:=obj; /* next step */

 enddo

 if d≠depth then /* at least one step performed */
 for all current_object attributes do
 get_value(attribute); /* read attribute value */

 enddo

 endif

 end

 12: begin /* Random Closure Traversal */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 depth:=rnd(); /* depth determined at random */

 d:=depth;

 current_object:=starting_object;

 rel:=rnd(3); /* random structural relationship */

 case rel
 1: test:=(d>0 and current_object.descendant≠NIL); /* follow versions */
 2: test:=(d>0 and current_object.list_of_components≠Ø) /* follow configurations */
 3: test:=(d>0 and current_object.list_of_equivalents≠Ø) /* follow equivalences */
 endcase

 while (test) do
 case rel
 1: obj:=current_object.descendant;

 2: obj:=rnd(current_object.list_of_components);

 3: obj:=rnd(current_object.list_of_equivalents);

 endcase

 fetch(obj); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 d:=d-1;

 current_object:=obj; /* next step */

 rel:=rnd(3); /* next structural relationship */

 case rel
 1: test:=(d>0 and current_object.descendant≠NIL); /* follow versions */
 2: test:=(d>0 and current_object.list_of_components≠Ø) /* follow configurations */
 3: test:=(d>0 and current_object.list_of_equivalents≠Ø) /* follow equivalences */
 endcase

 enddo

 if d≠depth then /* at least one step performed */
 for all current_object attributes do
 get_value(attribute); /* read attribute value */

 enddo

- 54 -

 endif

 end

 13: begin /* Editing */
 fetch(starting_object); /* request to Buffering Manager */

 wait_for(object_in_memory_message);

 attr:=rnd(starting_object.class.number_of_attributes); /* attribute to update */

 new_value:=rnd(attr.domain); /* new random value */

 update_value(attr,new_value); /* update is done in memory */

 end

 14: begin /* Object Creation */
 new_object.class:=rnd(number_of_classes); /* randomly select a class */

 if new_object.class.ancestorclass≠NIL then
 ancestor_obj:=rnd(new_object.class.ancestorclass.list_of_instances);

 while ancestor_obj.descendant≠NIL do
 ancestor_obj:=rnd(new_object.class.ancestorclass.list_of_instances);

 enddo

 ancestor_obj.descendant:=new_object;

 new_object.ancestor:=ancestor_obj;

 for all inherited attributes do
 if attribute.counter<update_threshold then /* reference attribute */
 set_value(new_object.attribute,ancestor_obj.OID);

 else /* copy attribute */
 set_value(new_object.attribute,getvalue(ancestor_obj.attribute));

 endif

 enddo

 endif

 if new_object.class.compositeclass≠NIL then
 new_object.composite:=rnd(new_object.class.compositeclass.list_of_instances);

 add(new_object,new_object.composite.list_of_components);

 endif

 if new_object.class.equivalentclass≠NIL then
 eq:=rnd(new_object.class.equivalentclass.list_of_instances);

 add(eq,new_object.list_of_equivalents);

 add(new_object,eq.list_of_equivalents);

 endif

 end

 15: begin /* Recluster */
 send(cluster_message); /* (to the Clustering Manager) */

 end

endcase

Figure 22: Transaction Manager pseudo code

- 55 -

 4/ Buffering Manager module

 Buffering is not the point we want to evaluate. Hence the buffering strategy we adopted is very

simple. Each time a new page has to be brought in memory, we drop the oldest page in buffer and

replace it with the new one. If the oldest page had been modified, an I/O is performed to save it on

disk. The Buffering Manager pseudo-code is provided by figure 23.

accept(object); /* input is an object */

page:=get_page(object); /* access to object page number */

if page not in memory then /* I/O */
 if oldest_page_in_buffer has been modified then
 write(oldest_page_in_buffer); /* on disk (request to the I/O Subsystem) */

 wait_for(IO_performed_message);

 endif

 read(page); /* request to the I/O Subsystem */

 wait_for(IO_performed_message);

endif

send(object_in_memory_message);

Figure 23: Buffering Manager pseudo code

Note: Since ORION deals with segments rather than with pages, a variant of the Buffering

Manager will have to be used in the ORION simulation model. Instead of loading only one page

into memory, ORION Buffering Manager will have to load a whole segment.

 5/ I/O Subsystem module

 A variant of the I/O Subsystem shown by figure 24 will have to be used in the ORION

simulation model to take in consideration the fact that a given number of pages in a segment are

contiguous. These pages, except the first one, are accessed without seek time.

accept(page); /* input is a page */

perform_IO(avg_seek_time+avg_latency_time+transfer_time);

send(IO_performed_message);

Figure 24: I/O Subsystem pseudo code

Note: An I/O can be either a read or a write operation.

- 56 -

 6/ Clustering Manager module

 a) Cactis clustering algorithm implementation

 The algorithm shown in figure 25 is a detailed version of the principle algorithm provided in

[HUDSON89].

wait_for(cluster_message); /* when the database is idle */

current:=list(); /* current object list (empty) */

for all classes do
 current:=current+class.list_of_instances; /* current list initialized to all objects */

enddo

repeat

 maxref:=0;

 for all objects in current do
 fetch(object); /* request to the Buffering Mgr. */

 wait_for(object_in_memory_message);

 if object.number_accessed>maxref then /* new maximum found */
 maxref:=object.number_accessed;

 obj:=object;

 endif

 enddo

 objects_in_page:=list(); /* list of objects in new page (empty) */

 create(page); /* create new page in memory */

 page.space_left:=page_size; /* space_left initialized */

 add(obj,objects_in_page);

 remove(obj,current);

 mcopy(obj,page); /* memory to memory copy */

 repeat

 max_usage:=0;

 for all objects in objects_in_page do
 fetch(object); /* request to the Buffering Mgr. */

 wait_for(object_in_memory_message);

 for all relationships in object do /* i.e., links with ancestor, descendant, */
 /* composite, components and equivalents */

 if (relationship.target_object in current and relationship.usage_count>max_usage) then
 max_usage:=relationship.usage_count;

 obj:=relationship.target_object;

 endif

 enddo

 if page.space_left≥obj.class.size then /* copy object in page */
 fetch(object); /* request to the Buffering Mgr. */

 wait_for(object_in_memory_message);

 mcopy(obj,page);

 add(obj,objects_in_page);

 remove(obj,current);

 endif

 page.space_left:=page.space_left-obj.class.size; /* done all the time to meet the stopping */

 /* condition space_left≤0 */

 until (current=Ø or page.space_left≤0)
until current=Ø

Figure 25: Clustering Manager pseudo code - Cactis

- 57 -

Note: A new object is placed in the last page where a new object was last placed if possible or a

new page otherwise.

 b) ORION clustering method implementation

 Since [BANERJEE87, KIM90a] only provide a general clustering method, we had to build an

algorithm fitting this method (cf. figure 26).

wait_for(cluster_message); /* dynamically issued message */

current:=list(); /* current object list (empty) */

for all classes do
 current:=current+class.list_of_objects; /* current list initialized to all objects */

enddo

/* cluster composite objects */

repeat

 stop:=TRUE; /* stop flag */

 obj:=first(current);

 while (stop and obj≠NIL) do
 fetch(obj); /* request to the Buffering Mgr. */

 wait_for(object_in_memory_message);

 if (obj.composite=NIL and obj.component_list≠Ø) then /* composite hierarchy root found */
 stop:=FALSE;

 list:=obj+get_components(obj); /* get_components is a recursive function */

 /* that returns all obj component objects */

 /* we get the whole composite hierarchy */

 /* rooted at obj in list */

 current:=current-list;

 create(segment); /* create new segment in memory */

 for all objects in list do
 fetch(object); /* request to the Buffering Mgr. */

 wait_for(object_in_memory_message);

 mcopy(object,segment); /* memory to memory copy */

 enddo

 else

 obj:=next(current); /* test on next object */

 endif

 enddo

until stop
/* cluster remaining objects according to their class */

while current≠Ø do
 obj:=first(current);

 create(segment);

 for all objects in current do
 fetch(object); /* request to the Buffering Mgr. */

 wait_for(object_in_memory_message);

 if object.class=obj.class then /* copy object in segment */
 remove(object,current);

 mcopy(object,segment);

 endif

 enddo

enddo

Figure 26: Clustering Manager pseudo code - ORION

- 58 -

 The idea of this algorithm is to first cluster objects according to the composite hierarchy they

belong to, and then cluster them according to their class. Hence, two types of segments will contain

objects either instances of the same class or a whole composite hierarchy.

Note: Since clustering is performed when a Cluster message is sent, a new object is placed in the

last segment where a new object was last placed if possible or a new segment otherwise.

 c) CK clustering algorithm implementation

 The algorithm provided by figure 27 is mostly a reformulating of the [CHANG90] one.

accept(object); /* newly created object */

candidate_pages:=list(); /* empty list */

/* determine the set of candidate pages according to the structural relationships use frequencies */

if (object.class.version%≥object.class.config% and object.class.version%≥object.class.equi%) then
 /* most frequent accesses along versions */

 if (object.descendant≠NIL) then
 add(object.descendant.page,candidate_pages);

 endif

else

 if (object.class.config%≥object.class.version% and object.class.config%≥object.class.equi%) then
 /* most frequent accesses along configurations */

 if (object.composite≠NIL) then
 add(object.composite.page,candidate_pages);

 endif

 for all object component objects do
 add(component.page,candidate_pages);

 enddo

 else /* most frequent accesses along equivalences */
 for all object equivalent objects do
 add(equivalent.page,candidate_pages);

 enddo

 endif

endif

/* select right page using cost formulas if needed */

if (object.ancestor=NIL) then /* object is NOT a version -> simple case */
 current:=first(candidate_page);

 while (current.space_left<object.class.size) do /* while object does not fit into page, skip */
 current:=next(candidate_page);

 enddo

 if (current=NIL) then /* no room for the new object */
 if (policy=SPLIT) then
 split(first(candidate_pages),object); /* the first candidate page is split */

 else

 create(newpage); /* Create new page in memory */

 mcopy(object,newpage); /* object moved in new page */

 endif

 else

 read(current); /* direct I/O to get the page */

- 59 -

 wait_for(IO_performed_message);

 mcopy(object,current); /* object moved in page */

 endif

else /* object IS a version */
 add(object.ancestor,candidate_pages); /* its ancestor'page becomes candidate page */

 selected_page:=NIL;

 mincost:=∞;

 for all pages in candidate_pages do
 for all attributes of object do
 if attribute is by_reference then
 if attribute.ref_object.page≠page then /* page has a cost */
 weight:=1/rnd(0,1); /* probability of accessing a given page via a */

 /* relationship evolves dynamically, so it is */

 /* determined at random */

 ref_lookup(page):=ref_lookup(page)+weight;

 endif

 else /* by_copy attribute */
 if object.ancestor.page≠page then /* page has a cost */
 copy_storage(page):=copy_storage(page)+attribute.size;

 weight:=1/rnd(0,1); /* probability of accessing a given page via a */

 /* relationship evolves dynamically, so it is */

 /* determined at random */

 copy_lookup(page):=copy_lookup(page)+weight;

 endif

 endif

 enddo

 /* compute total costs */

 totalcost(page,1):=(ref_lookup(page)+copy_lookup(page))*lookup_cost;

 totalcost(page,2):=ref_lookup(page)*lookup_cost+copy_storage(page)*storage_cost;

 for i:=1 to 2 do
 if totalcost(page,i)<mincost then /* new minimum cost */
 selected_page:=page;

 mincost:=totalcost(page,i);

 endif

 enddo

 enddo

 if selected_page=NIL then /* no candidate page found */
 create(newpage);

 mcopy(object,newpage); /* copy object to new page */

 else

 if selected_page.space_left≥object.class.size then /* enough space to store object */
 fetch(selected_page); /* direct I/O */

 wait_for(IO_performed_message);

 mcopy(object,page); /* copy object to page in memory */

 else
 if (policy=SPLIT) then
 split(selected_page),object); /* selected page is split */

 else

 create(newpage); /* Create new page in memory */

 mcopy(object,newpage); /* object moved in new page */

 endif

 endif

 endif

endif

Figure 27: Clustering Manager pseudo code - CK

- 60 -

Note 1: The page weight is here assigned at random. This is done because we will have no way in

our simulation to know the probability of accessing a page through a given relationship.

Note 2: The CK algorithm needs to know the space left in a given page. We will assume that it is

maintained in the page header.

II- Simulation parameters

 Parameters are divided into two categories: static parameters that may not change from one

simulation to another and dynamic parameters that can vary from one simulation to another.

 1/ Static parameters (cf. table 4)

Parameter name Designation Value Justification,

References

RAVGTHINK Average client think time 4 s [CHANG89a]

RCC Average

locking/unlocking time

(concurrency control)

0.5 ms [SRINIVASAN91]

IMLVL Multiprogramming level 10 [GRUENWALD91]

IWDSIZE Size of one memory word 4 bytes [GRUENWALD91]

ICPU CPU power 2 Mips [GRUENWALD91]

RMACC Memory word access time 0.0001 ms [GRUENWALD91]

RMTEST Time for comparing two

memory words

0.0007 ms Two memory accesses,

one subtraction

IPGSIZE Size of disk page 2048 bytes [CHENG91]

RSEEK Average disk seek time 28 ms [CHENG91]

RLATENCY Average disk latency time 8,33 ms [CHENG91]

RTRANSFER Disk page transfer time 1.28 ms [CHENG91]

Table 4: Static parameters

- 61 -

 2/ Dynamic parameters (cf. table 5)

Parameter name Designation Default value Range

NCL Number of classes 20 10-30

IAVGVER Average number of

versions per class

3 1-5

RPSUPER Probability for a class of

having a superclass

0.9 0-1

RPCOMP Probability for a class of

being a component class

0.5 0-1

RPEQUI Probability for a class of

having an equivalent class

0.1 0-1

INOBJ Initial number of objects 400 100-1000

IAVGASIZE Average attribute size 1 word 1-3 words

IAVGNATTR Average number of

attributes per class

10 5-20

IBUFF Size of memory buffer 10 pages 10-100 pages

IMD Maximum depth in

Closure Traversals

5 3-10

ISEGSIZE Default segment size

(ORION)

5 3-10

ITHRESHOLD Update Threshold (CK) 25 0-255

ISCALEF Scale factor (CK) 0.5 0-1

ISPLIT Page splitting policy (CK) ON ON/OFF

PT1 Probability of Name

Lookup

0.065 0-1

PT2 Probability of Range

Lookup

0.065 0-1

PT3 Probability of Group

Lookup along versions

0.065 0-1

PT4 Probability of Group

Lookup along

configurations

0.065 0-1

PT5 Probability of Group

Lookup along

equivalences

0.065 0-1

PT6 Probability of Reference

Lookup along versions

0.065 0-1

PT7 Probability of Reference

Lookup along

configurations

0.065 0-1

PT8 Probability of Sequential

Scan

0.065 0-1

PT9 Probability of Closure

Traversal along versions

0.065 0-1

PT10 Probability of Closure

Traversal along

configurations

0.065 0-1

PT11 Probability of Closure

Traversal along

equivalences

0.065 0-1

PT12 Probability of random

Closure Traversal

0.065 0-1

Parameter name Designation Default value Range

- 62 -

PT13 Probability of Editing 0.1695 (Cactis)

0.169 (ORION)

0.17 (CK)

0-1

PT14 Probability of Object

Creation

0.05 0-1

PT15 Probability of

Reclustering

0.0005 (Cactis)

0.001 (ORION)

0 (CK)

0-1

Table 5: Dynamic parameters

Note: Transactions default probabilities are computed on the basis of a Read/Write percentage of

about 80% / 20%. All "reading" transactions (i.e., transactions number 1 to 12) are given the same

probability to occur.

III- SLAM II Implementation

 We used SLAM II version 3.1 and FORTRAN 77 to implement our simulation models. Three

simulation models have been written, each of them implementing one of the studied clustering

algorithms. In these models, we have separated the object base management from the simulation

aspects. Since we needed a complex and dynamic data structure for the object base, the object base

data structure and the database operations were coded in FORTRAN. On the other hand, all that

deals with simulation is part of the SLAM II model. The SLAM II model is a direct translation of

the conceptual model. It also includes the definition of all the simulation parameters. The

FORTRAN-SLAM II interface is constituted of a set of USERF functions. The SLAM II-

FORTRAN interface is performed through the SLAM II common variables. All listings are

provided in [DARMONT94].

- 63 -

Simulation Results

I- Performance measurements

 For each case we studied (i.e., each configuration of the dynamic parameters' values), we

performed ten simulations in a row without reinitializing the random seed so that we get proper

mean results. Simulated time for each single simulation run was three hours.

 The comparison criteria we adopted are the following:

 • Response Time: response time is measured for all transaction types except reclustering

(which is considered as a special transaction in the Cactis and ORION simulation models; however,

time when transactions are blocked because of a reclustering is also taken into account); it is a

good metric for overall performance;

 • Transactions I/Os: transactions I/Os is the number of I/Os performed to complete regular

transactions; transactions I/Os may be an indication on how well objects are clustered;

 • Clustering Time Overhead: clustering time overhead measures the time needed to

reorganize the database; it includes I/O time and the time necessary to perform the memory

operations needed by the clustering algorithm but it does not take into account the counters updates

performed by Cactis and CK since those take a negligible amount of time compared to even one

single I/O;

 • Clustering I/O Overhead: clustering I/O overhead is the number of I/Os performed during

database reorganizations and object clustering;

 • Maximum number of pages used: maximum number of pages used is the maximum

number of disk pages needed by a clustering algorithm to cluster all the objects of the database;

 • System Throughput: system throughput is the number of transactions completed per second.

- 64 -

II- Results

 1/ Effect of the number of objects in the database

 We first tested the effect of varying the initial number of objects in the database using a uniform

random distribution to choose the transactions' starting objects. This is not always realistic since

there may be objects that are "hotter" (i.e., more frequently accessed) than others in real world

applications. Furthermore, the performance of the Cactis clustering algorithm depends on run-time

computed statistics, such as object's access frequencies, that are not the same when using different

random distributions when selecting the transactions starting object. So we implemented in a

second series of simulations a normal random distribution for the transactions' starting objects,

which is very similar to the "skewed random" function introduced in [TSANGARIS92b].

 a) Uniform distribution for starting object

 Figure 28a shows that response time when using Cactis is 24% lower than when using ORION.

Figure 28b shows that, for CK, response time increases linearly with the number of objects and

that CK algorithm totally outperforms the other two (being about 800 times better than Cactis).

"PS ON" and "PS OFF" stand for page splitting used or not.

Figure 28a: Response time function of number of objects (U)

- 65 -

Figure 28b: Response time function of number of objects (U)

 Transactions I/Os giving an idea of how good is a clustering scheme, figure 29 shows that

objects are 3.8 times better clustered by Cactis and CK (Cactis being slightly better) than they are

by ORION. It seems surprising that Cactis clusters so well and performs worse than CK, but figures

30a, 30b and 31a, 31b show again that CK outperforms both Cactis and ORION in terms of low

clustering overhead (being 266 times better than Cactis and 502 times better than ORION).

Furthermore, clustering overhead is almost constant for CK. Such an outstanding performance is

due to the true dynamic nature of CK, which is called only at object creation time and only accesses

the object to cluster related objects once. Variations in clustering overhead come from variations

in the number of created objects.

Figure 29: Transactions I/Os function of number of objects (U)

- 66 -

Figure 30a: Clustering time overhead function of number of objects (U)

Figure 30b: Clustering time overhead function of number of objects (U)

Figure 31a: Clustering I/O overhead function of number of objects (U)

- 67 -

Figure 31b: Clustering I/O overhead function of number of objects (U)

 The more a clustering algorithm is "sophisticated" (i.e., the more it clusters object according

to precise rules), the more it is likely to use a greater amount of disk pages to cluster the object

base. The maximum number of disk pages used (as shown by figure 32), as expected, is higher for

"sophisticated" algorithms, i.e., CK needs 1.8 times as many pages as Cactis and Cactis needs 1.3

times as many pages as ORION, for which number of pages increases linearly.

Figure 32: Maximum number of pages used function of number of objects (U)

 Since average client think time (i.e., time between two transaction generations) is 4 seconds,

optimal throughput lies around 0.25 transactions per second. Figure 33 is coherent with figures

28a and 28b, showing a near constant throughput for CK.

- 68 -

Throughput is high for all algorithms because a typical transaction is executed in much less time

than the average think time.

Figure 33: System throughput function of number of objects (U)

Note: Though page splitting should allow a better performance, our simulations show that CK

algorithm performances are very close whenever using the page splitting policy or not. This is due

to our implementation of the page splitting algorithm that is not as efficient as it could be in reality,

because we had no way to know or compute lookup costs in our simulations. Hence we used

random lookup costs and thus could not achieve optimal object placement.

 b) Normal distribution for starting object

 Figures 28a and 34a show indeed that Cactis performs 1.5 times better when objects are not

accessed through a uniform distribution, especially for intermediate numbers of objects (between

400 and 600).

 On the contrary, as shown by figures 36a, 36b, 37, 38a, 38b, 39a and 39b, CK and ORION

algorithms does not show any significative change of performance since they do not use such

statistics.

- 69 -

Figure 34a: Response time function of number of objects (N)

Figure 34b: Response time function of number of objects

Figure 35: Transactions I/Os function of number of objects (N)

- 70 -

Figure 36a: Clustering time overhead function of number of objects (N)

Figure 36b: Clustering time overhead function of number of objects (N)

Figure 37a: Clustering I/O overhead function of number of objects (N)

- 71 -

Figure 37b: Clustering I/O overhead function of number of objects (N)

 Figure 38 shows the number of pages used by the clustering algorithms. As expected (number

of pages is independent of workload), it does not vary when switching from uniform to normal

distribution for starting object.

Figure 38: Maximum number of pages used function of number of objects (N)

 Figure 34a, 34b and 39 show that system throughput still matches response time.

- 72 -

Figure 39: System throughput function of number of objects (N)

 2/ Effect of the memory buffer size

 On one hand, increasing the buffer capacity may lessen the effects of clustering since a given

set of related objects has a higher probability of being in main memory instead of on secondary

storage. On the other hand, objects are also accessed when reorganizing the database. Thus,

increasing buffer capacity should decrease clustering overhead, especially for the ORION

clustering algorithm that may make several non-consecutive accesses to each object. We

performed this set of simulations using an initial database of 400 objects and selecting the

transactions' starting objects from a uniform random distribution.

 Figures 40a and 40b show that response time decrease linearly with the buffer size for Cactis

and CK algorithms. The dual effect of increasing the buffer capacity can be seen on figures 41,

42a, 42b, 43a and 43b where both transactions I/Os and clustering overhead decrease linearly (still

for Cactis and CK). The ORION algorithm has a similar behavior, but the gain in performance is

felt earlier than with the other algorithms and then the gain in performance is less important (cf.

figure 40a). We can explain this by the fact that the ORION algorithm uses a smaller amount of

pages than the other algorithms to cluster the database. Thus, the buffer size grows faster relatively

to the database size. (For instance, a buffer size of 20 pages represents 25% of the database size

for ORION versus only 15% for Cactis and 9% for CK.) Figures 40a, 42a and 43a present rather

big variations in performance when buffer capacity grows over 40 pages. However, these values

oscillate around a mean value that decreases slowly but linearly.

- 73 -

Figure 40a: Response time function of buffer size

Figure 40b: Response time function of buffer size

Figure 41: Transactions I/Os function of buffer size

- 74 -

Figure 42a: Clustering time overhead function of buffer size

Figure 42b: Clustering time overhead function of buffer size

Figure 43a: Clustering I/O overhead function of buffer size

- 75 -

Figure 43b: Clustering I/O overhead function of buffer size

 The database size should not vary when modifying the buffer capacity. This is true according

to figure 44. Variations shown in the Cactis case are only due to the random factor inherent to

simulation.

Figure 44: Maximum number of pages function of buffer size

 System throughput (cf. figure 45) stays very close to optimal for Cactis and CK. For ORION,

it increases fast then stays almost constant before decreasing for high numbers of objects, matching

the response time (cf. figure 40a).

- 76 -

Figure 45: System throughput function of buffer size

 3/ Effect of the Read/Write ratio

 Read/Write ratio is an important factor when seeking to evaluate DBMSs performances.

Furthermore, [CHANG89a] claims that the CK algorithm performs better when the Read/Write

ratio is high. Thus we decided to study the effects of varying the Read/Write ratio. For our

simulation experiments, we used an initial database of 400 objects and a buffer size of 10 pages.

Table 6 gives the transaction probabilities we used, depending on the Read Percentage. What we

call the Read Percentage is the cumulated probability of all the read transactions (i.e., transactions

number 1 to 12 as they are defined in the Query Generation section).

 Read Percentage

 78% 60% 42% 24%

PT1-PT12 0.065 0.05 0.035 0.02

PT13 0.1695 (Cactis)

0.169 (ORION)

0.17 (CK)

0.2995 (Cactis)

0.299 (ORION)

0.3 (CK)

0.4295 (Cactis)

0.429 (ORION)

0.43 (CK)

0.5595 (Cactis)

0.559 (ORION)

0.56 (CK)

PT14 0.05 0.1 0.15 0.2

PT15 0.0005 (Cactis)

0.001 (ORION)

0 (CK)

0.0005 (Cactis)

0.001 (ORION)

0 (CK)

0.0005 (Cactis)

0.001 (ORION)

0 (CK)

0.0005 (Cactis)

0.001 (ORION)

0 (CK)

Table 6: Transaction probabilities function of Read Percentage

 The Cactis and ORION algorithms see their performance decrease when the Read Percentage

decreases (cf. figure 46a). On the contrary, response time decreases along with the Read percentage

in the case of CK (cf. figure 46b).

- 77 -

Figure 46a: Response time function of Read Percentage

Figure 46b: Response time function of Read Percentage

 Figures 48a, 48b and 49a, 49b show that clustering overhead increases for all the algorithms

(confirming what is said in [CHAN89a]). Since Object Creation is a write operation, the more the

Read Percentage drops, the more the database size increases, thus implying more clustering

overhead, as shown in section 1/.

 Parallely, transactions I/Os are slowly decreasing in number for Cactis and CK (cf. figure 47).

This is because one single Object Creation is less costly than, for instance, such read transactions

as Sequential Scans or Range Lookups. That explains the raise in performance for CK, since

transactions I/Os drops from 10,000 to 5000 while clustering I/O overhead only rises from 100 to

500. In the Cactis case, clustering overhead is too important to compensate the decrease in

transactions I/Os. For ORION, transactions I/Os

- 78 -

increase anyway because of the poor clustering ability of the algorithm. That explains the drop in

system throughput shown by figure 51 for ORION.

Figure 47: Transactions I/Os function of Read Percentage

Figure 48a: Clustering time overhead function of Read Percentage

Figure 48b: Clustering time overhead function of Read Percentage

- 79 -

Figure 49a: Clustering I/O overhead function of Read Percentage

Figure 49b: Clustering I/O overhead function of Read Percentage

 Number of pages (cf. figure 50) stays constant for the ORION and CK algorithms as it

increases for Cactis. The reason is that ORION and CK place objects with their related objects and

thus in possibly existing pages. On the contrary, when the Cactis algorithm reorganizes the

database, pages are filled as the objects are clustered. Thus, an increase in database size always

makes the number of disk pages used increase, which is not true for CK and ORION.

- 80 -

Figure 50: Maximum number of pages function of Read Percentage

Figure 51: System throughput function of Read Percentage

III- Conclusions

 • It is clear from our simulation experiments that the CK algorithm outperforms both Cactis

and ORION in terms of overall performance. The results we obtained showed that this is due to

both a good clustering capability and to the dynamic conception of the algorithm that allow an

extremely low clustering overhead. Such a good behavior is achieved because the CK algorithm

is activated only at object creation time and only accesses the few objects that are related to the

newly created object once. Therefore, transactions are never blocked very long during clustering,

as they are when the Cactis or the ORION algorithm is used. (The Cactis and ORION algorithms

have to access all the objects in the database, even several times in the case of ORION, to

- 81 -

reorganize the database; and transactions cannot be run when a reorganization occurs.) CK good

clustering capability is based on the users' hints that specify the inter-objects access frequencies

for each structural relationship and thus allows to cluster together objects that are likable to be

accessed together.

 • Our simulations showed too that Cactis had also a good clustering capability. This is due to

the use of statistics (i.e., objects access frequencies and relationships use frequencies) that allow

to cluster together objects that are actually accessed together. Though, the Cactis algorithm is still

completely outperformed by the CK algorithm. This is because, when using Cactis, clustering

overhead increases very quickly with the number of objects, thus annihilating any gain achieved

from good clustering capability. However, we have to keep in mind that this algorithm has been

designed to run when the database is idle so that reclustering does not alter the database

performance. Hence, if clustering overhead was not taken into account, the Cactis algorithm should

perform about as well as the CK algorithm as long as the statistics used during the last

reorganization are pertinent.

 • In terms of disk space, the more a clustering algorithm is simple, the less space it should use.

Actually, the more a clustering algorithm is complex, the more it clusters objects according to

sharp criteria. Thus, a smaller number of objects are likely to be clustered in the same clustering

unit (either a page or a segment). So the number of pages needed to store the database is greater.

Our simulation experiments confirm that fact. The ORION algorithm is the less greedy algorithm

in terms of disk pages used. Then the Cactis algorithm follows, using almost half the number of

disk pages needed by CK to cluster the database. However, when reorganizing the database, the

Cactis and ORION algorithms need to build a new set of pages before deleting the old one. Thus

they require about twice as much space as our graphs show.

- 82 -

Conclusion

 During this internship, I have gained knowledge in several areas. First I have improved my

knowledge in the field of databases in general and in OODBs in particular, both by attending Dr.

Gruenwald's classes and by performing research in the library. I now know much more about

implementation issues such as clustering, buffering and versioning. I have also gained proficiency

in the use of SLAM II simulation language.

 The main problem I encountered while performing this study was the design of the simulation

model. Papers I was lead to read often used simulation as an evaluation method, but very few of

them gave a detailed simulation model that could have been a starting base, since it was not the

aim of the papers. However, once the conceptual model had been designed, translating it into a

SLAM II simulation model has been a minor issue.

 Simulation experiments we performed showed that the Cactis algorithm is better than the

ORION algorithm due to its good clustering capability and that the CK algorithm totally

outperforms both other algorithms in terms of overall performance because it not only has a good

clustering capability but also allows a very low clustering overhead.

 The initial planning has been achieved for the most part. Though, we underestimated

simulation time (that ranged from half an hour to nine hours, depending on the clustering algorithm

used and the number of objects) and were not able to perform all the simulation experiments we

wanted to.

 Future research about this subject could be in a first step completing the simulation tests,

notably by determining the effects of database changes, e.g., varying the probability for a class to

belong to a composite class hierarchy, the average number and size of attributes, etc. Further

research about page splitting in CK could also be done, including a more accurate performance

evaluation of the two page splitting policies.

 Then the next step would be the design and evaluation of one or several new clustering

algorithms. One alternative would be to build a dynamic clustering algorithm that would use the

same statistics as Cactis (i.e., objects access frequencies and relationships use frequencies) to

cluster objects together, but could be able to use them at run-time (e.g., an

- 83 -

algorithm activated at object creation time, like CK). Such an algorithm could have Cactis' good

clustering capability without being handicapped by an important clustering overhead.

 Another alternative would be to modify the CK algorithm so that it does not use users' hints

for inter-objects access frequencies any more and rely only on statistics, in order to make the

algorithm even more accurate and performant. The problem with users' hints is that their accuracy

depends the user (either the database administrator or a programmer) knowledge of the database.

On the other hand, automatically gathered statistics show an exact image of the database status.

Thus, by computing inter-objects access frequencies for each structural relationship and each

object at run-time, a better performance should be achieved.

- 84 -

Bibliography

[ANDERSON90]

T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B. Scheider

The HyperModel Benchmark

International Conference on Extending Database Technology, Venice, Italy, March 1990, Pages

317-331

[ANDREWS91a]

T. Andrews

Programming with Vbase

In "Object-Oriented Databases with Applications to CASE, Networks and VLSI CAD", Edited

by R. Gupta and E. Horowitz, Prentice Hall Series in Data and Knowledge Base Systems, 1991,

Pages 130-177

[ANDREWS91b]

T. Andrews, C. Harris, K. Sinkel

ONTOS: A Persistent Database for C++

In "Object-Oriented Databases with Applications to CASE, Networks and VLSI CAD", Edited

by R. Gupta and E. Horowitz, Prentice Hall Series in Data and Knowledge Base Systems, 1991,

Pages 387-406

[ATKINSON92]

M.P. Atkinson, A. Birnie, N. Jackson, P.C. Philbrow

Measuring Persistent Object Systems

5th International Workshop on Persistent Object Systems, San Miniato (Pisa), Italy, September

1992, Pages 63-85

[BANCILHON88]

F. Bancilhon, G. Bardebette, V. Benzaken, C. Delobel, S. Gamerman, C. Lécluse,

P. Pfeffer, P. Richard, F. Velez

The Design and Implementation of O2 , an Object-Oriented Database System

2nd International Workshop on Object-Oriented Database Systems, Bad Münster am Stein-

Ebernburg, FRG, September 1988, Pages 1-22

- 85 -

[BANCILHON92]

F. Bancilhon, C. Delobel, P. Kanellakis

Building an Object-Oriented Database System: The Story of O2

Morgan Kaufmann Publishers, 1992

[BANERJEE87]

J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, H.-J. Kim

Data Model Issues for Object-Oriented Applications

ACM Transaction on Office Information Systems, Vol. 5, No. 1, January 1987, Pages 3-26

[BATORY85]

D.S. Batory, W. Kim

Modeling Concepts for VLSI CAD Objects

ACM Transactions on Database Systems, Vol. 10, No. 3, September 1985, Pages 322-346

[BENZAKEN90a]

V. Benzaken, C. Delobel

Enhancing Performance in a Persistent Object Store: Clustering Strategies in O2

4th International Workshop on Persistent Object Systems, September 1990, Pages 403-412

[BENZAKEN90b]

V. Benzaken

An Evaluation Model for Clustering Strategies in the O2 Object-Oriented Database System

3rd International Conference on Database Theory, Paris, France, December 1990, Pages 126-140

[BERRE91]

A.J. Berre, T.L. Anderson

The HyperModel Benchmark for Evaluating Object-Oriented Databases

In "Object-Oriented Databases with Applications to CASE, Networks and VLSI CAD", Edited

by R. Gupta and E. Horowitz, Prentice Hall Series in Data and Knowledge Base Systems, 1991,

Pages 75-91

[BERTINO91]

E. Bertino, L. Martino

Object-Oriented Databases Management Systems: Concepts and Issues

IEEE Computer, April 1991, Pages 33-47

- 86 -

[CATTELL88]

R.G.G. Cattell

Object-Oriented DBMS Performance Measurement

2nd International Workshop on Object-Oriented Database Systems, Bad Münster am Stein-

Ebernburg, FRG, September 1988, Pages 364-367

[CATTELL91a]

R.G.G. Cattell

Object Data Management: Object-Oriented and Extended Relational Database Systems

Addison-Wesley Publishing Company, 1991

[CATTELL91b]

R.G.G. Cattell

An Engineering Database Benchmark

In “The Benchmark Handbook for Database Transaction Processing Systems”, Edited by Jim

Gray, Morgan Kaufmann Publishers, 1991, Pages 247-281

[CHABRIDON92]

S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald

Storage Management Techniques for Object-Oriented Database Systems

University of Oklahoma, School of Computer Science, Technical Report, December 1992

[CHABRIDON93]

S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald

Clustering Techniques for Object-Oriented Database Systems

38th IEEE Computer Society International Conference, February 1993, San Francisco, Pages

232-242

[CHANG89a]

E.E. Chang

Effective Clustering and Buffering in an Object-Oriented DBMS

University of California, Berkeley, Computer Science Division (EECS), Technical Report No.

UCB/CSD 89/515, June 1989

- 87 -

[CHANG89b]

E.E. Chang, R.H. Katz

Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an

Object-Oriented DBMS

ACM SIGMOD International Conference on Management of Data, Portland, Oregon, June 1989,

Pages 348-357

[CHANG90]

E.E. Chang, R.H. Katz

Inheritance in computer-aided design databases: semantics and implementation issues

CAD, Vol. 22, No. 8, October 1990, Pages 489-499

[CHENG91]

J.R. Cheng, A.R. Hurson

Effective clustering of complex objects in object-oriented databases

ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May

1991, Pages 22-31

[DARMONT94]

J. Darmont

Comparaison de trois méthodes de groupement d'enregistrements (clustering) pour des bases de

données orientées-objet en termes de temps de réponse et d'occupation disque

CUST, Institut des Sciences de L'Ingénieur, Blaise Pascal University, Clermont-Ferrand, France,

Technical report, June 1994

[DEUX90]

O. DEUX et al.

The Story of O2

IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 1, March 1990, Pages 91-

108

[DREW90]

P. Drew, R. King, S. Hudson

The Performance and Utility of the Cactis Implementation Algorithms

16th International Conference on Very Large Data Bases, Brisbane, Australia, August 1990,

Pages 135-147

- 88 -

[FORD88]

S. Ford, J. Joseph, D.E. Langworthy, D.F. Lively, G. Pathak, E.R. Perez,

R.W. Peterson, D.M. Sparacin, S.M. Thatte, D.L. Wells, S. Agarwala

ZEITGEIST: Database Support for Object-Oriented Programming

2nd International Workshop on Object-Oriented Database Systems, Bad Münster am Stein-

Ebernburg, FRG, September 1988, Pages 23-42

[GRUENWALD91]

L. Gruenwald, M.H. Eich

MMDB Reload Algorithms

ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May

1991, Pages 397-405

[HE93]

M. He, A.R. Hurson, L.L. Miller, D. Sheth

An Efficient Storage Protocol for Distributed Object-Oriented Databases

IEEE Parallel & Distributed Processing, 1993, Pages 606-610

[HUDSON89]

S.E. Hudson, R. King

Cactis: A Self-Adaptive Concurrent Implementation of an Object-Oriented Database

Management System

ACM Transactions on Database Systems, Vol. 14, No. 3, September 1989, Pages 291-321

[HUDSON91]

S.E. Hudson, R. King

The Efficient Support of Functionally-Defined Data in Cactis

In "On Object-Oriented Database Systems", Edited by K.R. Dittrich, U. Doyal and

A.P. Buchman, Springer-Verlag Topics in Information Systems, 1991, Pages 341-356

[HURSON93]

A.R. Hurson, S.H. Pakzad, J.-b. Cheng

Object-Oriented Database Management Systems: Evolution and Performance Issues

IEEE Computer, February 1993, Pages 48-60

- 89 -

[KATZ91]

R.H. Katz, E.E. Chang

Inheritance Issues in Computer-Aided Design Databases

In "On Object-Oriented Database Systems", Edited by K.R. Dittrich, U. Doyal and

A.P. Buchman, Springer-Verlag Topics in Information Systems, 1991, Pages 45-52

[KHOSHAFIAN90]

S. Khoshafian, R. Abnous

Object Orientation

John Wiley & Sons, 1990

[KIM88]

W. Kim, H.-T. Chou

Versions of Schema for Object-Oriented Databases

14th International Conference on Very Large Data Bases, Los Angeles, USA, August 1988, Pages

148-159

[KIM90a]

W. Kim, J.F. Garza, N. Ballou, D. Woelk

Architecture of the ORION Next-Generation Database System

IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 1, March 1990, Pages 109-

124

[KIM90b]

W. Kim

Object-Oriented Databases: Definition and Research Directions

IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, September 1990, Pages

327-341

[MAIER86]

D. Maier, J. Stein, A. Otis, A. Purdy

Development of an Object-Oriented DBMS

ACM OOPSLA '86 Proceedings, September 1986, Pages 472-482

- 90 -

[MALHOTRA92]

A. Malhotra, K.J. Perry

Allocating Objects to Pages

5th International Workshop on Persistent Object Systems, San Miniato (Pisa), Italy, September

1992, Pages 3-10

[MONK92]

S.R. Monk, I. Sommerville

A model for versioning of classes in object-oriented databases

10th British National Conference on Databases, BNCOD 10, Aberdeen, Scotland, July 1992,

Pages 42-58

[PRITSKER86]

A.A.B. Pritsker

Introduction to Simulation and SLAM II

Hasted Press (John Wiley & Sons), System Publishing Corporation, 1986

[SLAM86]

SLAM II Pocket Guide

© 1986 Pritsker & Associates

[SLAM92]

SLAM II Quick Reference Manual

© 1990, 1992 Pritsker Corporation

[SRINIVASAN91]

V. Srinivasan, M.J. Carey

Performance of B-Tree Concurrency Control Algorithms

ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May

1991, Pages 416-425

[TSANGARIS91]

M.M. Tsangaris, J.F. Naughton

A Stochastic Approach for Clustering in Object Bases

ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May

1991, Pages 12-21

- 91 -

[TSANGARIS92a]

M.M. Tsangaris, J.F. Naughton

On the Performance of Object Clustering Techniques

ACM SIGMOD International Conference on Management of Data, San Diego, California, June

1992, Pages 144-153

[TSANGARIS92b]

M.M. Tsangaris

Principles for Static Clustering for Object Oriented Databases

University of Wisconsin-Madison, Computer Science Department, Technical Report #1104,

August 1992

[WILKES88]

W. Wilkes

Instance Inheritance Mechanisms for Object Oriented Databases

2nd International Workshop on Object-Oriented Database Systems, Bad Münster am Stein-

Ebernburg, FRG, September 1988, Pages 274-279

[WU93]

Z. Wu, R. Leahy

An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image

Segmentation

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 11, November 1993,

Pages 1101-1111

- 92 -

Appendix: Paper extracted from the Study

 See pages 93 to 105.

- 93 -

CLUSTERING ALGORITHMS FOR OBJECT-ORIENTED DATABASES

 Jérôme Darmont Le Gruenwald

 Blaise Pascal University University of Oklahoma

 Institut des Sciences de l'Ingénieur School of Computer Science

 Clermont-Ferrand, France Norman, Oklahoma 73019

 gruenwal@mailhost.ecn.uoknor.edu

Abstract: It is widely acknowledged that good object

clustering is critical to the performance of OODBs.

Clustering means storing related objects close

together on secondary storage so that when one object

is accessed from disk, all its related objects are also

brought into memory. Then access to these related

objects is a main memory access that is much faster

than a disk access. The aim of this paper is to compare

the performance of three clustering algorithms: Cactis,

CK and ORION. Simulation experiments we

performed showed that the Cactis algorithm is better

than the ORION algorithm and that the CK algorithm

totally outperforms both other algorithms in terms of

response time and clustering overhead.

Keywords: Cactis, CK, Clustering, Object-Oriented

Databases, ORION, Simulation

1. INTRODUCTION

 There are several ways to improve response time

(i.e., to limit the number of disk Input/Output) in a

DBMS. Indexing, clustering (i.e., storing related

entities close together on secondary storage) and

buffering (i.e., fetching clustered entities at the same

time and setting up replacement strategies) are widely

used techniques in conventional DBMSs. However,

OODBs present additional semantics like structural

properties (inheritance, composite objects) and

interrelationships between objects. New techniques

have then to be thought of.

 We have chosen to study three clustering

algorithms found in the literature that we consider to

be different enough to be representative of the current

research on clustering techniques in OODBs: Cactis,

CK and ORION clustering algorithms. The Cactis and

ORION clustering algorithms are already

implemented in DBMSs.

 These particular algorithms have been selected

because they present characteristics that are interesting

to compare. For instance, CK and ORION are dynamic

clustering algorithms as the Cactis clustering

algorithm is static. ORION also uses only users’ hints

to cluster a database; the Cactis clustering algorithm

uses only statistics about the database and the CK

algorithm makes use of both.

 Furthermore, the aim of previous performance

evaluations performed on these algorithms was only to

compare the effects of one particular clustering

strategy to those of a "no clustering" policy

[CHAN89a, HURS89]. We intend to compare each of

these three algorithms to each other to determine

which one performs the best in a given environment.

The characteristics that make this algorithm the best

should be isolated.

 This paper is organized as follows. Section 2

explains the principles of clustering in OODBs. The

three studied clustering algorithms are described in

Section 3. Section 4 describes our simulation model.

In Section 5, the simulation results are analyzed.

Section 6 concludes this paper and provides future

research directions.

2. CLUSTERING IN OODBs

2.1. Clustering principles

 The goal of object clustering is to reduce the

number of disk I/Os for object retrieval. Typically, the

unit of data transferred from disk is a page instead of

an individual object. If two objects are clustered on the

same page, it will take only one disk I/O to access both

objects successively. [HURS93]

 Clustering algorithms attempt to improve the

performance of object-oriented database systems by

placing on the same page related sets of objects

[TSAN92]. In object-oriented databases, complex

objects are the basic units of data manipulation. The

subobjects of a complex object may come from

different classes. Traditional storage systems tend to

group records of the same type physically close to each

other on disk. This results in tedious and expensive

reconstruction procedures (such as join operations) to

retrieve complex objects. Therefore, it is logical to

cluster related objects

- 94 -

of different classes together to achieve acceptable

performance. [HURS93]

 The problem of clustering can be seen as a graph

partitioning problem. The nodes of the graph are the

objects and the edges are the links between objects.

This problem is NP-complete. However, as the graph

of objects represents the database state, all is needed is

an incremental solution where new objects are placed

at the “right place”. Most of the algorithms used can

be classified as greedy algorithms: they scan the

objects according to their links and try to place them

into the same cluster unit. Thus the cost of clustering

has no major impact on the overall system. [BENZ90]

2.2. Clustering strategies

 According to [CATT91], clustering in an OODB

can actually be performed in many different ways:

 • composite objects: objects can be clustered

according to aggregation relationships;
 • references: some OODBs allow objects to be

clustered according to relationships with other objects;

composite objects clustering is, in fact, a special case

of this, clustered by aggregation relationships;
 • object types: objects may also be clustered by

their types; if there is a generalization hierarchy,

subtype instances may also be clustered in the same

segment;
 • indexes: as in relational DBMSs, it may be

possible to cluster objects by an index on their

attributes;
 • custom: some OODBs allow clustering to be

performed “on the fly”.
 Unless objects are stored redundantly, an object can

generally be clustered according to one of these rules.

Where the rules do not conflict, however, it is possible

to follow multiple clustering rules.

 Clustering may be performed at two levels:

 • pages: objects may be clustered according to the

smallest physical unit read from disk, which is

normally a page; this type of clustering can produce

the greatest gains in performance when a “working set”

of objects cannot be precisely defined for all

applications; page clustering is more useful for

clustering by index, reference and composite objects;
 • segments: objects may be clustered in larger

units, when the user is able to specify a meaningful

logical grouping for segmentation; segment clustering

is most useful for type clustering; it may also be used

for composite objects, if used at a sufficiently course

grain.
 The largest performance gains are generally

afforded by page clustering, since pages are the unit of

access from disk and a “working set” of pages is

selected dynamically according to the access

characteristics of an application program. Segment

clustering produces efficiency gains only if relatively

large contiguous units are transferred from disk, or

when efficiency gains can be made through grouping

operations (for example, for composite objects

deletion).

2.3. Users’ hints

 To expedite the retrieval of related data, database

systems often take hints from the user (or database

administrator) to store related data physically close

together [KIM90b]. For example, the GemStone

database administrator, or a savvy application

programmer can hint GemStone that certain objects

are often used together and so should be clustered on

disk [MAIE86]. The VBASE system allows explicit

clustering hints when objects are created [ANDR91a].

The strategy adopted in ONTOS is to allow the

programmer to specify clustering and to provide tools

for reclustering when more experience with the

applications permits better choices to be made

[ANDR91b].

2.4. Static versus dynamic clustering

 In the static case, clustering is done at the time

objects are created and no reorganization is implied

when the links between objects are updated [BENZ90].

A static clustering scheme offers a good placement

policy for complex objects but does not take into

account the dynamic evolution of objects. In

applications such as design databases, objects are

constantly updated during early parts of the design

cycle. Frequent updates may destroy the initially

clustered structure. To keep the object structure

optimized, reorganization might be necessary for

efficient future accesses [DEUX90].
 Dynamic clustering is done at run time when

objects are accessed concurrently and becomes

attractive in an environment where the read operations

dominate the write operations [BENZ90]. A dynamic

clustering scheme should try to recluster when

scattered access cost becomes too high. However,

reclustering will generate overhead such as extra disk

I/Os, so it is important to determine when a

reorganization should occur. If the overhead is not

justified, reclustering may actually degrade the overall

performance [CHEN91].

- 95 -

3. CLUSTERING ALGORITHMS

3.1. Cactis clustering algorithm

 Cactis [HUDS89] is an object-oriented, multi-user

DBMS developed at the University of Colorado. It is

designed to support applications that require rich data

modeling capabilities and the ability to specify

functionally-defined data.

 The Cactis clustering algorithm is designed to

place objects that are frequently referenced together

into the same block (i.e., page, i.e., I/O unit) on

secondary storage. It can improve response time up to

60%.

 In order to improve the locality of data references,

data is clustered on the basis of usage patterns. A count

of the total number of times each object in the database

is accessed is kept, as well as the number of times each

relationship between objects in the process of attribute

evaluation or marking out-of-date is crossed. Then, the

database is periodically reorganized on the basis of this

information. The database is packed into blocks using

the greedy algorithm shown in Figure 1.

 This clustering algorithm is also implemented in

the Zeitgeist system [FORD88].

 The Cactis clustering algorithm is a static

algorithm since it is periodically used to recluster the

database when the database is idle. This implies that

the database is not clustered on the first run because

no information about the database is available

[CHAB93].

 This algorithm does not require users' hints. This is

an advantage since no arbitrary choice has to be made

by the user [CHAB93]. But it also implies some time

overhead (time to compute total number of times each

object is accessed and number of times each

relationship is crossed) and space overhead (the main

memory space used to store the counters grows with

the database size). It also raises the problem of getting

pertinent statistics about the database.

Repeat

 Choose the most referenced object in the database that has not yet been assigned a block.

 Place this object into a new block.

 Repeat

 Choose the relationship belonging to some object assigned to the block such that:

 (1) the relationship is connected to an unassigned object outside the block and,

 (2) the total usage count for the relationship is the highest.

 Assign the object attached to this relationship to the block.

 Until the block is full.
Until all objects are assigned blocks.

Figure 1: Cactis clustering algorithm [HUDS89]

3.2. ORION clustering method

 ORION is a series of next-generation database

systems that have been prototyped at MCC

(Microelectronics Computer Technology Corp.) as

vehicles for research into the next-generation database

architecture and into the integration of programming

languages and databases [KIM90a]. ORION has been

designed for Artificial Intelligence (AI), Computer-

Aided Design and Manufacturing (CAD/CAM) and

Office Information System (IOS) applications

[BANE87].

 ORION supports only a simple clustering scheme.

Instances of the same class are clustered in the same

physical segment (i.e., a number of blocks or pages).

Each class is associated with one single segment.

[KIM90a]

 But ORION also provides direct support for

composite objects, i.e., objects with a hierarchy of

exclusive component objects (see Figure 2). The

hierarchy of classes to which the objects belong is a

composite object hierarchy. The object-oriented data

model, in its conventional form, is sufficient to

represent a collection of related objects. However, it

does not capture the IS-PART-OF relationship between

objects; one object simply references, but does not

own, other objects. A composite object hierarchy

captures the IS-PART-OF relationship between a

parent class and its component classes, whereas a class

hierarchy represents the IS-A relationship between a

superclass and its subclasses. [BANE87]
 Then it becomes advantageous to store instances of

multiple classes in the same segment. User assistance

is required to determine which classes should share the

segment. The user can dynamically issue a Cluster

message containing a “ListOfClassNames” argument

specifying the classes that are to be placed in the same

segment. [BANE87]

 In ORION, segments have a fixed size. So the

number of pages they contain gives the number of I/Os

necessary to load the segment. When a segment is full,

a new page is allocated and linked to the segment (a

pointer must be maintained in the segment descriptor).

This

- 96 -

implies some overhead to find the address of each

additional page [CHAB93].

Figure 2: Example of composite object

 The advantage of this method is its simplicity that

makes the method fast and easy to implement since no

cost model is defined and no overhead is implied to

determine what is the optimal storage unit for an object.

But simplicity also turns to a limitation since users'

hints can only be based on the static information given

by the data model and not on some information

determined by the database usage and which could

lead to a better clustering. [CHAB93]

3.3. CK clustering algorithm

 The CK algorithm (from its authors' names: Chang

and Katz) is defined in the CAD/CAM context. It can

improve response time up to 200% when the

Read/Write ratio is high (which is true for real CAD

applications) [CHAN89b]. The CK algorithm makes

use of several new concepts, such as structural

relationships and instance-to-instance inheritance.

3.3.1. Structural relationships

 Structural relationships are versions,

configurations and equivalence relationships.

 Objects sharing the same interface but having

different implementations are called versions

[BATO85]. They represent different design

alternatives. For example, if an object is identified by

the pattern: Name[Version].Type where "Name" is the

object name, "Version" its version number and "Type"

its type; Nice[1].car, Nice[2].car and Nice[3].car

would be three versions of the same object "Nice" type

of which is "car".

Figure 3: Example of configurations

 A very important characteristic of OODBs is the

presence of composite (complex or nested) objects.

This concept is represented through

composite/component relationships among objects.

Coupling the concept of versions with composite

objects leads to configurations. A configuration is a

composite unit whose components are bound to

specific versions (see Figure 3) [CHAN90].

 If two objects are alternative representations of the

same real world entity, they are equivalent.

- 97 -

3.3.2. Instance-to-instance inheritance

 Besides structural relationships, inheritance

provides additional semantics. As in object-oriented

programming languages, a class/subclass hierarchy

can be defined for an OODB based on the IS-A

relationship. A subclass inherits the structure (i.e.,

attributes' definitions) and the methods of its

superclass. However, in OODBs, this form of

inheritance (called type inheritance) is not sufficient.

[CHAB93]

 The CK algorithm also uses instance-to-instance

inheritance that not only transfers the existence of

attributes from one object to another (like type

inheritance), but moreover the values of these

attributes [WILK88].

 Instance-to-instance inheritance is important in

computer-aided design databases, since a new version

tends to resemble its immediate ancestor. It is useful if

a new version can inherit its attributes' values, and

more importantly its constraints, from its ancestor.

[KATZ91]

3.3.3. Algorithm presentation

 Instance-to-instance inheritance introduces more

complexity because it allows attributes to be

selectively inherited at run-time. This run-time

flexibility requires a sophisticated approach for

clustering. The CK algorithm is based on inter-objects

access frequencies (given by the user at data type

creation time) for each kind of structural relationship,

e.g., 20% of access along version relationships, 75%

of access along configuration relationships and 5% of

access along equivalence relationships.

 When a new object is created, the algorithm

chooses an initial placement based on which

relationship is most frequently used to reach the object

(in the above example, a new instance would probably

be placed in the same page as its composite objects).

Then, for each inherited attribute, cost formulas are

used to choose between implementation by copy or by

reference, i.e., either by copying the attribute's value

or reference it with a pointer. The augmented access

frequencies (i.e., relationship traversal frequencies

plus inheritance traversal frequencies) may change the

initial placement. The clustering algorithm pseudo

code is given in Figure 4.

 Then, if the best candidate page is full, either the

next best candidate page is chosen or the page is split

if the expected access cost resulting from the split is

an improvement over placement in the next best

candidate page.

 Page splitting is performed by a greedy algorithm

that partitions the inheritance-dependency graph into

two sub-graphs that each fit into one page. This

algorithm is not optimal, but it is linear (whereas an

exact partitioning algorithm would be NP-complete).

It is described in Figure 5.

4. SIMULATION MODEL

4.1. Object base

 For our simulations, we used a random object base

whose class hierarchy forms a DAG, as in [HE93]. The

database generation was performed in two phases: first

generate class hierarchies and class definition (see

Figure 6), then generate instances for these classes. To

simplify the class hierarchy, we did not take into

account multiple inheritance because it has no effect

on clustering. We also assumed that a given class had

one single ancestor version and one single descendant

version but could have several component classes or

equivalent classes.

 Instance creation has been designed as a special

kind of query. However, the initial database is to be

created before any other query can occur, given an

initial number of objects. The method we used to

generate instances is shown in Figure 7.

4.2. Query generation

 The HyperModel Benchmark [ANDE90, BERR91]

provides 20 different types of transactions. From those

20, we have isolated 15 types of transactions (some of

them are slightly modified to match the structural

relationships we use). Each transaction has a

probability to occur.

• Name Lookup: Retrieve a randomly selected object;

fetch one of its (randomly selected) attributes' value.
• Range Lookup: Select a class at random; select one

of its attributes at random; determine randomly two

test values; fetch all the attributes of all the instances

of the class whose selected attribute's value are in the

range defined by the test values.
• Group Lookup: Given a randomly selected starting

object, fetch all the attributes of either:
 - all its component objects,

 - all its equivalent objects,

 - all its descendant versions.

• Reference Lookup: Given a randomly selected

starting object, fetch all the attributes of either:
 - its composite object,

 - all its ancestor versions.

• Sequential Scan: Select a class at random; select

one of its attributes at random; fetch this attribute's

values for every instance of the class.

- 98 -

PROCEDURE cluster_object(target_objet)

BEGIN

 /* step 1: get initial information */

 cluster_policy:=get_policy(); /* Is page splitting enabled? */

 copy_set:=get_by_copy_set(); /* Inherited attributes implemented by copy. */

 ref_set:=get_by_ref_set(); /* Inherited attributes implemented by reference. */

 inh_page_set:=get_all_inh_page(); /* Source pages for inherited attributes. */

 struct_page_set:=get_all_struct_page(); /* Source pages for structural objects. */

 page_set:=inh_page_set+struct_page_set;

 /* step 2: calculate ref_set lookup cost for each page */

 FOR p IN page_set /* If by-reference attribute r is */

 FOR r IN ref_set /* not in page p, storing target object */

 IF r NOT_IN p /* in page p requires one run-time */

 BEGIN /* lookup for attribute r. */

 weight(p):=1/(prob(p,struct_rel));

 Ref_LookUp(p):=Ref_LookUp(p)+weight(p);

 END;

 /* step 3: calculate copy_set lookup and storage cost for each page */

 FOR c IN copy_set /* If by-copy attribute c is not in page */

 FOR p IN page_set /* p, we could either cache it in page p */

 IF c NOT_IN p /* or change its implementation to be */

 BEGIN /* by-reference. */

 weight(p):=1/(prob(p,struct_rel));

 Copy_storage(p):=Copy_storage(p)+size_of(c);

 Copy_LookUp(p):=Copy_LookUp(p)+weight(p);

 END;

 /* step 4: calculate total cost of every page. If by-copy attributes are */

 /* implemented by reference, the total cost of storing target object */

 /* in page p is represented by Total(p,1). Otherwise, the cost */

 /* is represented by Total(p,2). */

 FOR p IN page_set

 Total_cost(p,1):=Ref_LookUp(p)*Lookup_cost+Copy_LookUp(p)*Lookup_cost;

 Total_cost(p,2):=Ref_LookUp(p)*Lookup_cost+Copy_storage(p)*Storage_cost;

 /* step 5: pick up best candidate page and try to insert the object */

 candidate_page:=Minimum(Total_cost);

 IF (cluster_policy EQ no_split)

 WHILE (NOT_FIT(candidate_page))

 candidate_page:=Next_Min(Total_cost);

 IF ((cluster_policy EQ page_split) AND (NOT_FIT(candidate_page))

 Split_page(candidate_page);

END;

Figure 4: Pseudo code for CK clustering algorithm [CHAN90]

 The Page_split algorithm assumes that the arc costs Cei (i.e., run-time lookup cost) between objects are always maintained and

sorted. The node capacity Capvi (i.e., the object size) is also maintained. Subset A and B represent the sets of objects assigned to

the new pages after splitting. Both subsets are empty ate the beginning. E is the initial set of arcs relating the objects.

• Step (1): Select the maximum value arc from E as etarget and set E to be (E - {etarget}). Let vhead and vtail be the head and the

tail nodes of etarget.
• Step (2): Supposed both vhead and vtail are new to subsets A and B. Insert vhead and vtail in subset A if Capvhead plus Capvtail

is less than the remaining capacity of subset A. Otherwise, insert vhead and vtail in subset B if subset B has space for these nodes.

If neither subset A or B could accommodate both vhead and vtail, a broken arc is found and Cetarget is added into Ctotal.
• Step (3): Supposed vhead is in subset A and vtail is not in subset A or B. Insert vtail into subset A if feasible. Otherwise, a broken

arc is found and Cetarget is added into Ctotal.
• Step (4): Supposed both vhead and vtail are visited before, a broken arc is found and Cetarget is added into Ctotal.
• Step (5): Look back to step (1) until arc set E is empty.

Figure 5: Page_split algorithm [CHAN90]

- 99 -

 Given a number of classes, we first build a class hierarchy that includes versions (1). Then we build a composite

hierarchy and add equivalence relationships (2).

(1) A new class is added.
 A random number of versions of this class is added (descendant versions).

 If the new class has a superclass (given a probability of having a superclass) then

 randomly select a superclass among the existing classes,

 inherit attributes and methods of the superclass,

 for each additional version of the class:

 randomly select a superclass among the initial class superclass descendant

 versions,

 inherit attributes and methods of the superclass.

 Add additional random attributes and methods to all versions

 (sizes of attributes and methods are assigned randomly).

 Compute object size for these classes.

(2) Scan all the classes.
 For each class:

 If it is a component of one class (given a probability of being component) then

 randomly select a class composed of the new class.

 If it has an equivalent class (given a probability of having an equivalent) then

 randomly select an equivalent class.

Figure 6: Class lattice generation

For each new object:

 Randomly select a class.

 If the new object class is a component of another class then

 randomly select an instance of this class (if any) to be composed of the new object.

 If the new object class is a version then

 randomly select one ancestor object in the new object class ancestor class,

 If using CK, inherit values of common attributes (either by copy or by reference).

 If the new object class has an equivalent class then

 randomly select one equivalent object among instances of the equivalent class.

Figure 7: Instances generation

• Closure Traversal: Given a randomly selected

starting object, follow one of the three structural

relationships (i.e., version, configuration or

equivalence) to a certain predefined (random) depth D;

fetch a random attribute from the resulting object; the

followed relationship can be either always the same or

randomly selected.
• Editing: Select an object at random; update one of

its attribute (randomly chosen) with a random value.
• Object Creation: Creation of a new object (cf.

object base generation). This activates the CK

clustering algorithm.
• Reclustering: The ORION clustering algorithm

needs a “Cluster message” to be dynamically activated

[BANE87]. The Cactis clustering algorithm is static.

We can assume it will also wait for a cluster message

before reorganizing the database. However, cluster

messages for the Cactis algorithm should be far less

frequent than cluster messages for the ORION

algorithm since the Cactis clustering algorithm is

supposed to run when the database is idle [HUDS89].

4.3. Overall model

 The overall simulation model is inspired by the one

provided in [CHAN89a]. It is composed as follows

(see Figure 8).

• Client module: After a predefined think time, the

client issues the transactions to the Transaction

Manager according to some frequencies of occurence.
• Transaction Manager module: The transaction

manager extracts from transactions which objects have

to be accessed or updated, and performs the operations.

In the case of a regular operation, object requests are

sent to the Buffering Manager. In the case of instance

creation or a Cluster message, the Clustering Manager

is invoked.
• Buffering Manager: The Buffering Manager checks

if an object is in main memory and requests it to the

I/O Subsystem if it is not. It also deals with page

replacement strategie (when a new page is needed, the

oldest page in memory is dropped and replaced by the

new one).

- 100 -

• Clustering Manager: The Clustering Manager is

activated depending on the algorithm (i.e., Cactis, CK

or ORION) it implements. It deals with reorganizing

the database on secondary storage to achieve better

performance.
• I/O Subsystem: This module deals with physical

accesses to secondary storage.

4.4. Simulation parameters

 Tables 1 and 2 provide the simulation parameters

we used for our simulation experiments.

Figure 8: Overall simulation model

5. SIMULATION RESULTS

 To compare the performance of the three clustering

algorithms, we conducted four testing cases: varying

the database size, the workload, the buffer capacity

and the Read/Write ratio. Due to space limitation, we

present in the following subsections only some of the

results we obtained.

5.1. Effects of the database size

 We first tested the effect of varying the initial

number of objects in the database using a uniform

random distribution to choose the transactions' starting

objects. This is not always realistic since there may be

objects that are "hotter" (i.e., more frequently accessed)

than others in real world applications. Furthermore,

the performance of the Cactis clustering algorithm

depends on run-time computed statistics, such as

object's access frequencies, that are not the same when

using different random distributions to select the

transactions starting object. So we implemented in a

second series of simulations a normal random

distribution for the transactions' starting objects,

which is very similar to the "skewed random" function

introduced in [TSAN92].

 Figure 9a shows that response time when using

Cactis is 24 % lower than when using ORION. Figure

9b shows that, for CK, response time increases linearly

with the number of objects and that CK algorithm

totally outperforms the other two (being about 800

times better than Cactis). "PS ON" and "PS OFF"

stand for page splitting used or not.

Figure 9a: Response time vs. number of objects (U)

 Figures 9a and 10 show indeed that Cactis performs

1.5 times better when objects are not accessed through

a uniform distribution,

- 101 -

especially for intermediate numbers of objects

(between 400 and 600).

Parameter name Designation Value Justification, References

RAVGTHINK Average client think time 4 s [CHAN89a]

RCC Average locking/unlocking

time (concurrency control)

0.5 ms [SRIN91]

IMLVL Multiprogramming level 10 [GRUE91]

IWDSIZE Size of one memory word 4 bytes [GRUE91]

ICPU CPU power 2 Mips [GRUE91]

RMACC Memory word access time 0.0001 ms [GRUE91]

RMTEST Time for comparison of two

memory words

0.0007 ms Two memory accesses, one

subtraction

IPGSIZE Size of disk page 2048 bytes [CHEN91]

RSEEK Average disk seek time 28 ms [CHEN91]

RLATENCY Average disk latency time 8,33 ms [CHEN91]

RTRANSFER Disk page transfer time 1.28 ms [CHEN91]

Table 1: Static parameters

Parameter name Designation Default value Range

NCL Number of classes 20 10-30

IAVGVER Average number of versions

per class

3 1-5

RPSUPER Probability for a class of

having a superclass

0.9 0-1

RPCOMP Probability for a class of

being a component class

0.5 0-1

RPEQUI Probability for a class of

having an equivalent class

0.1 0-1

INOBJ Initial number of objects 400 100-1000

IAVGASIZE Average attribute size 1 word 1-3 words

IAVGNATTR Average number of attributes

per class

10 5-20

IBUFF Size of memory buffer 10 pages 10-100 pages

IMD Maximum depth in Closure

Traversals

5 3-10

ISEGSIZE Default segment size

(ORION)

5 3-10

ITHRESHOLD Update Threshold (CK) 25 0-255

ISCALEF Scale factor (CK) 0.5 0-1

ISPLIT Page split policy (CK) ON ON/OFF

PT1-PT12 Probability of Read

Transaction (#1-12)

0.065 0-1

PT13 Probability of Editing 0.1695 (Cactis)

0.169 (ORION)

0.17 (CK)

0-1

PT14 Probability of Object

Creation

0.05 0-1

PT15 Probability of Reclustering 0.0005 (Cactis)

0.001 (ORION)

0 (CK)

0-1

Table 2: Dynamic parameters

- 102 -

Figure 9b: Response time vs. number of objects (U)

Figure 10: Response time vs. number of objects (N)

 The more a clustering algorithm is complex (i.e.,

the more it clusters object according to precise rules),

the more it uses a greater amount of disk pages to

cluster the object base. The maximum number of disk

pages used (as shown in Figure 11), as expected, is

higher for the more complex algorithms, i.e., CK

needs 1.8 times as many pages as Cactis and Cactis

needs 1.3 times as many pages as ORION, for which

number of pages increases linearly.

Figure 11: Number of pages vs. number of objects

5.2. Effect of the buffer capacity

 On one hand, increasing the buffer capacity may

lessen the effects of clustering since a given set of

related objects has a higher probability of being in

main memory instead of on secondary storage. On the

other hand, objects are also accessed when

reorganizing the database. Thus, increasing buffer

capacity should decrease clustering overhead,

especially for the ORION clustering algorithm that

may make several non-consecutive accesses to each

object. We performed this set of simulations using an

initial database of 400 objects and selecting the

transactions' starting objects from a uniform random

distribution.

 Figures 12a and 12b show that response time

decrease linearly with the buffer size for the Cactis and

CK algorithms. The dual effect of increasing the buffer

capacity is seen on both transactions I/Os and

clustering overhead. The ORION algorithm has a

similar behavior, but the gain in performance is seen

earlier than with the other algorithms and then the gain

in performance is less important (see Figure 12a). We

can explain this by the fact that the ORION algorithm

uses a smaller amount of pages than the other

algorithms to cluster the database. Thus, the buffer size

grows faster relatively to the database size. For

instance, a buffer size of 20 pages represents 25% of

the database size for ORION versus only 15% for

Cactis and 9% for CK. Figure 12a presents rather big

variations in performance when buffer capacity grows

over 40 pages. However, these values oscillate around

a mean value that decreases slowly but linearly.

Figure 12a: Response time vs. buffer size

5.3. Effect of the Read/Write ratio

 Read/Write ratio is an important factor when

seeking to evaluate DBMSs performances.

Furthermore, [CHAN89a] claims that CK

- 103 -

algorithm performs better when the Read/Write ratio

is high. For our simulation experiments, we used an

initial database of 400 objects and a buffer size of 10

pages.

Figure 12b: Response time vs. buffer size

 The performance of the Cactis and ORION

algorithms decreases when the Read/Write ratio

decreases (see Figure 13a). On the contrary, response

time decreases along with the Read/Write ratio in the

case of CK (see Figure 13b).

Figure 13a: Response time vs. R/W ratio

Figure 13b: Response time vs. R/W ratio

 Since Object Creation is a write operation, the more

the Read Percentage drops, the more the database size

increases, thus implying more clustering overhead

(confirming what is said in [CHAN89a]). Parallely,

transactions I/Os are slowly decreasing in number for

Cactis and CK. This is because one single Object

Creation is less costly than, for instance, such read

transactions as Sequential Scans or Range Lookups.

That explains the raise in performance for CK, since

transactions I/Os drops from 10,000 to 5000 while

clustering I/O overhead only rises from 100 to 500. In

the Cactis case, clustering overhead is too important to

compensate the decrease in transactions I/Os. For

ORION, transactions I/Os increase anyway because of

the poor clustering ability of the algorithm.

6. CONCLUSIONS

 It is clear from our simulation experiments that the

CK algorithm outperforms both Cactis and ORION in

terms of overall performance. The results we obtained

showed that this is due to both a good clustering

capability and to the dynamic conception of the

algorithm that allow an extremely low clustering

overhead. Such a good behavior is achieved because

the CK algorithm is activated only at object creation

time and only accesses the few objects that are related

to the newly created object once. Therefore,

transactions are never blocked very long during

clustering, as they are when the Cactis or the ORION

algorithm is used. (The Cactis and ORION algorithms

have to access all the objects in the database, even

several times in the case of ORION, to reorganize the

database; and transactions cannot be run when a

reorganization occurs.) CK good clustering capability

is based on the users' hints that specify the inter-

objects access frequencies for each structural

relationship and thus allows to cluster together objects

that are likable to be accessed together.

 Our simulations showed too that Cactis had also a

good clustering capability. This is due to the use of

statistics (i.e., objects access frequencies and

relationships use frequencies) that allow to cluster

together objects that are actually accessed together.

Though, the Cactis algorithm is still completely

outperformed by the CK algorithm. This is because,

when using Cactis, clustering overhead increases very

quickly with the number of objects, thus annihilating

any gain achieved from good clustering capability.

However, we have to keep in mind that this algorithm

has been designed to run when the database is idle so

that reclustering does not alter the database

performance. Hence, if clustering overhead was not

taken into account, the Cactis algorithm should

perform about as well as CK

- 104 -

algorithm as long as the statistics used during the last

reorganization are pertinent.

 In terms of disk space, the more a clustering

algorithm is simple, the less space it should use.

Actually, the more a clustering algorithm is complex,

the more it clusters objects according to sharp criteria.

Thus, a smaller number of objects are likely to be

clustered in the same clustering unit (either a page or

a segment). So the number of pages needed to store the

database is greater. Our simulation experiments

confirm that fact. The ORION algorithm is the less

greedy algorithm in terms of disk pages used. Then the

Cactis algorithm follows, using almost half the

number of disk pages needed by CK to cluster the

database. However, when reorganizing the database,

the Cactis and ORION algorithms need to build a new

set of pages before deleting the old one. Thus they

require about twice as much space as our graphs show.

 Future research about this subject could be in a first

step completing the simulation tests, notably by

determining the effects of database changes, e.g.,

varying the probability for a class to belong to a

composite class hierarchy, the average number and

size of attributes, etc.

 Then the next step would be the design and

evaluation of one or several new clustering algorithms.

One alternative would be to build a dynamic clustering

algorithm that would use the same statistics as Cactis

(i.e., objects access frequencies and relationships use

frequencies) to cluster objects together, but could be

able to use them at run-time (e.g., an algorithm

activated at object creation time, like CK). Such an

algorithm could have Cactis' good clustering

capability without being handicapped by an important

clustering overhead.

 Another alternative would be to modify the CK

algorithm so that it does not use users' hints for inter-

objects access frequencies any more and rely only on

statistics, in order to make the algorithm even more

accurate and performant. The problem with users'

hints is that their accuracy depends the user (either the

database administrator or a programmer) knowledge

of the database. On the other hand, automatically

gathered statistics show an exact image of the database

status. Thus, by computing inter-objects access

frequencies for each structural relationship and each

object at run-time, a better performance should be

achieved.

REFERENCES

[ANDE90], T.L. Anderson, A.J. Berre, M. Mallison,

H.H. Porter III, B. Scheider, "The HyperModel

Benchmark", International Conference on Extending

Database Technology, Venice, Italy, March 1990, pp.

317-331

[ANDR91a], T. Andrews, "Programming with Vbase",

In "Object-Oriented Databases with Applications to

CASE, Networks and VLSI CAD", Edited by R. Gupta

and E. Horowitz, Prentice Hall Series in Data and

Knowledge Base Systems, 1991, pp. 130-177

[ANDR91b], T. Andrews, C. Harris, K. Sinkel,

"ONTOS: A Persistent Database for C++", In "Object-

Oriented Databases with Applications to CASE,

Networks and VLSI CAD", Edited by R. Gupta and E.

Horowitz, Prentice Hall Series in Data and Knowledge

Base Systems, 1991, pp. 387-406

[BANE87], J. Banerjee, H.-T. Chou, J.F. Garza, W.

Kim, D. Woelk, N. Ballou, H.-J. Kim, "Data Model

Issues for Object-Oriented Applications", ACM

Transaction on Office Information Systems, Vol. 5, No.

1, January 1987, pp. 3-26

[BATO85], D.S. Batory, W. Kim, "Modeling Concepts

for VLSI CAD Objects", ACM Transactions on

Database Systems, Vol. 10, No. 3, September 1985, pp.

322-346

[BENZ90], V. Benzaken, C. Delobel, "Enhancing

Performance in a Persistent Object Store: Clustering

Strategies in O2", 4th International Workshop on

Persistent Object Systems, September 1990, pp. 403-

412

[BERR91], A.J. Berre, T.L. Anderson, "The

HyperModel Benchmark for Evaluating Object-

Oriented Databases", In "Object-Oriented Databases

with Applications to CASE, Networks and VLSI

CAD", Edited by R. Gupta and E. Horowitz, Prentice

Hall Series in Data and Knowledge Base Systems,

1991, pp. 75-91

[CATT91], R.G.G. Cattell, "Object Data Management:

Object-Oriented and Extended Relational Database

Systems", Addison-Wesley Publishing Company,

1991

[CHAB93], S. Chabridon, J.-C. Liao, Y. Ma, L.

Gruenwald, "Clustering Techniques for Object-

Oriented Database Systems", 38th IEEE Computer

Society International Conference, February 1993, San

Francisco, pp. 232-242

[CHAN89a], E.E. Chang, "Effective Clustering and

Buffering in an Object-Oriented DBMS",

- 105 -

University of California, Berkeley, Computer Science

Division (EECS), Technical Report No. UCB/CSD

89/515, June 1989

[CHAN89b], E.E. Chang, R.H. Katz, "Exploiting

Inheritance and Structure Semantics for Effective

Clustering and Buffering in an Object-Oriented

DBMS", ACM SIGMOD International Conference on

Management of Data, Portland, Oregon, June 1989, pp.

348-357

[CHAN90], E.E. Chang, R.H. Katz, "Inheritance in

computer-aided design databases: semantics and

implementation issues", CAD, Vol. 22, No. 8, October

1990, pp. 489-499

[CHEN91], J.R. Cheng, A.R. Hurson, "Effective

clustering of complex objects in object-oriented

databases", ACM SIGMOD International Conference

on Management of Data, Denver, Colorado, May 1991,

pp. 22-31

[DEUX90], O. DEUX et al., "The Story of O2", IEEE

Transactions on Knowledge and Data Engineering,

Vol. 2, No. 1, March 1990, pp. 91-108

[FORD88], S. Ford, J. Joseph, D.E. Langworthy, D.F.

Lively, G. Pathak, E.R. Perez, R.W. Peterson, D.M.

Sparacin, S.M. Thatte, D.L. Wells, S. Agarwala,

"ZEITGEIST: Database Support for Object-Oriented

Programming", 2nd International Workshop on Object-

Oriented Database Systems, Bad Münster am Stein-

Ebernburg, FRG, September 1988, pp. 23-42

[GRUE91], L. Gruenwald, M.H. Eich, "MMDB

Reload Algorithms", ACM SIGMOD International

Conference on Management of Data, Denver,

Colorado, May 1991, pp. 397-405

[HE93], M. He, A.R. Hurson, L.L. Miller, D. Sheth,

"An Efficient Storage Protocol for Distributed Object-

Oriented Databases", IEEE Parallel & Distributed

Processing, 1993, pp. 606-610

[HUDS89], S.E. Hudson, R. King, "Cactis: A Self-

Adaptive Concurrent Implementation of an Object-

Oriented Database Management System", ACM

Transactions on Database Systems, Vol. 14, No. 3,

September 1989, pp. 291-321

[HURS93], A.R. Hurson, S.H. Pakzad, J.-b. Cheng,

"Object-Oriented Database Management Systems:

Evolution and Performance Issues", IEEE Computer,

February 1993, pp. 48-60

[KATZ91], R.H. Katz, E.E. Chang, "Inheritance Issues

in Computer-Aided Design Databases", In "On

Object-Oriented Database Systems", Edited by K.R.

Dittrich, U. Doyal and A.P. Buchman, Springer-Verlag

Topics in Information Systems, 1991, pp. 45-52

[KIM90a], W. Kim, J.F. Garza, N. Ballou, D. Woelk,

"Architecture of the ORION Next-Generation

Database System", IEEE Transactions on Knowledge

and Data Engineering, Vol. 2, No. 1, March 1990, pp.

109-124

[KIM90b], W. Kim, "Object-Oriented Databases:

Definition and Research Directions", IEEE

Transactions on Knowledge and Data Engineering,

Vol. 2, No. 3, September 1990, pp. 327-341

[MAIER86], D. Maier, J. Stein, A. Otis, A. Purdy,

"Development of an Object-Oriented DBMS", ACM

OOPSLA '86 Proceedings, September 1986, pp. 472-

482

[SRIN91], V. Srinivasan, M.J. Carey, "Performance of

B-Tree Concurrency Control Algorithms", ACM

SIGMOD International Conference on Management

of Data, Denver, Colorado, May 1991, pp. 416-425

[TSAN92], M.M. Tsangaris, J.F. Naughton, "On the

Performance of Object Clustering Techniques", ACM

SIGMOD International Conference on Management

of Data, San Diego, California, June 1992, pp. 144-

153

[WILK88], W. Wilkes, "Instance Inheritance

Mechanisms for Object Oriented Databases", 2nd

International Workshop on Object-Oriented Database

Systems, Bad Münster am Stein-Ebernburg, FRG,

September 1988, pp. 274-279

