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1Department of Computer Science 2ERIC, Université Lumière Lyon 2
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Abstract. In object-oriented or object-relational databases such as mul-
timedia databases or most XML databases, access patterns are not static,
i.e., applications do not always access the same objects in the same order
repeatedly. However, this has been the way these databases and associ-
ated optimisation techniques like clustering have been evaluated up to
now. This paper opens up research regarding this issue by proposing a
dynamic object evaluation framework (DOEF) that accomplishes access
pattern change by defining configurable styles of change. This prelimi-
nary prototype has been designed to be open and fully extensible. To
illustrate the capabilities of DOEF, we used it to compare the perfor-
mances of four state of the art dynamic clustering algorithms. The results
show that DOEF is indeed effective at determining the adaptability of
each dynamic clustering algorithm to changes in access pattern.
Keywords: Performance evaluation, Dynamic access patterns, Bench-
marking, Object-oriented and object-relational databases, Clustering.

1 Introduction

Performance evaluation is critical for both designers of Object Database Man-
agement Systems (architectural or optimisation choices) and users (efficiency
comparison, tuning). Note that we term Object Database Management Sys-
tems (ODBMSs) both object-oriented and object-relational systems, indiffer-
ently. ODBMSs include most multimedia and XML DBMSs, for example. Tradi-
tionally, performance evaluation is achieved with the use of benchmarks. While
the ability to adapt to changes in access patterns is critical to database per-
formance, none of the existing benchmarks designed for ODBMSs incorporate
the possibility of change in the pattern of object access. However, in real life,
almost all applications do not always access the same objects in the same order
repeatedly. Furthermore, none of the numerous studies regarding dynamic object
clustering contain any indication of how these algorithms are likely to perform
in a dynamic setting.

In contrast to the TPC benchmarks [13] that aim to provide standardised

means of comparing systems, we have designed the Dynamic Object Evaluation

Framework (DOEF) to provide a means to explore the performance of databases
under different styles of access pattern change.



DOEF contains a set of protocols which in turn define a set of styles of access
pattern change. DOEF by no means has exhausted all possible styles of access
pattern change. However, it makes the first attempt at exploring the issue of
evaluating ODBMSs in general and dynamic clustering algorithms in particular,
with respect to changing query profiles.

DOEF is built on top of the Object Clustering Benchmark (OCB) [8], which
is a generic benchmark that is able to simulate the behavior of the de facto

standards in object-oriented benchmarking (namely OO1 [5], HyperModel [1],
and OO7 [3]). DOEF uses both the database built from the rich schema of
OCB and the operations offered by OCB. DOEF is placed into a non-intrusive
part of OCB, thus making it clean and easy to implement on top of an exist-
ing OCB implementation. Furthermore, we have designed DOEF to be open
and fully extensible. First, DOEF’s design allows new styles of change to be
easily incorporated. Second, OCB’s generic model can be implemented within
an object-relational system and most of its operations are relevant for such a
system. Hence, DOEF can also be used in the object-relational context.

To illustrate the capabilities of DOEF, we benchmarked four state of the art
dynamic clustering algorithms. There are three reasons for choosing to test the
effectiveness of DOEF using dynamic clustering algorithms: “ever since the early
days of object database management systems, clustering has proven to be one of
the most effective performance enhancement techniques” [10]; the performance
of dynamic clustering algorithms are very sensitive to changing access patterns;
and despite this sensitivity, no previous attempt has been made to benchmark
these algorithms in this way.

This paper makes two key contributions: (1) it proposes the first evaluation
framework that allows ODBMS and associated optimisation techniques to be
evaluated in a dynamic environment; (2) it presents the first performance evalu-
ation experiments of dynamic clustering algorithms in a dynamic environment.

The remainder of this paper is organised as follows: Section 2 describes the
DOEF framework in detail, we present and discuss experimental results achieved
with DOEF in Section 3, and finally conclude the paper and provide future
research directions in Section 4.

2 Specification of DOEF

2.1 Dynamic Framework

We start by giving an example scenario that the framework can mimic. Suppose
we are modeling an on-line book store in which certain groups of books are
popular at certain times. For example, travel guides to Australia during the
2000 Olympics may have been very popular. However, once the Olympics is
over, these books may suddenly or gradually become less popular. Once the
desired book has been selected, information relating to the book may be required.
Example required information includes customer reviews of the book, excerpts
from the book, picture of the cover, etc. In an ODBMS, this information is stored



as objects referenced by the selected object (book), thus retrieving the related
information is translated into an object graph navigation with the traversal root
being the selected object (book). After looking at the related information for
the selected book, the user may choose to look at another book by the same
author. When information relating to the newly selected book is requested, the
newly selected object (book) becomes the root of a new object graph traversal.
We now give an overview of the five main steps of the dynamic framework and
in the process show how the above example scenario fits in.

1. H-region parameters specification: In this step we divide the database
into regions of homogeneous access probability (H-regions). In our example,
each H-region represents a different group of books, each group having its
own probability of access.

2. Workload specification: H-regions are responsible for assigning access
probability to objects. However, H-regions do not dictate what to do af-
ter an object has been selected. We term the selected objects workload root,
or simply root. In this step, we select the type of workload to execute after
selecting the root from those defined in OCB. In our example, the selected
workload is an object graph traversal from the selected book to information
related to the selected book, e.g., an excerpt.

3. Regional protocol specification: Regional protocols use H-regions to ac-
complish access pattern change. Different styles of access pattern change
can be accomplished by changing the H-region parameter values with time.
For example, a regional protocol may initially define one H-region with high
access probability, while the remaining H-regions are assigned low access
probabilities. After a certain time interval, a different H-region may become
the high access probability region. This, when translated to the book store
example, is similar to Australian travel books becoming less popular after
the 2000 Olympics ends.

4. Dependency protocol specification: Dependency protocols allow us to
specify a relationship between the currently selected root and the next root.
In our example, this is reflected in the customer deciding to select a book
which is by the same author as the previously selected book.

5. Regional and dependency protocol integration specification: In this
step, regional and dependency protocols are integrated to model changes in
dependency between successive roots. An example is a customer using our
on-line book store, who selects a book of interest, and then is confronted
with a list of currently popular books by the same author. The customer
then selects one of the listed books (modeled by dependency protocol). The
set of currently popular books by the same author may change with time
(modeled by regional protocol).

2.2 H-regions

H-regions are database regions of homogeneous access probability. The parame-
ters that define H-regions are listed below.



– HR SIZE: Size of the H-region (fraction of the database size).
– INIT PROB W: Initial probability weight assigned to the region. The actual

probability is equal to this probability weight divided by the sum of all
probability weights.

– LOWEST PROB W: Lowest probability weight the region can go down to.
– HIGHEST PROB W: Highest probability weight the region can go up to.
– PROB W INCR SIZE: Amount by which the probability weight of the re-

gion increases or decreases when change is requested.
– OBJECT ASSIGN METHOD: Determines the way objects are assigned into

the region. Random selection picks objects randomly from anywhere in the
database. By class selection first sorts objects by class ID and then picks the
first N objects (in sorted order), where N is the number of objects allocated
to the H-region.

– INIT DIR: Initial direction that the probability weight increment moves in.

2.3 Regional Protocols

Regional protocols simulate access pattern change by first initialising the param-
eters of every H-region, and then periodically changing the parameter values in
certain predefined ways. This paper documents three styles of regional change.
For every regional protocol, a user defined parameter H is used to control the
rate at which access pattern changes. More precisely, H is defined as one divided
by the number of transactions executed between each change of access pattern.
Three regional protocols are listed below:

– Moving Window of Change Protocol: This regional protocol simulates
sudden changes in access pattern. In our on-line book store, this is translated
to books suddenly becoming popular due to some event (e.g., a TV show).
Once the event passes, the books become unpopular very fast. This style
of change is accomplished by moving a window through the database. The
objects in the window have a much higher probability of being chosen as
root when compared to the remainder of the database. This is done by
breaking up the database into N H-regions of equal size. Then, one H-region
is first initialised to be the hot region (i.e., a region with high probability of
reference), and after a certain number of root selections, a different H-region
becomes the hot region.

– Gradual Moving Window of Change Protocol: This protocol is similar
to the previous one, but the hot region cools down gradually instead of
suddenly. The cold regions also heat up gradually as the window is moved
onto them. This tests the dynamic clustering algorithm’s ability to adapt to
a more moderate style of change. In our book store example, this style of
change may depict travel guides to Australia gradually becoming less popular
after the Sydney 2000 Olympics. As a consequence, travel guides to other
countries may gradually become more popular. Gradual changes of heat may
be more common in the real world. This protocol is implemented in the same
way as the previous protocol except the H-region that the window (called



the hot region in the previous protocol) moves into gradually heats up and
the H-region that the window moves from gradually cools down.

– Cycles of Change Protocol: This style of change mimics something like
a bank where customers in the morning tend to be of one type and in the
afternoon of another type. This, when repeated, creates a cycle of change.
This is done by break up the database into three H-regions. The first two
H-regions represent objects going through the cycle of change. The third
H-region represent the remaining unchanged part of the database. The first
two H-regions alternates at being the hot region.

2.4 Dependency Protocols

There are many scenarios in which a person executes a query and then decides to
execute another query based on the results of the first query, thus establishing
a dependency between the two queries. In this paper, we have specified four
dependency protocols. All four protocols functions by finding a set of candidate
objects that maybe used as the next root. Then a random function is used
to select one object out of the candidate set. The selected object is the next
root. An example random function is a skewed random function that selects a
certain subset of candidate objects with a higher probability than others. The
four dependency protocols are listed below:

– Random Selection Protocol: This method simply uses some random
function to select the current root. This protocol mimics a person starting a
completely new query after finishing the previous one.

– By Reference Selection Protocol: The current root is chosen to be an
object referenced by the previous root. An example of this protocol in our
on-line book store scenario is a person having finished with a selected book,
who then decides to look at the next book in the series.

– Traversed Objects Selection Protocol: The current root is selected from
the set of objects that were referenced in the previous traversal. An example
is a customer requesting in a first query a list of books along with their
author and publisher, who then decides to read an exerpt from one of the
books listed.

– Same Class Selection Protocol: The currently selected root must belong
to the same class as the previous root. Root selection is further restricted to
a subset of objects of the class. The subset is chosen by a function that takes
the previous root as a parameter. That is, the subset chosen dependent on
the previous root object. An example of this protocol is a customer deciding
to select a book from our on-line book store which is by the same author
as the previous selected book. In this case, the same class selection function
returns books by the same author.

Hybrid Setting. The hybrid setting allows an experiment to use a mixture of
the dependency protocols outlined above. Its use is important since it simulates
a user starting a fresh random query after having followed a few dependencies.



Thus, the hybrid setting is implemented in two phases. The first randomisation

phase uses the random selection protocol to randomly select a root. In the second
dependency phase, one of the dependency protocols outlined in the previous sec-
tion is used to select the next root. R iterations of the second phase are repeated
before going back to the first phase. The two phases are repeated continuously.

2.5 Integration of Regional and Dependency Protocols

Dependency protocols model user behavior. Since user behavior can change with
time, dependency protocols should also be able to change with time. The inte-
gration of regional and dependency protocols allows us to simulate changes in
the dependency between successive root selections. This is easily accomplished
by exploiting the dependency protocols’ property of returning a candidate set
of objects when given a particular previous root. Up to now, the next root is
selected from the candidate set by the use of a random function. Instead of using
the random function, we partition the candidate set using H-regions and then
apply regional protocols on these H-regions.

3 Experimental Results

3.1 Experimental Setup

We used DOEF to compare the performance of four state of the art dynamic
clustering algorithms: Dynamic, Statistical, and Tunable Clustering (DSTC) [2],
Detection & Reclustering of Objects (DRO) [6], dynamic Probability Ranking
Principle (PRP) [12], and dynamic Graph Partitioning (GP) [12]. The aim of
dynamic clustering is to automatically place objects that are likely to be accessed
together in the near future in the same disk page, thereby reducing the number
of I/O. The four clustering techniques have been parameterized for the same
behaviour and best performance.

We chose simulation for these experiments, principally because it allows rapid
development and testing of a large number of dynamic clustering algorithms (all
previous dynamic clustering papers compared at most two algorithms). The
experiments were conducted on the Virtual Object-Oriented Database discrete-
event simulator (VOODB) [7]. Its purpose is to allow performance evaluations
of OODBs in general, and optimisation methods like clustering in particular.
VOODB has been validated for real-world OODBs in a variety of situations.
The VOODB parameter values we used are depicted in Table 1 (a).

Since DOEF uses the OCB database and operations, it is important for us to
document the OCB settings used for these experiments (Table 1 (b)). The size
of the objects used varied from 50 to 1600 bytes, with an average of 233 bytes.
A total of 100,000 objects were generated for a total database size of 23.3 MB.
Although this is a small database size, we also used a small buffer size (4 MB) to
keep the database to buffer size ratio large. Clustering algorithm performance is
indeed more sensitive to database to buffer size ratio than database size alone.



The operation used for all the experiments was a simple, depth-first traversal of
depth 2. We chose this simple traversal because it is the only one that always
accesses the same set of objects given a particular root. This establishes a direct
relationship between varying root selection and changes in access pattern. Each
experiment involved executing 10,000 transactions. The main DOEF parameter
settings used in this study are shown in Table 2. These DOEF settings are com-
mon to all experiments in this paper. The HR SIZE setting of 0.003 creates a
hot region about 3% the size of the database. This fact was verified from sta-
tistical analysis of the trace generated. The HIGHEST PROB W setting of
0.8 and LOWEST PROB W setting of 0.0006 produce a hot region with 80%
probability of reference, the remaining cold regions having a combined refer-
ence probability of 20%. These settings are chosen to represent typical database
application behaviour [11, 4, 9].

Parameter Description Value

System class Centralized

Disk page size 4096 bytes

Buffer size 4 MB

Buffer replacement LRU-1
policy

Pre-fetching policy None

Multiprogramming level 1

Number of users 1

Object initial placement Sequential

(a) VOODB parameters

Parameter Description Value

Number of classes 50

Maximum number of 10
references, per class

Instances base size, per class 50

Total number of objects 100000

Number of reference types 4

Reference types distribution Uniform

Class reference distribution Uniform

Objects in classes distribution Uniform

Objects references distribution Uniform

(b) OCB parameters

Table 1. VOODB and OCB parameters

Parameter Name Value

HR SIZE 0.003

HIGHEST PROB W 0.80

LOWEST PROB W 0.0006

PROB W INCR SIZE 0.02

OBJECT ASSIGN METHOD Random object assignment
Table 2. DOEF parameters

As we discuss the results of these experiments, we focus our discussion on
the relative ability of each algorithm to adapt to changes in access pattern, i.e.,
as rate of access pattern change increases, we seek to know which algorithm
exhibits more rapid performance deterioration. This contrasts from discussing
which algorithm gives the best absolute performance. All the results presented
here are in terms of total I/O (transaction I/O plus clustering I/O).



3.2 Moving and Gradual Moving Regional Experiments

In these experiments, we tested the dynamic clustering algorithms’ ability to
adapt to changes in access pattern by varying the rate of access pattern change
(parameter H). The results of these experiments (Figure 1) induce three main
conclusions. First, when rate of access pattern change is small (H lower than
0.0006), all algorithms show similar performance trends. Second, when the more
vigorous style of change is applied (Figure 1 (a)), all dynamic clustering algo-
rithms’ performance quickly degrades to worse than no clustering. Third, when
access pattern change is very vigorous (H greater than 0.0006), DRO, GP, and
PRP show a better performance trend, implying these algorithms are more ro-
bust to access pattern change. This is because these algorithms choose only a
relatively few pages (the worst clustered) to re-cluster. This leads to greater
robustness. We term this flexible conservative re-clustering. In contrast, DSTC
re-clusters a page even when there is only small potential gain. This explains
DSTC’s poor performance when compared to the other algorithms.
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Fig. 1. Regional dependency results

3.3 Moving and Gradual Moving By Reference Experiments

These experiments, used the integrated regional dependency protocol method
outlined in Section 2.5 to integrate by reference dependency with the moving

and gradual moving window of change regional protocols. We also used the hy-
brid dependency setting detailed in Section 2.4. The random function we used
in the first phase partitioned the database into one hot (3% database size and
80% probability of reference, which represents typical database application be-
haviour) and one cold region. The results for these experiments are shown on
Figure 2. In the moving window of change results (Figure 2 (a)), DRO, GP and,
PRP were again more robust to changes in access pattern than DSTC. How-
ever, in contrast to the previous experiment, DRO, GP, and PRP never perform



worse than NC by much, even when parameter H is 1 (access pattern changes
after every transaction). The reason is the cooling and heating of references is
a milder form of access pattern change than the pure moving window of change
regional protocol of the previous experiment. As in the previous experiment, all
dynamic clustering algorithm show approximately the same performance trend
for the gradual moving window of change results (Figure 2 (b)).
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4 Conclusion

In this paper we presented a new framework for object benchmarking, DOEF,
which allows ODBMSs’ designers and users to test the performances of a given
system in a dynamic setting. This is an important contribution since almost all
real world applications exhibit access pattern changes, but no existing bench-
mark attempt to model this behavior.

We have designed DOEF to be extensible along two axes. First, new styles
of access pattern change can be defined, through the definition of H-regions. We
encourage other researchers or users to extend DOEF by making the DOEF code
freely available for download1. Second, we can apply the concepts developed in
this paper to object-relational databases. This is made easier by the fact OCB
(the layer below DOEF) can be easily adapted to the object-relational context2.

Experimental results have demonstrated DOEF’s ability to meet our objec-
tive of exploring the performance of databases within the context of changing
patterns of data access. Two new insight were gained: dynamic clustering algo-
rithms can cope with moderate levels of access pattern change but performance
rapidly degrades to be worse than no clustering when vigorous styles of access
pattern change is applied; and flexible conservative re-clustering is the key in de-
termining a clustering algorithm’s ability to adapt to changes in access pattern.

1 http://eric.univ-lyon2.fr/∼jdarmont/download/docb-voodb.tar.gz
2 Even if extensions would be required, such as abstract data types or nested tables.



This study opens several research perspectives. The first one concerns the
exploitation of DOEF to keep on aquiring knowledge about the dynamic behavior
of various ODBMSs. Second, adapting OCB and DOEF to the object-relational
model will enable performance comparison of object-relational DBMSs. Since
OCB’s schema can be directly implemented within an object-relational system,
this would only involve adapting existing and proposing new OCB operations
relevant for such a system. Lastly, the effectiveness of DOEF at evaluating other
aspects of database performance could be explored. Optimisation techniques,
such as buffering and prefetching could also be evaluated.
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