
The Design of DWEB

Jérôme Darmont, Fadila Bentayeb, and Omar Boussäıd

ERIC, University of Lyon 2

5 av. Pierre Mendès-France

69676 Bron Cedex

France

{jdarmont|boussaid|bentayeb}@eric.univ-lyon2.fr

Abstract

Data warehouse architectural choices and optimization techniques are critical to decision support

query performance. To facilitate these choices, the performance of the designed data warehouse must

be assessed. This is usually done with the help of benchmarks, which can either help system users

comparing the performances of different systems, or help system engineers testing the effect of various

design choices. While the TPC standard decision support benchmarks address the first point, they are

not tuneable enough to address the second one and fail to model different data warehouse schemas.

By contrast, our Data Warehouse Engineering Benchmark (DWEB) allows to generate various ad-

hoc synthetic data warehouses and workloads. DWEB is fully parameterized to fulfill data warehouse

design needs. However, two levels of parameterization keep it relatively easy to tune. Finally, DWEB

is implemented as a Java free software that can be interfaced with most existing relational database

management systems. A sample usage of DWEB is also provided in this paper.

Keywords: Data warehouses, decision support queries, OLAP, benchmarking, performance eval-

uation, data warehouse design.

1 Introduction

When designing a data warehouse, choosing an architecture is crucial. Since it is very dependant on the

domain of application and the analysis objectives that are selected for decision support, different solutions

are possible. In the ROLAP (Relational OLAP) environment we consider, the most popular solutions

are by far star, snowflake, and constellation schemas [Inm02, KR02], and other modeling possibilities

might exist. This choice of architecture is not neutral: it always has advantages and drawbacks and

greatly influences the response time of decision support queries. For example, a snowflake schema with

hierarchical dimensions improves analysis power, but induces many more costly join operations than

a star schema. Once the architecture is selected, various optimization techniques such as indexing or

materialized views further influence querying and refreshing performance. Again, it is a matter of trade-

off between the improvement brought by a given technique and its overhead in terms of maintenance time

and additional disk space; and also between different optimization techniques that may cohabit.

To help users make these critical choices of architecture and optimization techniques, the performance

of the designed data warehouse needs to be assessed. However, evaluating data warehousing and deci-

sion support technologies is an intricate task. Though pertinent, general advice is available, notably

on-line [Pen03, Gre04a], more quantitative elements regarding sheer performance are scarce. Thus, we

propose in this paper a data warehouse benchmark we named DWEB (the Data Warehouse Engineer-

ing Benchmark). A benchmark may be defined as a synthetic database model and a workload model.

Different goals may be achieved by using a benchmark:

1

1. compare the performances of various systems in a given set of experimental conditions (users);

2. evaluate the impact of architectural choices or optimisation techniques on the performances of one

given system (system designers).

The Transaction Processing Performance Council (TPC) [Tra04], a non-profit organization, defines

standard benchmarks and publishes objective and verifiable performance evaluations to the industry.

These benchmarks mainly aim at the first benchmarking goal we identified. However, these benchmarks

only model one fixed type of database and they are not very tuneable: the only parameter that defines

their database is a scale factor determining its size. Nethertheless, in a development context, it may be

interesting to test a solution (an indexing strategy, for instance) using various database configurations.

Furthermore, though there is an ongoing effort at the TPC to design a data warehouse benchmark,

the current TPC decision support benchmarks do not properly model a data warehouse. They do not

address specific warehousing issues such as the ETL (Extract, Transform, Load) process or OLAP (On-

Line Analytical Processing) querying either.

Hence, the aim of this paper is to present an operational benchmark for data warehouses. More

precisely, our objective is to design a benchmark that helps generating ad-hoc synthetic data warehouses

(modeled as star, snowflake, or constellation schemas) and workloads, mainly for engineering needs (sec-

ond benchmarking objective). It is indeed very important to achieve the different kinds of schemas that

are used in data warehouses, and to allow users to select the precise architecture they need to evaluate.

The remainder of this paper is organized as follows. First, we discuss the state of the art regarding

decision support benchmarks in Section 2. We motivate the need for a data warehouse benchmark in

Section 3. Then we detail DWEB’s database and workload in Sections 4 and 5, respectively. We also

briefly present our implementation of DWEB in Section 6. We finally illustrate how our benchmark can

be used in Section 7. We conclude this paper and provide future research directions in Section 8.

2 Existing decision support benchmarks

To the best of our knowledge, very few decision support benchmarks have been designed out of the TPC.

Some do exist [Dem95], but their specification is not fully published. Some others are not available any

more, such as the OLAP APB-1 benchmark that was issued in the late nineties by the OLAP council,

an organization that does not seem to exist any more. This is why we focus on the TPC benchmarks in

this section.

TPC-D [Bal93, Bha96, Tra98] appeared in the mid-nineties, and forms the base of TPC-H and TPC-

R that have now replaced it [PF00, Tra03a, Tra03b]. TPC-H and TPC-R are actually identical, only

their usage varies. TPC-H is for ad-hoc querying (queries are not known in advance and optimiza-

tions are forbidden), while TPC-R is for reporting (queries are known in advance and optimizations are

allowed). TPC-H and TPC-R exploit the same relational database schema as TPC-D: a classical product-

order-supplier model (represented as a UML class diagram in Figure 1); and the workload from TPC-D

supplemented with five new queries.

This workload is constituted of:

• twenty-two SQL-92 parameterized, decision-oriented queries labeled Q1 to Q22;

• two refresh functions RF1 and RF2 that essentially insert and delete tuples in the ORDER and

LINEITEM tables.

The query parameters are subtituted with the help of a random function following a uniform distribution.

Finally, the protocol for running TPC-H or TPC-R includes:

2

Figure 1: TPC-D, TPC-H, and TPC-R database schema

1. a load test;

2. a performance test (executed twice) further subdivided into:

• a power test,

• a throughput test.

Three primary metrics describe the results in terms of power, throughput, and a composition of the two.

TPC-DS [PSKL02], which is currently under development, is the designated successor of TPC-H and

TPC-R, and more clearly models a data warehouse. TPC-DS’ database schema, whose fact tables are

represented in Figure 2, models the decision support functions of a retail product supplier as several

snowflake schemas. This model also includes fifteen dimensions that are shared by the fact tables. Thus,

the whole model is a constellation schema.

Figure 2: TPC-DS data warehouse schema

TPC-DS’ workload is made of four classes of queries:

3

• reporting queries,

• ad-hoc decision support queries,

• interactive OLAP queries,

• data extraction queries.

A set of about five hundred queries is generated from query templates written in SQL-99 (with OLAP

extensions). Substitutions on the templates are operated using non-uniform random distributions. The

data warehouse maintenance process includes a full ETL process and a specific treatment of the dimen-

sions. For instance, historical dimensions preserve history as new dimension entries are added, while

non-historical dimensions do not keep aged data. Finally, the execution model of TPC-DS consists of

four steps:

1. a load test,

2. a query run,

3. a data maintenance run,

4. another query run.

A single throughput metric is proposed, which takes the query and maintenance runs into account.

3 Motivation

Our first motivation to design a data warehouse benchmark is that we need one to evaluate the efficiency

of performance optimization techniques (such as autoindexing techniques) we are currently developping.

To the best of our knowledge, no such benchmark has been published yet. TPC-H and TPC-R’s database

schema, which is inherited from the older and obsolete benchmark TPC-D, is not a data warehouse schema

such as the typical star schema and its derivatives. Furthermore, their workload, though decision-oriented,

does not include explicit OLAP queries either. These benchmarks are indeed implicitely considered

obsolete by the TPC that has issued some specifications for their successor: TPC-DS. However, TPC-DS

has been under development for two years now and is not completed yet. This might be because of its

high complexity, especially at the ETL and workload levels.

Furthermore, although the TPC decision support benchmarks are scaleable according to Gray’s def-

inition [Gra93], their schema is fixed. For instance, TPC-DS’ constellation schema cannot easily be

simplified into a simple star schema. It must be used “as is”. Different ad-hoc configurations are not

possible. Furthermore, there is only one parameter to define the database, the Scale Factor (SF), which

sets up its size (from 1 to 100,000 GB). The user cannot control the size of the dimensions and the fact

tables separately, for instance. Finally, the workload is not tuneable at all: the number of generated

queries directly depends on SF in TPC-DS, for example. The user has no control on the workload’s

definition.

Finally, in a context where data warehouse architectures and decision support workloads depend

a lot on the domain of application, it is very important that users who wish to evaluate the impact

of architectural choices or optimisation techniques on global performance can choose and/or compare

between several configurations. The TPC benchmarks, which aim at standardized results, are not well

adapted to this purpose.

For all these reasons, we decided to design a full data warehouse benchmark that would be able to

model various configurations of database and workload, while being simpler to develop than TPC-DS.

4

4 DWEB database

4.1 Schema

Our design objective for DWEB is to be able to model the different kinds of data warehouse architectures

that are popular within a ROLAP environment:

• classical star schemas,

• snowflake schemas with hierarchical dimensions,

• constellation schemas with multiple fact tables and shared dimensions.

To achieve this goal, we propose a data warehouse metamodel (represented as a UML class diagram

in Figure 3) that can be instantiated into these different schemas. We view this metamodel as a middle

ground between the multidimensional metamodel from the Common Warehouse Metamodel (CWM)

[Obj03, PCTM03] and the eventual benchmark model. Our metamodel is actually an instance of the

CWM metamodel, which could be qualified as a meta-metamodel in our context.

Figure 3: DWEB data warehouse metaschema

Our metamodel is quite simple, but it is sufficient to model the data warehouse schemas we aim at

(star, snowflake, and constellation schemas). Its upper part describes a data warehouse (or a datamart,

if a datamart is viewed as a small, dedicated data warehouse) as constituted of one or several fact tables

that are each described by several dimensions. Each dimension may also describe several fact tables

(shared dimensions). Each dimension may be constituted of one or several hierarchies made of different

levels. There can be only one level if the dimension is not a hierarchy.

Both fact tables and dimension hierarchy levels are relational tables, which are modeled in the lower

part of Figure 3. Classically, a table or relation is defined in intention by its attributes and in extension

5

by its tuples or rows. At the intersection of a given attribute and a given tuple lies the value of this

attribute in this tuple.

4.2 Parameterization

DWEB’s database parameters help users selecting the data warehouse architecture they need in a given

context.

The main difficulty in producing a data warehouse schema is parameterizing the instantiation of the

metaschema. We indeed try to meet the four key criteria that make a “good” benchmark, as defined by

Gray [Gra93]:

• relevance: the benchmark must answer our engineering needs (as expressed in Section 1);

• portability: the benchmark must be easy to implement on different systems;

• scalability: it must be possible to benchmark small and large databases, and to scale up the bench-

mark;

• simplicity: the benchmark must be understandable, otherwise it will not be credible nor used.

Relevance and simplicity are clearly two orthogonal goals. Introducing too few parameters reduces

the model’s expressiveness, while introducing too many parameters makes it difficult to apprehend by

potential users. Furthermore, few of these parameters are likely to be used in practice. In parallel, the

generation complexity of the instantiated schema must be mastered. To solve this dilemna, we capitalize

on the experience of designing the OCB object-oriented database benchmark [DS00]. OCB is generic and

able to model all the other existing object-oriented database benchmarks, but it is controlled by far too

many parameters, few of which are used in practice. Hence, we propose to divide the parameter set into

two subsets.

• The first subset of so-called low-level parameters allows an advanced user to control everything

about the data warehouse generation (Table 1). However, the number of low-level parameters can

increase dramatically when the schema gets larger. For instance, if there are several fact tables, all

their characteristics, including dimensions and their own characteristics, must be defined for each

fact table.

• Thus, we designed a layer above with much fewer parameters that may be easily understood and

set up (Table 2). More precisely, these high-level parameters are average values for the low-level

parameters. At database generation time, the high-level parameters are exploited by random func-

tions (following a gaussian distribution) to automatically set up the low-level parameters. Finally,

unlike the number of low-level parameters, the number of high-level parameters always remains

constant and reasonable (less than ten parameters).

Users may choose to set up either the full set of low-level parameters, or only the high-level parameters,

for which we propose default values that correspond to a snowflake schema. Note that these parameters

control both schema and data generation.

Remarks:

• Since shared dimensions are possible, TOT NB DIM ≤
∑

NB FT
i=1 NB DIM(i).

• The cardinal of a fact table is usually lower or equal to the product of its dimensions’ cardinals.

This is why we introduce the notion of density. A density rate of one indicates that all the possible

combinations of the dimension primary keys are present in the fact table. When the density rate

6

Parameter name Meaning

NB FT Number of fact tables

NB DIM(f) Number of dimensions describing fact table #f

TOT NB DIM Total number of dimensions

NB MEAS(f) Number of measures in fact table #f

DENSITY (f) Density rate in fact table #f

NB LEV ELS(d) Number of hierarchy levels in dimension #d

NB ATT (d, h) Number of attributes in hierarchy level #h of dimension #d

HHLEV EL SIZE(d) Number of tuples in the highest hierarchy level of dimension #d

DIM SFACTOR(d) Size scale factor in the hierarchy levels of dimension #d

Table 1: DWEB warehouse low-level parameters

Parameter name Meaning Default value

AV G NB FT Average number of fact tables 1

AV G NB DIM Average number of dimensions per fact table 5

AV G TOT NB DIM Average total number of dimensions 5

AV G NB MEAS Average number of measures in fact tables 5

AV G DENSITY Average density rate in fact tables 0.6

AV G NB LEV ELS Average number of hierarchy levels in dimensions 3

AV G NB ATT Average number of attributes in hierarchy levels 5

AV G HHLEV EL SIZE Average number of tuples in highest hierarchy levels 10

DIM SFACTOR Average size scale factor within hierarchy levels 10

Table 2: DWEB warehouse high-level parameters

decreases, we progressively eliminate some of these combinations (see Section 4.3). This parameter

helps controlling the size of the fact table, independantly of the size of its dimensions, which are

defined by the HHLEV EL SIZE and DIM SFACTOR parameters (see below).

• Within a dimension, a given hierarchy level normally has a greater cardinality than the next level.

For example, in a town-region-country hierarchy, the number of towns must be greater than the

number of regions, which must be in turn greater than the number of countries. Furthermore, there

is often a significant scale factor between these cardinalities (e.g., one thousand towns, one hundred

regions, ten countries). Hence, we model the cardinality of hierarchy levels by assigning a “starting”

cardinality to the highest level in the hierarchy (HHLEV EL SIZE), and then by multiplying it

by a predefined scale factor (DIM SFACTOR) for each lower-level hierarchy.

• The global size of the data warehouse is assessed at generation time (see Section 6) so that the user

retains full control over it.

4.3 Generation algorithm

The instantiation of the DWEB metaschema into an actual benchmark schema is done in two steps:

1. build the dimensions;

2. build the fact tables.

The pseudo-code for these two steps is provided in Figures 4 and 5, respectively. Each of these steps

is further subdivided, for each dimension or each fact table, into generating its intention and extension.

In addition, hierarchies of dimensions must be managed. Note that they are generated starting from

the highest level of hierarchy. For instance, for our town-region-country sample hierarchy, we build the

country level first, then the region level, and eventually the town level. Hence, tuples from a given

7

hierarchy level can refer to tuples from the next level (that are already created) with the help of a foreign

key.

For i = 1 to TOT NB DIM do

previous ptr = NIL

size = HHLEVEL SIZE(i)

For j = 1 to NB LEVELS(i) do

// Intention

hl = New(Hierarchy level)

hl.intention = Primary key()

For k = 1 to NB ATT(i,j) do

hl.intention = hl.intention ∪ String descriptor()

End for

// Hierarchy management

hl.child = previous ptr

hl.parent = NIL

If previous ptr 6= NIL then

previous ptr.parent = hl

hl.intention = hl.intention

∪ previous ptr.intention.primary key // Foreign key

End if

// Extension

hl.extension = ⊘
For k = 1 to size do

new tuple = Integer primary key()

For l = 1 to NB ATT(i,j) do

new tuple = new tuple ∪ Random string()

End for

If previous ptr 6= NIL then

new tuple = new tuple ∪ Random key(previous ptr)

End if

hl.extension = hl.extension ∪ new tuple

End for

previous ptr = hl

size = size * DIM SFACTOR(i)

End for

dim(i) = hl // First (lowest) level of the hierarchy

End for

Figure 4: DWEB dimensions generation algorithm

We use three main classes of functions and one procedure in these algorithms.

1. Primary key(), String descriptor() and Float

measure() return attribute names for primary keys, descriptors in hierarchy levels, and measures

in fact tables, respectively. These names are labeled sequentially and prefixed by the table’s name

(e.g., DIM1 1

DESCR1, DIM1 1 DESCR2...).

2. Integer primary key(), Random key(), Random string() and Random float() return sequential

integers with respect to a given table (no duplicates are allowed), random instances of the specified

table’s primary key (random values for a foreign key), random strings of fixed size (20 characters)

selected from a precomputed referential of strings and prefixed by the corresponding attribute name,

and random single-precision real numbers, respectively.

3. Random dimension() returns a dimension that is chosen among the existing dimensions that are

not already describing the fact table in parameter.

4. Random delete() deletes one tuple at random from the extension of a table.

8

For i = 1 to NB FT do

// Intention

ft(i).intention = ⊘
For j = 1 to NB DIM(i) do

j = Random dimension(ft(i))

ft(i).intention = ft(i).intention ∪ ft(i).dim(j).primary key

End for

For j = 1 to NB MEAS(i) do

ft(i).intention = ft(i).intention ∪ Float measure()

End for

// Extension

ft(i).extension = ⊘
For j = 1 to NB DIM(i) do // Cartesian product

ft(i).extension = ft(i).extension × ft(i).dim(j).primary key

End for

to delete = DENSITY(i) * |ft(i).extension|

For j = 1 to to delete do

Random delete(ft(i).extension)

End for

For j = 1 to |ft(i).extension| do // With |ft(i).extension| updated

For k = 1 to NB MEAS(i) do

ft(i).extension.tuple(j).measure(k) = Random float()

End for

End for

End for

Figure 5: DWEB fact tables generation algorithm

Except in the Random delete() procedure, where the random distribution is uniform, we use gaussian

random distributions to indroduce a skew, so that some of the data, whether in the fact tables or

the dimensions, are referenced more frequently than others as it is normally the case in real-life data

warehouses.

Remark: The way density is managed in Figure 5 is grossly non-optimal. We chose to present the

algorithm that way for the sake of clarity, but the actual implementation does not create all the tuples

from the cartesian product, and then delete some of them. It directly generates the right number of

tuples by using the density rate as a probability for each tuple to be created.

5 DWEB workload

In a data warehouse benchmark, the workload may be subdivided into:

• a load of decision support queries (mostly OLAP queries);

• the ETL (data generation and maintenance) process.

To design DWEB’s workload, we inspire both from TPC-DS’ workload definition (which is very

elaborate) and information regarding data warehouse performance from other sources [BMC00, Gre04b].

However, TPC-DS’ workload is quite complex and somehow confusing. The reporting, ad-hoc decision

support and OLAP query classes are very similar, for instance, but none of them include any specific

OLAP operator such as Cube or Rollup. Since we want to meet Gray’s simplicity criterion, we propose

a simpler workload. Furthermore, we also have to design a workload that is consistent with the variable

nature of the DWEB data warehouses.

We also, in a first step, mainly focus on the definition of a query model. Modeling the full ETL

process is a complex task that we postpone for now. We consider that the current DWEB specifications

9

provide a raw loading evaluation framework. The DWEB database may indeed be generated into flat

files, and then loaded into a data warehouse using the ETL tools provided by the system.

5.1 Query model

The DWEB workload models two different classes of queries:

• purely decision-oriented queries involving common OLAP operations, such as cube, roll-up, drill

down and slice and dice;

• extraction queries (simple join queries).

We define our generic query model (Figure 6) as a grammar that is a subset of the SQL-99 standard,

which introduces much-needed analytical capabilities to relational database querying. This increases the

ability to perform dynamic, analytic SQL queries.

Query ::-

Select ![<Attribute Clause> | <Aggregate Clause>

| [<Attribute Clause>, <Aggregate Clause>]]

From !<Table Clause> [<Where Clause> ‖ [<Group by Clause> *<Having Clause>]]

Attribute Clause ::- Attribute Name [[, <Attribute Clause>] | ⊥]

Aggregate Clause ::- ![Aggregate Function Name (Attribute Name)] [As Alias]

[[, <Aggregate Clause>] | ⊥]

Table Clause ::- Table Name [[, <Table Clause>] |⊥]

Where Clause ::- Where ![<Condition Clause> | <Join Clause>

| [<Condition Clause> And <Join Clause>]]

Condition Clause ::- ![Attribute Name <Comparison Operator> <Operand Clause>]

[[<Logical Operator> <Condition Clause>] | ⊥]

Operand Clause ::- [Attribute Name | Attribute Value | Attribute Value List]

Join Clause ::- ![Attribute Name i = Attribute Name j] [[And <Join Clause>] |⊥]

Group by Clause ::- Group by [Cube | Rollup] <Attribute Clause>

Having Clause ::- [Alias | Aggregate Function Name (Attribute Name)]

<Comparison Operator> [Attribute Value | Attribute Value List]

Key: The [and] brackets are delimitors.

!<A>: A is required.

*<A>: A is optional.

<A ‖ B>: A or B.

<A | B>: A exclusive or B.

⊥: empty clause.

SQL langage elements are indicated in bold.

Figure 6: DWEB query model

5.2 Parameterization

DWEB’s workload parameters help users tailoring the benchmark’s load, which is also dependent from

the warehouse schema, to their needs.

10

Just like DWEB’s database paramameter set (Section 4.2), DWEB’s workload parameter set (Table 3)

has been designed with Gray’s simplicity criterion in mind. These parameters determine how the query

model from Figure 6 is instantiated. These parameters help defining the workload’s size and complexity,

by setting up the proportion of complex OLAP queries (i.e., the class of queries) in the workload ,

the number of aggregation operations, the presence of a Having clause in the query, or the number of

subsequent drill down operations.

Here, we have only a limited number of high-level parameters (eight parameters, since PROB EXTRACT

and PROB ROLLUP are derived from PROB OLAP and

PROB CUBE, respectively). Indeed, it cannot be envisaged to dive further into detail if the workload

is as large as several hundred queries, which is quite typical.

Parameter name Meaning Default value

NB Q Approximate number of queries in the workload 100

AV G NB ATT Average number of selected attributes in a query 5

AV G NB RESTR Average number of restrictions in the query 3

PROB OLAP Probability that the query type is OLAP 0.9

PROB EXTRACT Probability that the query is an extraction query 1 − PROB OLAP

AV G NB AGGREG Average number of aggregations in an OLAP query 3

PROB CUBE Probability of an OLAP query to use the Cube operator 0.3

PROB ROLLUP Probability of an OLAP query to use the Rollup operator 1 − PROB CUBE

PROB HAV ING Probability of an OLAP query to include an Having clause 0.2

AV G NB DD Average number of drill downs after an OLAP query 3

Table 3: DWEB workload parameters

Remark: NB Q is only an approximate number of queries because the number of drill down opera-

tions after an OLAP query may vary. Hence we can stop generating queries only when we actually have

generated as many or more queries than NB Q.

5.3 Generation algorithm

The pseudo-code of DWEB’s workload generation algorithm is presented in Figures 7 and 8. The algo-

rithm’s purpose is to generate a set of SQL-99 queries that can be directly executed on the synthetic data

warehouse defined in Section 4. It is subdivided into two steps:

1. generate an initial query that may either be an OLAP or an extraction (join) query;

2. if the initial query is an OLAP query, execute a certain number of drill down operations based on

the first OLAP query. More precisely, each time a drill down is performed, an attribute from a

lower level of dimension hierarchy is added to the attribute clause of the previous query.

Step 1 is further subdivided into three substeps:

1. the Select, From, and Where clauses of a query are generated simultaneously by randomly selecting

a fact table and dimensions, including a hierarchy level within a given dimension hierarchy;

2. the Where clause is supplemented with additional conditions;

3. eventually, it is decided whether the query is an OLAP query or an extraction query. In the second

case, the query is complete. In the first case, aggregate functions applied to measures of the fact

table are added in the query, as well as a Group by clause that may include either the Cube or the

Rollup operator. A Having clause may optionally be added in too. The aggregate function we apply

on measures is always Sum since it is the most common aggregate in cubes. Furthermore, other

11

aggregate functions bear similar time complexities, so they would not bring in any more insight in

a performance study.

We use three classes of functions and a procedure in this algorithm.

1. Random string() and Random float() are the same functions than those already described in

Section 4.3. However, we introduce the possibility for Random float() to use either a uniform or a

gaussian random distribution. This depends on the function parameters: either a range of values

(uniform) or an average value (gaussian). Finally, we introduce the Random int() function that

behaves just like Random float() but returns integer values.

2. Random FT() and Random dimension() help selecting a fact table or a dimension describing a given

fact table, respectively. They both use a gaussian random distribution, which introduces an access

skew at the fact table and dimension levels. Random dimension() is also already described in

Section 4.3.

3. Random attribute() and Random measure() are very close in behaviour. They return an attribute

or a measure, respectively, from a table intention or a list of attributes. They both use a gaussian

random distribution.

4. Gen query() is the procedure that actually generates the SQL-99 code of the workload queries,

given all the parameters that are needed to instantiate our query model.

6 DWEB implementation

DWEB is implemented as a Java software. We selected the Java language to meet Gray’s portability

requirement. The current version of our prototype is able to generate star, snowflake, and constellation

schemas, and suitable workloads for these schemas. Furthermore, since DWEB’s parameters might sound

abstract, our prototype provides an estimation of the data warehouse size in megabytes after they are

set up and before the database is generated. Hence, users can adjust the parameters to better represent

the kind of warehouse they need. Our prototype can be interfaced with most existing relational database

management systems through JDBC. Database connexion, parameter selection, warehouse and workload

generation, and workload execution are all accessible through a graphical interface.

Since we use a lot of random functions, we also plan to include in our prototype a better than standard

pseudorandom number generator, such as the Lewis-Payne generator [LP73], which has a huge period,

or the Mersenne Twister [MN98], which is currently one of the best pseudorandom number generators.

Finally, though our software is constantly evolving, its latest version is always freely available on-

line [JG05].

7 Sample usage of DWEB

In order to illustrate one possible usage for DWEB, we tested the efficiency of bitmap join indices [OG95]

on decision support queries under Oracle. Bitmap join indices are well suited to the data warehouse

environment. They indeed improve the response time of such common operations as And, Or, Not,

or Count that can operate on the bitmaps (and thus directly in memory) instead of the source data.

Furthermore, joins are computed a priori when the indices are created. In such a context, we could

compare the performances of various indexing techniques using one test warehouse and one or several

workloads, or evaluate the efficiency of one or several given indexing techniques on various configurations

12

n = 0

While n < NB Q do

// Step 1: Initial query

// Step 1.2: Select, From and Where clauses

i = Random FT() // Fact table selection

attribute list = ⊘
table list = ft(i)

condition list = ⊘
For k = 1 to Random int(AVG NB ATT) do

j = Random dimension(ft(i)) // Dimension selection

l = Random int(1, ft(i).dim(j).nb levels)

// Positioning on hierarchy level l

hl = ft(i).dim(j) // Current hierarchy level

m = 1 // Level counter

fk = ft(i).intention.primary key.element(j)

// (This foreign key corresponds to ft(i).dim(j).primary key)

While m < l and hl.child 6= NIL do

// Build join

table list = table list ∪ hl

condition list = condition list ∪ (fk = hl.intention.primary key)

// Next level

fk = hl.intention.foreign key

m = m + 1

hl = hl.child

End while

attribute list = attribute list ∪ Random attribute(hl.intention)

End for

// Step 1.2: Supplement Where clause

For k = 1 to Random int(AVG NB RESTR) do

condition list = condition list

∪ (Random attribute(attribute list) = Random string())

End for

// Step 1.3: OLAP or extraction query selection

p1 = Random float(0,1)

If p1 ≤ PROB OLAP then // OLAP query

// Aggregate clause

aggregate list = ⊘
For k = 1 to Random int(AVG NB AGGREG) do

aggregate list = aggregate list ∪ Random measure(ft(i).intention)

End for

// Group by clause

group by list = attribute list

p2 = Random float(0,1)

If p2 ≤ PROB CUBE then

group by operator = CUBE

Else

group by operator = ROLLUP

End if

// Having clause

p3 = Random float(0,1)

If p3 ≤ PROB HAVING then

having clause = (Random attribute(aggregate list), ≥, Random float())

Else

having clause = ⊘
End if

../..

Figure 7: DWEB workload generation algorithm – Part 1

13

../..

Else // Extraction query

group by list = ⊘
group by operator = ⊘
having clause = ⊘

End if

// SQL query generation

Gen query(attribute list, aggregate list, table list, condition list,

group by list, group by operator, having clause)

n = n + 1

// Step 2: Possible subsequent DRILL DOWN queries

If p1 ≤ PROB OLAP then

k = 0

While k < Random int(AVG NB DD) and hl.parent 6= NIL do

k = k +1

hl = hl.parent

att = Random attribute(hl.intention)

attribute list = attribute list ∪ att

group by list = group by list ∪ att

Gen query(attribute list, aggregate list, table list, condition list,

group by list, group by operator, having clause)

End while

n = n + k

End if

End while

Figure 8: DWEB workload generation algorithm – Part 2

Figure 9: Sample snowflake schema generated by DWEB

14

of warehouses, etc. The aim of this particular example is to compare the execution time of a given

workload on a given data warehouse, with and without using bitmap join indices.

First, we generated a data warehouse modeled as a snowflake schema whose conceptual schema is

represented as a UML class diagram in Figure 9. The schema is organized around one fact table that is

described by five dimensions (DIM1 to DIM5). Each dimension is hierarchical, DIM1 to DIM4 bearing two

levels of hierarchy and DIM5 three levels. At the logical level, the fact table’s primary key is consituted of

the aggregation of the dimensions’ lowest level primary keys (namely, dim1 1 pk to dim5 1 pk). Hierarchy

levels in dimensions are materialized by foreign keys, e.g., the primary key dim5 3 pk of dimension

hierarchy level DIM5 3 is a foreign key in DIM5 2. The fact table contains about 140,000 tuples, the

dimension hierarchy levels about ten tuples on an average, for a global size of about 4 MB. Note that

this is a voluntarily small example and not a full-scale test.

We applied different workloads on this data warehouse. Workload #1 is a typical DWEB workload

(see Section 5) constituted of fifty queries generated “by hand”. 10% of these queries are extraction

(join) queries and the rest are decision support queries involving OLAP operators (Cube and Rollup).

In Workload #1, we limited the queries to the dimensions’ lowest hierarchy levels, i.e., to the star

schema constituted of the fact table and hierarchy levels DIM1 1 to DIM5 1. Workload #2 is similar to

Workload #1, but it is extended with drill down operations that scan the dimensions’ full hierarchies

(from the highest level to the lowest level). Thus, this workload exploits the whole snowflake schema.

To evaluate the efficiency of bitmap join indices, we timed the execution of these two workloads on our

test data warehouse (response time is our only performance metric for now), first with no index, and then

by forcing the use of five bitmap join indices defined on the five dimensions (for the lowest hierarchy levels

in Workload #1 and for the whole hierarchies in Workload #2). To flaten any response time variation

in these experiments, we replicated each test ten times and computed the average response times. We

made sure a posteriori that the standard deviation was close to zero. These tests have been executed

on a PC with a Celeron 900 processor, 128 MB of RAM, an IDE hard drive, and running Windows XP

Professional and Oracle 9i.

Figure 10 represents the average response time achieved for Workload #1 and #2, with and without

bitmap join indices, respectively. It shows a gain in performance of 15% for Workload #1, and 9.4%

for Workload #2. This decrease in efficiency was expected, since the drill down operations added in

Workload #2 are costly and need to access the data (bitmap join indices alone cannot answer such

queries). However, the overall performance improvement we achieved was not as good as we expected.

We formulated the hypothesis that the extraction queries, which are costly joins and need to access

the data too, were not fully benefiting from the bitmap join indices. To confirm this hypothesis, we

generated two new workloads, Workload #3 and #4. They are actually almost identical to Workload #1

and Workload #2, respectively, but do not include any extraction (join) queries. Then, we repeated our

experiment following the same protocol.

Figure 11 represents the average response time achieved for Workload #3 and #4, with and without

bitmap join indices, respectively. This time, we obtained similar results than in our previous experiment

(in trend): response time clearly increases when drill down operations are included into the workload.

However, response time is now much better and the gain in performance is 30.9% for Workload #3, and

19.2% for Workload #4.

As a conclusion, we showed with this simple experiment how DWEB could be used to evaluate the

performances of a given DBMS when executing decision support queries on a data warehouse. Of course,

these experiments are not very significant per se, and do not do justice to Oracle, since we did not seek

to achieve the best performance. We did not combine bitmap join indices with any other type of indices,

neither did we use any knowledge about how Oracle exploits these indices, for instance. However, we

15

00:00

01:26

02:53

04:19

05:46

07:12

08:38

10:05

Workload #1
 Workload #2

R
es

p
o
n

se
 t

im
e

(m
in

)

Without indices
 With bitmap join indices

Figure 10: Workload #1 and #2 test results

illustrated how DWEB could be used for performance evaluation purposes. These experiments could also

be seen as a (very basic) performance comparison between two different data warehouse architectures

(star schema and snowflake schema). Our results indeed conform to the well-known fact that introducing

hierarchies into a star schema induces more join operations in the decision support queries, and hence

degrade their response time. Finally, we were also able to witness the impact of costly join operations on

a data warehouse structure that is not properly indexed to answer such queries. This might lead us to

further increase the default probability of running OLAP queries in our benchmark (see Section 5.2).

8 Conclusion and perspectives

We aimed in this paper at helping data warehouse designers to choose between alternate warehouse

architectures and performance optimization techniques. For this sake, we proposed a performance eval-

uation tool, namely a benchmark called DWEB (the Data Warehouse Engineering Benchmark), which

allows users to compare these alternatives. To the best of our knowledge, DWEB is currently the only

operational data warehouse benchmark. Its main feature is that it can generate various ad-hoc synthetic

data warehouses and their associated workloads. Popular data warehouse schemas, such as star schemas,

snowflake schemas, and constellation schemas can indeed be achieved. We mainly view DWEB as an en-

gineering benchmark designed for data warehouse and system designers, but it can also be used for sheer

performance evaluations. Note that the database schema of TPC-DS, the future standard data warehouse

benchmark currently developped by the TPC, can be modeled with DWEB. In addition, though DWEB’s

workload is not currently as elaborate as TPC-DS’s, it is also much easier to implement. It will be im-

portant to fully include the ETL process into our workload, though, and the specifications of TPCD-DS

and some other existing studies [LR98] might help us. Finally, we tried to provide in this paper the most

comprehensive specifications for DWEB, so that our benchmark can be implemented easily by other data

warehouse designers and researchers. We also illustrate with a practical case how this tool can be used.

When designing DWEB, we tried to grant it the characteristics that make up a “good” benchmark

according to Gray: relevance, portability, scalability, and simplicity. To make DWEB relevant for evalu-

ating the performance of data warehouses in an engineering context, we designed it to generate different

16

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

02:18

02:36

02:53

Workload #3
 Workload #4

R
es

p
o
n

se
 t

im
e

(m
in

)

Without indices
 With bitmap join indices

Figure 11: Workload #3 and #4 test results

data warehouse schemas and workloads. However, we now need to further test DWEB’s relevance on

real cases. To achieve this goal, we plan to compare the efficiency of various index and materialized

view selection techniques (including some of our own proposals, which was a motivation for designing

DWEB in the first place). We also made DWEB very tuneable to reach both the relevance and scalabil-

ity objectives. However, too many parameters make the benchmark complex to use and contradict the

simplicity requirement. Though it is impossible to achieve both a high simplicity and a high relevance

and scalability, we introduced a layer of high-level parameters that are both simpler than the potentially

numerous low-level parameters, and in reduced and constant number. DWEB might not be qualified as

a simple benchmark, but our objective was to keep its complexity as low as possible. Finally, portability

was achieved through our Java/JDBC implementation.

This work opens up many perspectives for developing and enhancing DWEB. In this paper, we

assumed an execution protocol and performance metrics were easy to define for DWEB (e.g., using

TPC-DS’ as a base) and focused on the benchmark’s database and workload model. A more elaborate

execution protocol must be designed, especially since two executions of DWEB using the same parameters

produce different data warehouses and workloads. This is interesting when, for instance, one optimization

technique needs to be tested against many databases. However, note that it is also possible to save a given

warehouse and its associated workload to run tests on different systems and/or with various optimization

techniques. Defining sound metrics (beside response time) and formally validating them would also

improve DWEB’s usefulness. In this area, we could inspire from metrics designed to measure the quality

of data warehouse conceptual models [SCT+04].

To work toward the simplicity objective, we also plan to work at making DWEB’s schema more

understandable, for example by defining domain-specific data dictionaries so that meaningful values are

associated to table names, attribute names and values (e.g., Sales and Region instead of FACT TABLE

and DIM 1).

We are also currently working on warehousing complex, non-standard data (such as multimedia,

multistructure, multisource, multimodal, and/or multiversion data). Such data may be stored as XML

documents. Thus, we also plan a “complex data” extension of DWEB that would take into account the

advances in XML warehousing.

17

Finally, more experiments with DWEB should also help us acquire experience on using the benchmark

and maybe propose sounder default parameter values. We also encourage other data warehouse designers

and researchers to report on their own experiments with DWEB.

References

[Bal93] Carrie Ballinger. TPC-D: Benchmarking for Decision Support. The Benchmark Handbook for

Database and Transaction Processing Systems. Morgan Kaufmann, 1993.

[Bha96] Ramesh Bhashyam. TCP-D: The Challenges, Issues and Results. SIGMOD Record, 25(4):89–

93, December 1996.

[BMC00] BMC Software. Performance Management of a Data Warehouse. http://www.bmc.com, 2000.

[Dem95] Marc Demarest. A Data Warehouse Evaluation Model. Oracle Technical Journal, 1(1):29,

October 1995.

[DS00] J Darmont and M Schneider. Benchmarking OODBs with a Generic Tool. Journal of Database

Management, 11(3):16–27, Jul-Sept 2000.

[Gra93] Jim Gray. The Benchmark Handbook for Database and Transaction Processing Systems. Morgan

Kaufmann, second edition, 1993.

[Gre04a] Larry Greenfield. Performing Data Warehouse Software Evaluations.

http://www.dwinfocenter.org/evals.html, 2004.

[Gre04b] Larry Greenfield. What to Learn About in Order to Speed Up Data Warehouse Querying.

http://www.dwinfocenter.org/fstquery.html, 2004.

[Inm02] W.H. Inmon. Building the Data Warehouse. John Wiley & Sons, third edition, 2002.

[JG05] B. Joubert and S. Guesmoa. DWEB Java prototype v0.31. http://bdd.univ-

lyon2.fr/download/dweb.tgz, 2005.

[KR02] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide to Di-

mensional Modeling. John Wiley & Sons, second edition, 2002.

[LP73] T.G. Lewis and W.H. Payne. Generalized feedback shift register pseudorandom number algo-

rithm. ACM Journal, 20(3):458–468, 1973.

[LR98] Alexandros Labrinidis and Nick Roussopoulos. A performance evaluation of online warehouse

update algorithms. Technical Report CS-TR-3954, Deptartment of Computer Science, Univer-

sity of Maryland, November 1998.

[MN98] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed

uniform pseudorandom number generator. CM Transactions on Modeling and Computer Sim-

ulation, 8(1):3–30, January 1998.

[Obj03] Object Management Group. Common Warehouse Metamodel (CWM) Specification version 1.1,

March 2003.

[OG95] P.E. O’Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD Record,

24(3):8–11, 1995.

18

[PCTM03] John Poole, Dan Chang, Douglas Tolbert, and David Mellor. Common Warehouse Metamodel

Developer’s Guide. John Wiley & Sons, 2003.

[Pen03] Nigel Pendse. The OLAP Report: How not to buy an OLAP product.

http://www.olapreport.com/How not to buy.htm, December 2003.

[PF00] Meikel Poess and Chris Floyd. New TPC Benchmarks for Decision Support and Web Com-

merce. SIGMOD Record, 29(4):64–71, December 2000.

[PSKL02] Meikel Poess, Bryan Smith, Lubor Kollar, and Per-Ake Larson. TPC-DS: Taking Decision

Support Benchmarking to the Next Level. In ACM SIGMOD 2002, Madison, USA, June 2002.

[SCT+04] Manuel Serrano, Coral Calero, Juan Trujillo, Sergio Luján-Mora, and Mario Piattini. Empir-

ical Validation of Metrics for Conceptual Models of Data Warehouses. In 16th International

Conference on Advanced Information Systems Engineering (CAiSE 04), Riga, Latvia, volume

3084 of LNCS, pages 506–520, 2004.

[Tra98] Transaction Processing Performance Council. TPC Benchmark D Standard Specification ver-

sion 2.1, February 1998.

[Tra03a] Transaction Processing Performance Council. TPC Benchmark H Standard Specification ver-

sion 2.1.0, August 2003.

[Tra03b] Transaction Processing Performance Council. TPC Benchmark R Standard Specification ver-

sion 2.1.0, August 2003.

[Tra04] Transaction Processing Performance Council. Web site. http://www.tpc.org, 2004.

19

