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ABSTRACT
Business Intelligence plays an important role in decision
making. Based on data warehouses and Online Analyti-
cal Processing, a business intelligence tool can be used to
analyze complex data. Still, summarizability issues in data
warehouses cause ineffective analyses that may become crit-
ical problems to businesses. To settle this issue, many re-
searchers have studied and proposed various solutions, both
in relational and XML data warehouses. However, they find
difficulty in evaluating the performance of their proposals
since the available benchmarks lack complex hierarchies. In
order to contribute to summarizability analysis, this paper
proposes an extension to the XML warehouse benchmark
(XWeB) with complex hierarchies. The benchmark enables
us to generate XML data warehouses with scalable complex
hierarchies as well as summarizability processing. We exper-
imentally demonstrated that complex hierarchies can defi-
nitely be included into a benchmark dataset, and that our
benchmark is able to compare two alternative approaches
dealing with summarizability issues.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion

General Terms
Experimentation, Performance

Keywords
Benchmark, XML warehouse, OLAP, TPC-H, Complex hi-
erarchies, Summarizability, XWeB

1. INTRODUCTION
With the world in competitive business and innovation,

Business Intelligence (BI) and Data Warehouses (DWs) play
a major role in decision support. BI is famed for its complex
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analyses in many areas such as customer behavior, business
trends, and new opportunities. BI heavily relies on DWs
for storing and managing data. Without effective DWs, or-
ganizations cannot extract the required information for de-
cision support. In addition, Online Analytical Processing
(OLAP) is a notable BI tool for information analysis. To al-
low OLAP analyses, DWs are modeled as multidimensional
structures [2, 21], where an observed fact is described by
several hierarchical dimensions (star or snowflake schema).

DWs are designed to collect possible historical and con-
current data from various resources. This effort may pro-
duce complex hierarchies [3, 14, 20] that impact effective
multidimensional analysis. For example, a book in an on-
line bookstore may belong to more than one category (e.g.,
database and Web), and some book-sales may miss customer
information if they are sold to anonymous customers. Such
hierarchical information may lead to analysis errors, e.g.,
if we are trying to calculate the total quantity of books of
computer science, which is the parent category of database
and Web, or the total amount of sales by customer region.
Such errors critically lead to poor or wrong decisions. These
issues are termed as summarizability issues [9, 11, 12, 15,
19] and have been extensively surveyed by Mazòn et al. [16].

Concurrently, many people, companies, and organizations
share information via online business, management, and so-
cial networking. The eXtensible Markup Language (XML) is
widely used as a standard format for representing, transfer-
ring, and sharing data on the Web. Moreover, the XML tree-
like format tends to be more efficient in representing complex
hierarchical data than traditional relations of DWs [3].

Finally, many benchmarks support performance evalua-
tion, including both relational and XML decision support
benchmarks. Still, researchers have difficulty in evaluating
the performance of summarizability processing algorithms,
since there exists no benchmark with scalable complex hier-
archies. In order to fill in this gap, we extend in this paper
the XML data warehouse benchmark [13] with scalable com-
plex hierarchy generation and summarizability processing.

The remainder of this paper is organized as follows. Sec-
tion 2 formally defines complex hierarchies and discusses re-
lated work. Section 3 presents the data model and the algo-
rithms we design for complex hierarchy generation, a query
workload inducing summarizability issues and the perfor-
mance metrics of our benchmark. Section 4 illustrates the
applicability of our benchmark through experiments. Sec-
tion 5 gives the conclusion and perspectives of this work..



2. BACKGROUND
In this section, we characterize complex hierarchies, which

cause summarizability issues and present the research liter-
atures related to decision support benchmarks.

2.1 Complex Hierarchies
We term a dimension hierarchy as complex if it is both

non-strict and incomplete.

2.1.1 Non-Strict Hierarchy
A hierarchy is non-strict [1, 14, 24] or multiple-arc [20]

when an attribute is multivalued. In other terms, from a
conceptual point of view, a hierarchy is non-strict if the re-
lationship between two hierarchical levels is many-to-many
instead of one-to-many. For example, in a dimension de-
scribing products, a product may belong to several cate-
gories instead of just one.

Similarly, a many-to-many relationship between facts and
dimension instances may exist [20]. For instance, in a sale
data warehouse, a fact may be related to a combination of
promotional offers rather than just one.

2.1.2 Incomplete Hierarchy
A hierarchy is incomplete [16], non-covering [1, 14, 24]

or ragged [20] if an attribute allows linking between two
hierarchical levels by skipping one or more intermediary
levels. For example, in a dimension describing stores, the
store/city/state/country hierarchy allows a store to be lo-
cated in a given region without being related to a city (stores
in rural areas).

Similarly, facts may be described at heterogeneous gran-
ularity levels. For example, in our sale data warehouse, sale
volume may be known at the store level in one part of the
world (e.g., Europe), but only at a more aggregate level (e.g.,
country) in other geographical areas.

2.1.3 Discussion
Dimension hierarchy characterizations vary widely in the

literature related to multidimensional models. For example,
Beyer et al. name complex hierarchies ragged hierarchies
[3], while Rizzi defines ragged hierarchies as incomplete only
[20]. Malinowski and Zimànyi also use the terms of complex
generalized hierarchy [14]. Even though they include incom-
plete hierarchies, they do not include non-strict hierarchies.
Thus, we prefer the term complex hierarchies.

Finally, note that some papers, addressing the summariz-
ability problem, differentiate between intradimensional rela-
tionships and fact-to-dimension relationships [16]. By con-
trast, as Pedersen et al. [19], we consider that summariz-
ability issues and solutions are the same in both cases, since
facts may be viewed as the finest granularity in the dimen-
sion set.

2.2 Related Work

2.2.1 Relational Decision Support Benchmarks
The Transaction Processing Performance Council (TPC)

defines standard benchmarks and publishes objectives and
verifiable performance evaluations to the industry. The TPC
currently supports two decision support benchmarks: TPC-
H and TPC-DS.

TPC-H’s database follows a classical product-order-supplier
relational model [26]. Its workload is constituted of twenty-

two SQL-92, parameterized, decision support queries, and
two refreshing functions that insert tuples into and delete
tuples from the database, respectively. Query parameters
are randomly instantiated following a uniform law. Three
primary metrics are used in TPC-H. They describe perfor-
mance in terms of power, throughput, and a combination of
these two criteria. Power and throughput are the geomet-
ric and arithmetic mean values of database size divided by
workload execution time, respectively.

Although decision-oriented, TPC-H’s database schema is
not a typical star-like data warehouse schema. Moreover, its
workload does not include any explicit OLAP query. The
TPC-DS benchmark addresses this shortcoming [25]. TPC-
DS’ schema represents the decision support functions of a
retailer under the form of a constellation schema with sev-
eral fact tables and shared dimensions. TPC-DS’s workload
is constituted of four classes of queries: reporting, ad-hoc
decision support, interactive OLAP, and extraction queries.
SQL-99 query templates help randomly generate a set of
about five hundred queries, following non-uniform distribu-
tions. The warehouse maintenance process includes a full
Extract, Transform, and Load (ETL) phase, and handles
dimensions with respect to their nature (non-static dimen-
sions scale up while static dimensions are updated). One
primary metric is proposed in TPC-DS to take both query
execution and the maintenance phase into account.

The Star Schema Benchmark (SSB) has been proposed as
a simpler alternative to TPC-DS [17]. It is based on TPC-
H’s database remodeled as a star schema. It is basically
designed around an order fact table merged from two TPC-
H tables. More interestingly, SSB features a query workload
that provides both functional and selectivity coverages.

In TPC-H, TPC-DS, and SSB, scaling is achieved through
a scale factor SF that defines data size (from 1 GB to 100
TB). Both database schema and workload are fixed. The
number of generated queries in TPC-DS also directly de-
pends on SF. TPC standard benchmarks aim at comparing
the performances of different systems in the same experi-
mental conditions, and are intentionally not very tunable.
By contrast, the Data Warehouse Engineering Benchmark
(DWEB) helps generate various ad-hoc synthetic data ware-
house (modeled as star, snowflake, or constellation schemata)
and workloads that include typical OLAP queries [6]. DWEB
targets data warehouse designers and allows testing the ef-
fectiveness of designed choices or optimization techniques in
various experimental conditions thanks to complete set of
parameters. Thus, it may be viewed more like a benchmark
generator than a single benchmark. Nevertheless, DWEB’s
complete set of parameters makes it somewhat difficult to
master.

2.2.2 XML Decision Support Benchmarks
There are many XML benchmarks such as the Michi-

gan Benchmark [22], MemBer [3], X-Mach [4], XMark [23],
XOO7 [5] and XBench [27]. Unfortunately, none of these
benchmarks exhibits any decision support feature. XWeB is
the only decision support XML benchmark [13].

As in SSB, XWeB’s DW schema is a simplified, snowflake
version of TPC-H’s schema. Moreover, XWeB’s DW schema
is logically and physically represented in XML. Since exist-
ing XML DW architectures mostly differ in the way dimen-
sions are handled and the number of XML documents that
are used to store facts and dimensions, XWeB exploits a



unified model that is close to XCube [10]. In this repre-
sentation, an XML DW is composed of three XML docu-
ments at the physical level: dw-model.xml defines the mul-
tidimensional structure of the warehouse (metadata); each
factsf .xml document stores information related to set of
facts f , including measure values and dimension references;
and each dimensiond.xml document stores dimension d’s
hierarchy level instances.

Finally, XWeB’s workload, expressed in XQuery, is consti-
tuted of twenty decision support queries labeled Q01 to Q20.
The workload is structured in increasing order of complex-
ity: reporting (Q01 to Q03), one dimension cubing (Q04 to
Q07), two dimension cubing (Q08 to Q11), three dimension
cubing (Q12 to Q14), and complex hierarchy querying (Q15
to Q20).

2.2.3 Discussion
XWeB includes only one complex hierarchy into its work-

load, i.e., part/category. Complexity lies on the possible
combination of category instances in three levels, and queries
are restricted by specific part/category levels. Moreover,
this complex hierarchy is not scalable and it does not cover
all the cases of complex hierarchies defined in Section 2.1.

3. BENCHMARK SPECIFICATION
We first present in this section our database model and

complex hierarchies (Section 3.1). We further describe how
to generate complex hierarchies in the dataset (Section 3.2).
Then, we specify the benchmark’s query workload, which
operates onto complex hierarchies, induces summarizability
issues (Section 3.3), and is aimed at being executed on the
dataset to output performance metrics (Section 3.4).

3.1 Data Model
We model our benchmark’s database after TPC-H’s as il-

lustrated in Figure 1. The data model consists of a sales
DW, a sale fact, four dimensions: part, customer, supplier,
and date, and two measures: f quantity and f totalamount.
Each dimension is subdivided into hierarchical levels. As
specified by XWeB, the part dimension contains three cate-
gorical levels that we label as type3, type2, and type1. Their
instances are listed in Table 1. The supplier and customer
dimensions possess two geographical levels: nation and re-
gion. The last dimension date contains three levels: day,
month, and year. In Figure 1, we borrow Annotated Tree
Pattern’s (APT) [18] notations to specify the cardinality of
relationships (edges); that is ?: 0 or one, −: one only, ∗:
0 to many, and +: one to many. Note that relationships
reveal complex hierarchies as defined in Section 2.1, i.e., in-
complete and non-strict hierarchies. We can interpret the
APT notations in Figure 1 into complex hierarchies as fol-
lows: ?: only incompleteness is possible when it is zero, −:
incompleteness and non-strictness are impossible (simple hi-
erarchy), ∗: incompleteness and non-strictness are possible,
and +: only non-strictness is possible.

Table 1: Part hierarchical levels
type3 ECONOMY, LARGE, STANDARD, PROMO, MEDIUM, SMALL

type2 ANODIZED, BURNISHED, BRUSHED, POLISHED, PLATED

type1 COPPER, NICKEL, STEEL, TIN, BRASS

At the logical level, we utilize an instance of dw-model.xml
to represent the test DW (Figure 2). We exclude attribute
values that store fact and dimension IDs from fact and di-
mension tags for brevity.

Figure 1: Data model

At the physical level, fact and dimension instances are
stored in a set of XML documents, namely facts1.xml =
f sale.xml, dimension1.xml = d part.xml, dimension2.xml
= d customer.xml, dimension3.xml = d supplier.xml, and
dimension4.xml = d date.xml.

<?xml version=‘1.0’ encoding=‘UTF-8’?>
<dw-model>
<fact id=‘sale’ path=‘f sale.xml’>

<dimension idref=‘part’ path=‘d part.xml’>
<type3><type2><type1/></type2></type3>

</dimension>
<dimension idref=‘customer’ path=‘d customer.xml’>

<nation><region/></nation>
</dimension>
<dimension idref=‘supplier’ path=‘d supplier.xml’>

<nation><region/></nation>
</dimension>
<dimension idref=‘date’ path=‘d date.xml’>

<day><month><year/></month></day>
</dimension>
<measure id=‘f quantity’/>
<measure id=‘f totalamount’/>

</fact>
</dw-model>

Figure 2: dw-model.xml

3.1.1 Non-strict Hierarchies
According to the reality of sales, only the part and supplier

dimensions may have non-strict characteristics w.r.t. sale
facts, since a sale may consist of many parts (special promo-
tion or offer) and many suppliers (many suppliers or a sup-
plied company whose branches are located in various coun-
tries). Moreover, non-strict hierarchies can appear among
all hierarchical levels of the part dimension, as a part may
belong to many categories and a finer level category may
belong to many coarser level categories. The customer and
supplier dimensions may also contain non-strict hierarchies
at the nation level in case the customer or supplier is a
company whose branches are located in various countries.
However, the nation/region hierarchy is strict since a na-
tion belongs to one region only. Lastly, the date dimension
cannot be non-strict since a sale is restricted to a specific
date.

3.1.2 Incomplete Hierarchies
Incomplete hierarchies can occur between the sale and

customer dimensions in case of anonymous customer, or
whose information including nation and region is unknown.
Moreover, incompleteness may happen on hierarchical levels
of the four dimensions because of missing values.



3.2 Generating Complex Hierarchies
As we pointed out in Section 3.1, complexity in hierarchies

may occur at any level of any dimension. We divide the “de-
gree” of complexity into four kinds: simple, incomplete only,
non-strict only, and complex (both incomplete and non-
strict). To generate a DW with scalable complex hierarchies,
we propose some parameters: fact number, incomplete per
centage, nonstrict percentage, and nonstrict number.

The number of facts to be generated can be specified by
fact number. The occurrence probability of incomplete or
non-strict hierarchy instances among the total number of
dimension instances are defined by incomplete percentage
or nonstrict percentage, respectively. Lastly, the number of
non-strict hierarchy instances in a dimension is specified by
nonstrict number. Consequently, four kinds of hierarchies
can be specified as follows.

1. Simple (default): incomplete percentage = 0 and nonstrict
percentage = 0

2. Incomplete: incomplete percentage > 0 and nonstrict per
centage = 0

3. Non-strict: nonstrict percentage > 0, nonstrict number > 1
and incomplete percentage = 0

4. Complex: incomplete percentage >0, nonstrict percentage
> 0 and nonstrict number > 1

3.2.1 Simple Hierarchies
XWeB directly provides simple hierarchies, so there is

nothing to enhance at this point. Let us nonetheless pro-
vide a running example of fact, modeled as a data tree in
Figure 3(a), which we reuse in the following subsections.
The example shows that on 25/06/1998, customer #1 from
USA of America region bought 100 parts (part #1), costing
2,800 from supplier #1, which is located in France, Europe.

Figure 3: (a) Sale and (b) Incomplete hierarchy gen-
eration examples

3.2.2 Incomplete Hierarchies
Incomplete hierarchies are generated according to the fact

number and incomplete percentage parameters. For exam-
ple, if fact number = 10, 40 dimension instances (1 fact =
4 dimension instances) are generated. A dimension instance
includes the dimension and its hierarchical instances. Then,
if we set incomplete percentage to 50, a hierarchy is ran-
domly removed among every 2 (100/50) dimension instances
to form an incomplete hierarchy.

Algorithm 1 depicts incomplete hierarchy generation. An
incomplete hierarchy is generated on the dimension specified
by the input parameter dim. We use ic check to verify the
occurrences of incomplete hierarchies, that is at least one
incomplete hierarchy exists in the given dimension and each

level of hierarchy in the dimension is randomly chosen to be
removed (for statement of the algorithm). Let us look at
the example in Figure 3(b). Suppose that dimension part in
Figure 3(a) is randomly selected for incompleteness on its
first level (“LARGE”). Then, the level “LARGE” is deleted
from the part dimension.

Algorithm 1 : Incomplete hierarchy generation

Input:dim// target dimension
ic check = false
while ic check is false {

for each level of dim {
randomly determine if current level bears incompleteness
if current level is selected {

remove current level from dim
set ic check to true

}// end if
}// end for

}// end while

3.2.3 Non-strict Hierarchies
We use the nonstrict percentage parameter to specify the

distribution of non-strictness. In addition, nonstrict number
is used to specify the maximum number of non-strict in-
stances in a dimension. Note that at least two non-strict
instances are generated (definition of non-strictness in Sec-
tion 2.1.1).

Algorithm 2 depicts non-strict hierarchy generation. Non-
strict instances are formed in an array whose rows represent
non-strict dimension instances and columns represent hierar-
chical levels. The dim input parameter is used to specify the
non-strict dimension instance. The algorithm randomly as-
signs nonstrict number dimension instances to an ns array
(non-strict array). Finally, the ns array is translated into
an XML segment. Let us look at the example in the up-
per part of Figure 4. Suppose that the supplier dimension
instance of Figure 3 (a) is chosen for non-strictness with
nonstrict number = 4. As a result, an array of four rows is
created as in the left upper part of Figure 4. The right upper
part of the figure shows the data tree translated from the
array. In this example, we can see that a sale is supplied by
two suppliers (supplier#1 and supplier#2), and each of the
suppliers owns two branches located in two different nations.

Algorithm 2 : Non-strict hierarchy generation

Input:nonstrict_number, dim
ns array = null
while nonstrict number > 0 { // more dimension to be added

randomly select dimension as rand dim
add rand dim to ns array
nonstrict number − 1

}// end while

return ns array

3.2.4 Complex Hierarchies
Complex hierarchies occur when a dimension instance is

chosen for both incompleteness and non-strictness. We use
nonstrict percentage (greater than zero) and nonstrict number
(greater than one) to specify non-strictness to be generated
on the target dimension. Moreover, incomplete percentage
is set to be greater than zero to specify that incomplete-
ness is also generated, especially over non-strict dimension



instances. Algorithm 3 depicts complex hierarchy gener-
ation. Firstly, the algorithm generates a non-strict array
using Algorithm 2. Then, the algorithm uses ic check to
confirm that at least one non-strict instance is randomly
selected. Then incomplete hierarchies are generated only
on randomly selected non-strict dimension instances using
Algorithm 1. The lower part of Figure 4 illustrates an ex-
ample. Here, a supplier dimension instance is chosen for
both non-strictness (as in the upper part of the figure) and
incompleteness. Consequently, an array (left lower part of
Figure 4) is generated from ns array by Algorithm 3. Fi-
nally, this array is translated into a data tree as in the right
lower part of Figure 4, where “EUROPE” and “INDIA” are
deleted.

Algorithm 3 : Complex hierarchy generation
Input:ns_array
ic check = false
while ic check is false {

for each row of ns array {//dimension
randomly determine if dimension bears incompleteness
if current dimension is selected {
gen ic dim(current dimension)// call to Algorithm 1
set ic chek to true

}// end if
}// end for

}// end while

Figure 4: Non-strict and complex hierarchies gener-
ations examples

3.3 Query Workload
Since complex hierarchy queries in XWeB run only on the

part dimension, we complement its workload to cover all pos-
sible complex hierarchies on all dimensions, as discussed in
Section 3.1. Our benmark’s workload complements XWeB’s
to include up to 4-dimension cubing, and also supports both
simple and complex hierarchies.

The following list itemizes our workload’s queries on com-
plex hierarchies that build 4-dimension cubes (4D), basic ag-
gregation operations, and some OLAP operations. Queries
are presented in natural language for space constraints. A
4D cube is extracted by Q21, i.e., total quantity and amount

of sales in groups of part, customer, supplier, and date di-
mensions. We can also extract a 4D cube at specific hier-
archical level of dimensions as in Q22, i.e., min quantity of
sales among the groups of dimensions: customer at nation
level, part at type3 level, supplier at nation level, and date
at day level. Moreover, we can slice the cube into a 3D cube
with max aggregation by Q23, i.e., max of total amount
among the groups of month, part’s type2, supplier’s nation,
and customer’s region. Finally, a 3D cube with average of
total amount in groups of supplier’s region, part’s type1,
customer’s region, and year is also built by Q24.

• Q21: sum of f quantity, f totalamount from part,
customer, supplier, date group by part, customer,
supplier, date

• Q22: min of f quantity from customer, part, supplier,
date group by nation, type3, nation, day

• Q23: max of f totalamount from date, part, supplier,
customer group by month, type2, nation, region

• Q24: average of f totalamount from supplier, part,
customer, date group by region, type1, region, year

3.4 Performance Metrics
In this benchmark, we define two performance metrics for

summarizability processing algorithms.
The first metric is quantitative: it is response time, i.e.,

the execution time of the query workload over a given dataset.
Whether the overhead of summarizability processing can be
distinguished from query processing or not depends on cases,
but it is always included in the global execution time.

The second metric is qualitative: when running the bench-
mark, we check whether aggregation queries provided the
expected results, i.e., we check whether summarizability is-
sues are correctly handled. To do so, we check if the resulted
groups are not duplicated, the total of aggregation values is
equal to grand total, if average is the division of total and its
number, min is the least value, or max is the highest value.

4. EXPERIMENTAL DEMONSTRATION
To illustrate the feasibility and usefulness of our bench-

mark, we report in this section experiments in which we com-
pare two methods for processing summarizability issues in
DWs with the help of our benchmark. Note that our objec-
tive is to show that our benchmark provides useful insights
regarding the behavior and performance of such approaches,
and not so much to actually compare them.

4.1 Studied Algorithms
The first approach for addressing summarizability issues

we test in this paper is a reference approach by Pedersen et
al. [19] (labeled Pedersen in the remainder of this section),
which we adapt to the XML DW case. Pedersen transforms
dimension and fact instances to enforce summarizability by
using two algorithms named MakeCovering and MakeStrict.
MakeCovering inserts new values, exploited from metadata
and/or expert advice, into the missing hierarchical levels
to ensure that mappings to coarser hierarchical levels are
covering/complete. MakeStrict avoids “double counting” by
“fusing” multiple values in a parent hierarchical level into
one “fused” value, and then linking the child value to the
fused value. Fused values are inserted into a new hierarchical



level in-between the child and the parent. Consequently,
reusing this new level for computing coarser level aggregate
values leads to correct aggregation results. MakeCovering

and MakeStrict transform both the DW schema and data,
and are applied once in a static way.

The second approach we test is a new, dynamic approach
called Query-Based Summarizability [8] (labeled QBS in the
remainder of this section). QBS deals with summarizabil-
ity issues by firstly avoiding multiplying the aggregation of
measure instances of a hierarchical level when rolling up to
a coarser level in non-strict hierarchies. Thus, when build-
ing the set of groups with respect to a grouping criterion,
multiple values in the coarser level are fused into one sin-
gle ”fused value”. Secondly, when rolling from a hierarchical
level up to a coarser level, measure instances of the finer
level that are not present in the coarser level must still be
agregated (incomplete hierarchies). Thus, when building a
group, all ”missing instances” are grouped into an artificial
”Other”group. By contrast to Pedersen, QBS does not trans-
form schema nor data and applies automatically, on the fly,
at query time.

4.2 Experimental Configuration

4.2.1 System Configuration
Our experiments are done on a Toshiba laptop with an

Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz, 4.00 GB
of memory, and 64-bit Windows 7 Home Premium Service
Pack 1. The algorithms are implemented in Java JDK 1.7
using the SAX parser to read XML data.

4.2.2 Experimental Setup
We use DWs with complex hierarchies scaling in size from

50,000 to 250,000 facts as in the first row of Table 2. The
second row ranges simple hierarchy data in kilobytes (27 MB
minimum and 134 MB maximum). The third, fourth, and
fifth rows list the size of DWs with 5% incomplete, non-
strict, and complex hierarchies respectively. The sixth, sev-
enth, and eighth rows denote the size of DWs with 50% in-
complete, non-strict, and complex hierarchies respectively.

Table 2: Dataset size (KB)
No. Facts 50,000 100,000 150,000 200,000 250,000
Simple 27,700 55,390 82,800 110,577 138,015
Incomplete 5% 27,626 55,242 82,543 110,249 137,573
Non-strict 5% 28,669 57,328 85,671 114,422 142,786
Complex 5% 28,376 56,742 84,791 113,252 141,319
Incomplete 50% 25,020 50,030 74,769 99,842 124,601
Non-strict 50% 35,412 70,826 105,914 141,397 176,527
Complex 50% 32,522 65,031 97,263 129,839 162,088

Among the workload of queries, we focus on four queries
with various number of dimensions (labeled n: 1D to 4D),
and select the most detailed hierarchy levels for grouping
since they form more complex groups (Table 3). We roll up
the queries to levels day, type3, nation, and nation of the
date, part, customer, and supplier dimensions, respectively.

4.3 Experimental Results
The following subsections present our experimental results

of comparing QBS and Pedersen. For Pedersen, we differen-
tiate between query execution time and preprocessing over-
head, while it is impossible for QBS, as overhead is embedded
within query execution.

Table 3: Group by n-dimension queries
n part customer supplier date
1D day
2D type3 day
3D type3 nation day
4D type3 nation nation day

The following results focus on the response time met-
ric, because both our implementations of Pedersen and QBS

compute correct aggregates (the quality metric is met in
both cases).

4.3.1 Results on Simple Hierarchies
Our first comparison is run on simple hierarchies only and

the results are shown in the left-hand side of Figure 5. Fig-
ure 5(a) shows that QBS’ time performance increases lin-
early with data size and the number of dimensions in the
query, except the 3D query on 50,000 facts, which inciden-
tally bears lower grouping complexity. Figure 5(b) shows
that the time performance of both approaches increases lin-
early w.r.t. data size and the number of dimensions used in
queries. Moreover, QBS expectingly performs a little worse
than Pedersen without overhead, but tends to perform a
little better when Pedersen’s overhead is accounted for.

However, both QBS and Pedersen consume a lot of time,
especially when running the 4D query (about an hour). To
find out the cause, we perform two more experiments, dis-
associating complex hierarchy processing time from group
matching time. This is possible because XWeB’s data are
originally summarizable. Figure 5(c) shows that enforcing
summarizability in QBS does not much affect time perfor-
mance, while group matching has a great impact that in-
creases with the number of dimensions. Figure 5(d) confirms
that Pedersen also spends most of its time processing group
matching, while overhead consumes little time. We notice
that, when processing group matching, we indeed need to
check whether the group exists. Thus, we must check every
hierarchy level instance in the whole group, which contains
several instances from all dimensions. Doing so is very time
consuming comparing to traditional aggregation, which only
checks for the existing group as a whole. However, no ap-
proach dealing with summarizability can avoid this issue.

4.3.2 Results on Complex Hierarchies
Due to space limitations, we only present here our ex-

periments on 5% and 50% incomplete, non-strict and com-
plex hierarchies (the approximate minimum and maximum
scales), but we did go through the whole range. The results
we obtain are shown on the right-hand side of Figure 5.

Incomplete Hierarchies.
The results from Figures 5(e) and 5(f) reveal two cases.

When the number of dimensions is small (up to query 2D),
QBS is comparable to Pedersen when overhead is excluded,
and tends to perform better than Pedersen when overhead
is included. For a larger number of dimensions (query 3D),
both approaches are comparable. Both approaches actually
have different tradeoffs. QBS takes less time when reading in-
complete data, but more time to solve incompleteness, while
the reverse is true for Pedersen. Thus, when the number of
dimensions increases, the QBS’s processing of incomplete
hierarchies at query time is a handicap that evens global



performances w.r.t. Pedersen. Still, we observe that both
approaches are affected by the poor performance of group
matching, which explains why we did not include query 4D
in these experiments.

Non-Strict Hierarchies.
The results from Figures 5(g) and 5(h) show similar trends

to those of Figures 5(e) and 5(f), because the tradeoffs in
QBS and Pedersen are essentially the same for non-strictness
management. However, non-strictness processing takes much
more time than incompleteness processing in checking the
existing non-strict instances in each dimension, as shown
in Figures 5(k) and 5(l) for QBS. Ultimately, we can again
record that QBS is comparable to Pedersen without over-
head, and a little better when overhead is included.

Complex Hierarchies.
The results from Figures 5(i) and 5(j) bear similar re-

sults to the non-strict case, again because the cost of non-
strictness processing is much higher than that of incomplete-
ness processing (Figures 5(k) and 5(l)). Group matching is
indeed mainly impacted by non-strict hierarchies. However,
in some cases, such as in the 3D query on 250,000 facts in
Figure 5(k), QBS performs better in the complex case than
in the non-strict case, because non-strict processing inciden-
tally produces fewer complex groups, thus simplifying group
matching.

5. CONCLUSION
To the best of our knowledge, our benchmark is the first

XML data warehouse benchmark with complex hierarchies.
It has been designed to conform to Gray’s criteria (relevance,
portability, scalability, and simplicity) [7]. Our benchmark
is relevant since it refers to the TPC-H standard, while
adding complex hierarchies that answer to precise engineer-
ing needs, i.e., summarizability processing performance test-
ing. The benchmark is portable as it is written in Java, mak-
ing it easy to implement and connect to various systems, in-
cluding XML DBMSs. It is scalable by number of facts and
complex hierarchy distributions. Finally, it is simple since
its model, which is inherited from XWeB, is a simplified,
star-like version of TPC-H’s.

Morevover, we demonstrate the use of our benchmark by
comparing two approaches that address sumarizability issues
when processing complex hierarchies, namely Pedersen and
QBS. Our benchmark highlights two main insights. First,
run-time summarizability management is feasible, since QBS

performs almost as well as Pedersen dynamically, and would
retain the same perfomance if DW shema or data changed,
while Pedersen would have to be run again. Second, we
show that both algorithms spend most of their time pro-
cessing group matching. This is thus the main process to be
optimized in future research on summarizability processing
in XML environments.

Finally, a raw, preliminary version of our benchmark1 is
freely available online as a NetBeans project2 . A more
streamlined version is in the pipe and will be distributed
under a Creative Commons license3.

1http://eric.univ-lyon2.fr/~ckit/DOLAP12.zip
2http://netbeans.org
3http://creativecommons.org/licenses/by-nc-sa/2.5/

In the future, we intend to integrate our benchmark with
XWeB, including an XQuery parser that supports where
clauses and OLAP operators (slice, dice, rotate, roll-up,
drill-down, and cube). Furthermore, it would be interest-
ing to add more unstructured business information (i.e.,
document-oriented XML data) such as in XMark and XBench
into our benchmark.
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[1] A. Abelló, J. Samos, and F. Saltor. YAM2: A

Multidimensional Conceptual Model Extending UML.
Inf. Syst., 31(6):541–567, 2006.

[2] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling
Multidimensional Databases. In ICDE, Birmingham,
UK, pages 232–243, 1997.

[3] K. S. Beyer, D. D. Chamberlin, L. S. Colby, F. Özcan,
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