
Benchmarking Top-K Keyword and Top-K Document
Processing with T2K2 and T2K2D2

Ciprian-Octavian Truică1,a, Jérôme Darmont2,b,
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Abstract

Top-k keyword and top-k document extraction are very popular text analy-

sis techniques. Top-k keywords and documents are often computed on-the-fly,

but they exploit weighted vocabularies that are costly to build. To compare

competing weighting schemes and database implementations, benchmarking is

customary. To the best of our knowledge, no benchmark currently addresses

these problems. Hence, in this paper, we present T2K2, a top-k keywords and

documents benchmark, and its decision support-oriented evolution T2K2D2.

Both benchmarks feature a real tweet dataset and queries with various com-

plexities and selectivities. They help evaluate weighting schemes and database

implementations in terms of computing performance. To illustrate our bench-

marks’ relevance and genericity, we successfully ran performance tests on the

TF-IDF and Okapi BM25 weighting schemes, on one hand, and on different

relational (Oracle, PostgreSQL) and document-oriented (MongoDB) database

implementations, on the other hand.
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1. Introduction

With the tremendous and continuous development of textual web contents,

especially (but not only) on social media, text analytics has become a pivotal

trend that still proposes many challenges nowadays. Among text analytics tech-

niques, top-k keyword and document extraction is very popular. For instance,

extracting the k most frequent terms from a corpus helps determine trends

[1, 2] or detect specific events [3]; and finding the k documents that are the

most similar to a query is of course the core task of search engines. Moreover,

computing top-k keywords and documents requires building a weighted vocab-

ulary, which can also be used for many other text analytics purposes such as

topic modeling [4] and clustering [5].

To compare combinations of weighting schemes, computing strategies and

physical implementations, benchmarking is customary. However, most promi-

nent big data benchmarks [6, 7, 8] focus on MapReduce operations and do not

specifically model text-oriented workflows. Very few benchmarks do, but still

focus on Hadoop-like architectures and remain at the methodology [9] and spec-

ification [10] stage. Moreover, computing weighting schemes at the application

level can prove inefficient when working with large data volumes, because all the

information must be queried, read and processed at a different layer but stor-

age. A better approach is to process the information at the storage layer using

aggregation functions and then return the response to the application layer.

Hence, we introduced the Twitter Top-K Keywords Benchmark (T2K2) [11],

which relies on database storage and features a real tweet dataset, as well as

queries with various complexities and selectivities. We also designed T2K2 to

be somewhat generic, i.e., it can compare various weighting schemes, database

logical and physical implementations and even text analytics platforms in terms

of computing efficiency. In this paper, we further this work with the following

contributions.

1. Since T2K2’s data model is generic enough to handle any type of textual

documents (not only tweets), we complement its workload model with
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top-k document queries.

2. We illustrate T2K2’s relevance and genericity by performing tests on the

TF-IDF and Okapi BM25 weighting schemes, on one hand, and on differ-

ent relational (Oracle, PostgreSQL) and document-oriented (MongoDB)

database implementations, on the other hand.

3. Since T2K2 queries are analytical by nature, we hypothesize that a star

(data warehouse) schema should improve query response and propose an

evolution of T2K2 named T2K2D2, where the last two Ds stand for Di-

mensional and Documents, respectively.

4. We complement our first experiments with top-k keyword and top-k doc-

ument benchmarking with T2K2D2, still testing the TF-IDF and Okapi

BM25 weighting schemes, as well as the Oracle, PostgreSQL and Mon-

goDB database systems.

We designed our benchmarks’ queries by logging computational linguists

working on a text analysis platform [12, 13] on real-world data. After analyzing

and clustering similar user queries, we ended up with 8 queries (4 for T2K2

and 4 for T2K2D2) that we consider generic enough to benchmark any similar

system.

Moreover, note that our benchmarks do not apply to Information Retrieval

(IR) system evaluation. They rather target database systems built on top of

an IR system, with the aim of facilitating text mining, e.g., text classifica-

tion, topic modeling or event detection. Benchmark queries are relevant to

machine learning tasks, where it is important to analyze different subsets of

the dataset to extract knowledge. In contrast, IR systems do not handle sub-

sets of the initial corpus well, nor datasets whose size changes in time, because

they compute weights only once. However, this creates two result reproducibil-

ity problems [14]. First, when using subsets of the initial corpus, weights are

not recomputed, which induces errors when computing the ranking functions

for top-k keywords and documents. Second, weights must be recomputed each

time the size of the dataset changes, inducing more write operations that are
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computationally demanding.

The database approach can solve these result reproducibility problems by

dynamically computing weights at search time using fielded data. Although

some IR systems do use fielded data [15], as they systems compute weights only

once, ranking functions do not update weights when subsets of the initial corpus

are used or when the volume of data changes [16], which induces errors during

the extraction of top-k documents and keywords. Moreover, computing weights

dynamically is ideal for analyzing subsets of the initial dataset or corpora whose

size changes over time, e.g., when analyzing stream data [17]. Database systems

are designed to manage large volumes of data with a high throughput and can

easily manipulate changing volumes of data by using optimized CRUD (Create,

Read, Update, Delete) operations. Thus, they are better suited for handling

datasets whose size changes over time and analyzing subsets of the initial corpus.

The remainder of this paper is organized as follows. In Section 2, we survey

existing big data and more specifically text processing-oriented benchmarks. In

Section 3, we recall T2K2’s data and workload models, and provide T2K2D2’s

full specifications. In Section 4, we detail how we implement two weighting

schemes (namely, TF-IDF and Okapi BM25) and instantiate our benchmarks in

Oracle, PostgreSQL and MongoDB. In Section 5, we account for the experiments

we performed with both T2K2 and T2K2D2, which demonstrate the feasibility

and relevance of our benchmarks. Finally, we conclude the paper and provide

research perspectives in Section 6.

2. Related Works

2.1. Big Data Benchmarks

There exist many big data benchmarks, which are mostly data-centric, i.e.,

they focus on volume and MapReduce-based applications, rather than on vari-

ety, and do not include textual data.

For instance, the quasi-standard TPCxHS benchmark models a simple appli-

cation and features, in addition to classical throughput and response time met-
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rics, availability and energy metrics [8]. Similarly, HiBench is a set of Hadoop

programs, ranging from data sorting to clustering, aimed at measuring metrics

such as response time, HDFS bandwidth consumption and data access pat-

terns [6].

In contrast, BigDataBench, among 19 benchmarks, features application sce-

narios from search engines, i.e., the application on Wikipedia entries of operators

such as Grep or WordCount [7]. Yet, although BigDataBench is open source,

it is quite complex and difficult to extend to test the computation efficiency of

term weighting schemes.

2.2. Text Analysis Benchmarks

Term weighting schemes are extensively benchmarked in several subdomains

of text analytics. In sentiment analysis, dictionary-based methods are bench-

marked on various types of corpora (news articles, movie reviews, books and

tweets) [18] to perform both quantitative and qualitative assessments.

In text classification and categorization, benchmarks target different types

of texts: short texts represented by sentence pairs with similarity ratings [19];

large texts from Reuters newswire stories on one hand [20], and DBpedia and

the Open Directory Project on the other hand [21]; or texts in a specific lan-

guage [22].

In terms of metrics, all the above-mentioned benchmarks focus on algorithm

accuracy. Either term weights are known before the algorithm is applied, or

their computation is incorporated with preprocessing. Thus, such benchmarks

do not evaluate weighting scheme construction efficiency as we do.

Finally, TextGen is a synthetic textual data generator [23]. TextGen builds

corpora by segmenting real-world text datasets and enforces a lognormal word-

frequency distribution. However, TextGen aims at testing the compression per-

formance of word-based compressors, and thus provides no workload or metrics

that are suitable to our needs.
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2.3. Parallel Text Processing Benchmarks

This last family of benchmarks evaluates parallel text processing in big data,

cloud applications. However, it is very small (two benchmarks only). The

first one is actually a methodology for designing text-oriented benchmarks in

Hadoop [9]. It provides both guidelines and solutions for data preparation and

workload definition. Yet, as text analysis benchmarks, its metrics measure the

accuracy of analytics results, while we aim at evaluating computing perfor-

mance.

PRIMEBALL features a fictitious news site hosted in the cloud that is to be

managed by the framework under analysis, together with several objective use

cases and measures for evaluating system performance [10]. One of its metrics

notably involves searching a single word in the corpus. However, PRIMEBALL

remains a specification only as of today.

3. Benchmark Specifications

Text analysis deals with discovering hidden patterns from texts. In most

cases, it is useful to determine such patterns for given groups, e.g., males and

females, because they have different interests and talk about disjunct subjects.

Moreover, if new events appear, depending on the location and time of day,

these subject can change for the same group of people. The queries we propose

aim to determine such hidden patterns and improve text analysis and anomaly

detection.

Typically, a benchmark is constituted of a data model (conceptual schema

and extension), a workload model (set of operations) to apply on the dataset,

an execution protocol and performance metrics [24]. In this section, we pro-

vide a conceptual description of T2K2 and T2K2D2, so that it is generic and

can cope with various weighting schemes and database logical and physical im-

plementations. For generalization purposes, the models will contain the words

”document” and ”documents” for naming the entities, instead of words ”tweet”

and ”tweets”.
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3.1. Text Preprocessing

Text preprocessing is an important task used in Text Mining and Analysis,

Information Retrieval and Natural Language processing. Text preprocessing in-

volves cleaning and preparing texts for different tasks, e.g., classification, IR or

sentiment analysis. Usually, textual data contain lot of noise and uninforma-

tive parts such as HTML tags, scripts and links. At the word level, common

words impact negatively the task at hand. Removing these so-called stop words

decreases the problem’s dimensionality [25]. Moreover, preprocessing is used to

extract information and metadata from text, standardize the document corpus,

remove useless information and minimize the dimensionality of the data.

In our benchmarks, tweets are preprocessed a priori. Lemmas are extracted

from each word and stop words removed to minimize vocabulary size and im-

prove the accuracy of machine learning algorithms such as topic modeling and

document clustering. End users can preprocess data as they see fit and then

store the information in the database using the models provided by the bench-

mark. In our preprocessing step, words that are abbreviated are considered

words in their own sense, i.e., they are not expanded. For instance, we consider

”omg” as a word on his own. Misspellings are currently retained, although in a

next version of the preprocessing step, we plan to address this problem. More-

over, abbreviations and misspellings only affect the selectivity of queries, as the

vocabulary stores them too.

The preprocessing steps we apply on raw texts to construct the weighted

vocabulary follow.

1. For each tweet, we extract tags, i.e., hashtags (which make good key-

words), attags, and remove links.

2. We expand contractions, i.e., shortened versions of the written and spoken

forms of a word, syllable, or word group, created by omission of internal

letters and sounds [26]. For example, ”it’s” becomes ”it is”.

3. We split the text of a tweet into sentences.

4. We extract the part of speech for each sentence.
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5. We build a clean text by removing punctuation and stop words.

6. For each term in a clean text, we use the part of speech to extract lemmas

and create a lemma text.

7. For each lemma t in lemma text d, we compute the number of co-occurrences

ft,d and term frequency TF (t, d), which normalizes ft,d.

3.2. T2K2

3.2.1. Data Model

All the information and metadata extracted during the preprocessing step

are modeled using the entity-relationship presented in Figure 1. Let us describe

all entities in this conceptual model.

• Author stores information about a tweet author, e.g., unique identifier,

firstname, lastname, and age.

• Gender is used to store the authors gender and to remove duplication in

the database.

• Document entity stores all the textual information and metadata for a

tweet, e.g., the unique identifier of the tweet, the date, and the original

and the processed text of the text, i.e., original text (RawText), clean text

(CleanText) and lemma (LemmaText).

• Writes is the many-to-many relationship between an author and a tweet.

• to eliminate duplicates and minimize the storage space, the Geo Location

is used to store the geo-location for each tweet.

• Word entity stores the lemma and its unique identifier.

• Vocabulary is a many-to-many relationship between the Word and Docu-

ment entities that stores, beside the unique identifiers of the lemma and

tweet, the number of co-occurrence ft,d and term frequency TF (t, d) for

a lemma in a tweet.

8



Figure 1: T2K2 conceptual data model

3.2.2. Workload Model

T2K2 features 4 queries, from Q1 to Q4, which are grouping queries that

extract the top-k keywords with different constraints that are combined in the

queries: c1(Q1), c1 ∧ c2(Q2), c1 ∧ c3(Q3) and c1 ∧ c2 ∧ c3(Q4). We define

constraints c1 to c3 below.

• c1 is Gender.Type = pGender with pGender ∈ {male, female}.

• c2 is Document.Date ∈ [pStartDate, pEndDate], where pStartDate, pEnd-

Date ∈ [2015-09-17 20:41:35, 2015-09-19 04:05:45] and pStartDate <

pEndDate.

• c3 is Geo location.X ∈ [ pStartX, pEndX] and Geo Location.Y ∈ [pStartY,

pEndY], where pStartX, pEndX ∈ [15, 50], pStartX < pEndX, pStartY,

pEndY ∈ [-124, 120] and pStartY < pEndY.

For extracting top-k documents, an additional constraint c4 on the terms of

the vocabulary is needed. This constraint is used to select only the tweets that

contain at least one of the word from a list of search terms and construct the

tweets hierarchy only for them. Therefore, c4 is Words.Lemma = pTerms where
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pTerms ∈ { term | term ∈ vocabulary } . The queries in this case rewritten using

the constraints c1 to c4 as c1 ∧ c4(Q1), c1 ∧ c2 ∧ c4(Q2), c1 ∧ c3 ∧ c4(Q3) and

c1 ∧ c2 ∧ c3 ∧ c4(Q4).

3.3. T2K2D2

3.3.1. Data Model

T2K2’s workload model (Section 3.2.2) is made of grouping queries akin to

OLAP queries. Thus, to improve query performance, we remodel its schema

into a multidimensional star schema (Figure 2) featuring a central fact table

and multiple dimensions. T2K2D2’s schema contains the following entities.

• Document Fact is the central fact entity and contains the number of co-

occurrence ft,d and term frequency TF (t, d) for a lemma in a document.

• Document Dimension is the tweets dimension table, containing each tweet’s

unique identifier and the original and processed text, i.e., original text

(RawTtext), clean text (CleanText) and lemma text(LemmaText).

• Word Dimension stores the lema and its unique identifier.

• Time Dimension stores the full date and also its hierarchy composed of

minute, hour, day, month and year

• Author Dimension is the author dimension and stores information about

an author’s unique identifier, gender, age, firstname, and lastname.

• Location Dimension is the geo-location dimension.

3.3.2. Workload Model

To adjust to T2K2D2’s multidimensional data model, we rewrite T2K2’s

queries as OLAP queries. We retain the same constraints c1 to c4, only adapting

entity and attribute names. The redefined constraints’ specification follows.

• c1 is Autor Dimension.gender = pGender with pGender ∈ {male, female}.
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Figure 2: T2K2D2 conceptual data model

• c2 is Time Dimension.Date ∈ [pStartDate, pEndDate], where pStartDate,

pEndDate ∈ [2015-09-17 20:41:35, 2015-09-19 04:05:45] and pStartDate

< pEndDate.

• c3 is Location Dimension.X ∈ [ pStartX, pEndX] and Location Dimension.Y

∈ [pStartY, pEndY], where pStartX, pEndX ∈ [15, 50], pStartX < pEndX,

pStartY, pEndY ∈ [-124, 120] and pStartY < pEndY.

• c4 is Word Dimension.Lemma = pTerms where pTerms ∈ {t | t ∈ vocab-

ulary } .

Then, OLAP queries that extract top-k keywords and documents bear the

following contraints: c1(Q1), c1 ∧ c2(Q2), c1 ∧ c3(Q3) and c1 ∧ c2 ∧ c3(Q4); and

c1∧c4(Q1), c1∧c2∧c4(Q2), c1∧c3∧c4(Q3) and c1∧c2∧c3∧c4(Q4), respectively.

3.4. Performance Metrics and Execution Protocol

We use query response time as the only metric in both T2K2 and T2K2D2. It

is detail for each query as t(Qi)∀i ∈ [1, 4]. All queries Q1 to Q4 are executed 40

times for top-k keywords and 10 times for top-k documents, which is sufficient

according to the central limit theorem. Average response times and standard
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deviations are computed for t(Qi). All executions are warm runs, i.e., either

caching mechanisms must be deactivated, or a cold run of Q1 to Q4 must be

executed once (but not taken into account in the benchmark’s results) to fill in

the cache. Queries must be written in the native scripting language of the target

database system and executed directly inside said system using the command

line interpreter.

4. Benchmark Implementations

4.1. Weighting Schemes

Given a corpus of documents D = {d1, d2, ..., dN}, where N = |D| is the total

number of documents in the dataset and n the number of documents where some

term t appears. The TF-IDF weight is computed by multiplying the augmented

term frequency TF (t, d) = K+(1−K) · ft,d
maxt′∈d(ft′,d)

) by the inverted document

frequency IDF (t,D) = 1 + log N
n , i.e., TFIDF (t, d,D) = TF (t, d) · IDF (t,D).

The augmented form of TF prevents a bias towards long tweets when the free

parameter K is set to 0.5 [27]. It uses the number of co-occurrences ft,d of a

word in a document, normalized with the frequency of the most frequent term

t′, i.e., maxt′∈d(ft′,d).

The Okapi BM25 weight is given in Equation (1), where ||d|| is d’s length, i.e.,

the number of terms appearing in d. Average document length avgd′∈D(||d′||) is

used to remove any bias towards long documents. The values of free parameters

k1 and b are usually chosen, in absence of advanced optimization, as k1 ∈
[1.2, 2.0] and b = 0.75 [28, 29, 30].

Okapi(t, d,D) =
TFIDF (t, d,D) · (k1 + 1)

TF (t, d) + k1 · (1− b+ b · ||d||
avgd′∈D(||d′||) )

(1)

To extract top-k keywords, the overall relevance of a term t for a given corpus

D is computed as the sum of all the TF-IDF (Equation (2)) or Okapi BM25

(Equation (3)) weights for that term.
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STK TFIDF (t,D) =
∑
di∈D

TFIDF (t, di, D) (2)

STK Okapi(t,D) =
∑
di∈D

Okapi(t, di, D) (3)

TF-IDF and Okapi BM25 are also used to ranks a set of documents based

on the search query’s terms appearing in each document. Given a search query

Q = {q1, q2, ..., qm}, where m = |Q| is the number of terms contained in the

query, a document d is scored by either summing all the TFDIF (Equation (4))

or the Okapi BM25 (Equation (5)) scores for the query terms in the document.

STD TFIDF (Q, d,D) =
∑
qi∈Q

TF (qi, d) · IDF (qi, D) (4)

STD Okapi(Q, d,D) =
∑
qi∈Q

TFIDF (qi, d,D) · (k1 + 1)

TF (qi, d) + k1 · (1− b+ b · ||d||
avgd′∈D(||d′||) )

(5)

4.2. T2K2 implementation

4.2.1. Relational implementation

Dataset. The logical relational schema for T2K2 used in both Oracle and Post-

greSQL (Figure 3) directly translates the conceptual schema from Figure 1.

Figure 3: T2K2 relational data model
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T2K2 queries. The specification of T2K2’s top-k keywords queries are expressed

in relational algebra below.

• Q1 = γL( πdocuments.id,words.word,fw( σc1( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c9 words))).

• Q2 = γL( πdocuments.id,words.word,fw( σc1∧c2( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c8 words))).

• Q3 = γL( πdocuments.id,words.word,fw( σc1∧c3( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c9 words ./c10 geo location)))

• Q4 = γL( πdocuments.id,words.word,fw( σc1∧c2∧c3( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c9 words ./c10 geo location)))

The constraints for the queries are:

• c1 is the constraint on gender.

• c2 is the constraint on time.

• c3 is the constraint on location.

• c5 to c10 are the join conditions as follows:

– c5 is the JOIN condition between the documents and documents authors

entities.

– c6 is the JOIN condition between the documents authors and authors

entities.

– c7 is the JOIN condition between the authors and genders entities.

– c8 is the JOIN condition between the documents and vocabulary en-

tities.

– c9 is the JOIN condition between the vocabulary and words entities.

– c10 is the JOIN condition between the documents and geo location.

Function fw is used to compute the weighting schema using nested queries:
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• TF-IDF with the parameters vocabulary.tf = TF (t, d), the total number

of tweets in the corpus and the number of tweets where a term appears;

the last two parameters are computed using individual nested queries.

• Okapi BM25 with parameters vocabulary.tf = TF (t, d), the total num-

ber of tweets in the corpus, the length of each tweet and the number

of tweets where a term appears; the last three parameters are computed

using individual nested queries.

The last operator is the aggregation operator γL where L = (F,G) is:

• F = sum(fw), the sum is the aggregation function that computes STK TFIDF (t,D)

(Equation (2)), respectively STK Okapi(t,D) ((Equation (3))).

• G = (words.word) is a list of attributes in the GROUP BY clause, in the

case the terms (words.word).

The queries for determining the top-k documents are similar to the ones

that compute the top-k keywords, i.e., the join conditions and function fw are

the same. Only the constraint c4 is added to select the tweets that contain the

required search terms. The modification appears at the aggregation operator γL

where the list of the GROUP BY clause attributes changes, this time grouping

is done by using the documents.id. Moreover, the aggregation F = sum(fw)

computes the hierarchy of tweets, STD TFIDF (Q, d,D) (Equation (4)) for TF-

IDF or STD Okapi(Q, d,D) (Equation (5)) for Okapi BM25, where Q is the list

of search terms. T2K2’s top-k documents queries expressed in relational algebra

are:

• Q1 = γL( πdocuments.id,words.word,fw( σc1∧c4( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c9 words))).

• Q2 = γL( πdocuments.id,words.word,fw( σc1∧c2∧c4( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c8 words))).

• Q3 = γL( πdocuments.id,words.word,fw( σc1∧c3∧c4( documents ./c5 documents authors

./c6 authors ./c7 genders ./c8 vocabulary ./c9 words ./c10 geo location)))
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• Q4 = γL( πdocuments.id,words.word,fw( σc1∧c2∧c3∧c4( documents ./c5 docu-

ments authors ./c6 authors ./c7 genders ./c8 vocabulary ./c9 words ./c10

geo location)))

4.2.2. Document-ortiented implementation

Dataset. In a Document Oriented Database Management System (DODBMS),

all information is typically stored in a single collection. An example of DODBMS

document is presented in Figure 4. The many-to-many Vocabulary relationship

from Figure 1 is modeled as a nested document for each record. The information

about user and date become single fields in a document, while the location

becomes an array.

{ i d : 644626677310603264 ,

rawText : ”Amanda ’ s car i s too much f o r my headache” ,

c leanText : ”Amanda i s car i s too much f o r my headache” ,

lemmaText : ”amanda car headache” ,

author : 970993142 ,

geoLocat ion : [ 32 , 79 ] ,

gender : ”male” ,

age : 23 ,

lemmaTextLength : 3 ,

words : [ { ” t f ” : 1 , ” count” : 1 , ”word” : ”amanda” } ,

{ ” t f ” : 1 , ” count” : 1 , ”word” : ” car ” } ,

{ ” t f ” : 1 , ” count” : 1 , ”word” : ”headache”} ] ,

date : ISODate ( ”2015−09−17T23 : 3 9 : 1 1Z” ) }

Figure 4: Sample T2K2 DODBMS Document

Queries. In DODBMSs, user-defined functions written in JavaScript are used

to compute top-k keywords, regardless of the schema. For T2K2, the TF-IDF

weight can take advantage of both native database aggregation (aggregation

pipeline - AP) and MapReduce (MR). However, due to the multitude of pa-

rameters involvedand the calculations needed for the Okapi BM25 weighting
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scheme, the NA method is usually difficult to develop. Thus, we recommend to

only use MR in benchmark runs.

4.3. T2K2D2 implementation

4.3.1. Relational implementation

Dataset. The logical multidimensional star schema for T2K2D2 used in both

relational databases management systems (Figure 5) directly translates from

the conceptual schema from Figure 2.

Figure 5: Star schema diagram

Queries. T2K2D2’s top-k keywords queries expressed in relational algebra are:

• Q1 = γL( πword dimension.word,fw( σc1( document fact ./c5 word dimension

./c6 author dimension ))).

• Q2 = γL( πword dimension.word,fw( σc1∧c2( document fact ./c5 word dimension

./c6 author dimension ./c7 time dimension ))).

• Q3 = γL( πword dimension.word,fw( σc1∧c3( document fact ./c5 word dimension

./c6 author dimension ./c8 location dimension ))).

• Q4 = γL( πword dimension.word,fw( σc1∧c2∧c3( document fact ./c5 word dimension

./c6 author dimension ./c7 time dimension ./c8 location dimension ))).

The constraints for the queries are:
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• c1 is the constraint on gender.

• c2 is the constraint on time.

• c3 is the constraint on location.

• c5 to c8 are the JOIN constraints:

– c5 is the JOIN constraint between document fact and word dimension

entities.

– c6 is the JOIN constraint between document fact and author dimension

entities.

– c7 is the JOIN constraint between document fact and time dimension

entities.

– c8 is the JOIN constraint between document fact and location dimension

entities.

Function fw is used to compute the weighting schema using nested queries:

• TF-IDF with the parameters document fact.tf = TF (t, d), the total num-

ber of tweets in the corpus and the number of tweets where a term appears;

the last two parameters are computed using individual nested queries.

• Okapi BM25 with parameters document fact.tf = TF (t, d), the total

number of tweets oin the corpus, the length of each tweet and the number

of tweets where a term appears; the last three parameters are computed

using individual nested queries.

Finally, we present the aggregation operator γL, where L = (F,G) is:

• F = sum(fw), the sum is the aggregation function that computes STK TFIDF (t,D)

(Equation (2)), respectively STK Okapi(t,D) ((Equation (3))).

• G = (word dimension.word) is a list of attributes in the GROUP BY

clause, in the case the terms (word dimension.word).

T2K2D2’s top-k keywords queries expressed in relational algebra are:
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• Q1 = γL( πdocument fact.id document,fw( σc1∧c4( document fact ./c5 word dimension

./c6 author dimension ))).

• Q2 = γL( πdocument fact.id document,fw( σc1∧c2∧c4( document fact ./c5 word dimension

./c6 author dimension ./c7 time dimension ))).

• Q3 = γL( πdocument fact.id document,fw( σc1∧c3∧c4( document fact ./c5 word dimension

./c6 author dimension ./c8 location dimension ))).

• Q4 = γL( πdocument fact.id document,fw( σc1∧c2∧c3∧c4( document fact ./c5

word dimension ./c6 author dimension ./c7 time dimension ./c8 location dimension

))).

T2K2D2 queries that compute the top-k documents on the star schema are

similar with the ones that compute the top-k keywords, only the constraint

c4 is added to select the documents that contain the required search terms.

Regardless of the weighting schema used, the fw function is computed differently

because it uses different parameters, as follows:

• document fact.tf = TF (t, d).

• the length of each tweet is computed using a nested query

• the number of tweets where a term appears is computed using a nested

query

Moreover, the aggregation operator γL is also different from the one in

the top-k Keywords, i.e., the grouping is done using the tweet unique iden-

tifier (document fact.id document) and the aggregation function F = sum(fw)

computes the hierarchy of tweets using STD TFIDF (Q, d,D) (Equation (4))

for TF-IDF, respectively STD Okapi(Q, d,D) (Equation (5)) for Okapi BM25,

where Q is the list of search terms.

4.3.2. Document-ortiented implementation

Dataset. To implement T2K2D2’s star schema in a DODBMS each dimension

becomes a nested document, thus a document contains multiple nested docu-
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ments [31], one for each dimension. Figure 6 presents a document sample for

implementing a multidimensional model in a DODBMS.

{ ” i d ” : ObjectId ( ”595 c8d705f32f5b46802b24c ” ) ,

”document dimension” : {

” id document” : 644626677310603264 ,

”rawText” : ”Amanda ’ s car i s too much f o r my headache” ,

” c leanText ” : ”Amanda i s car i s too much f o r my headache

” ,

”lemmaText” : ”amanda car headache” ,

” lemmaTextLength” : 3 } ,

” author dimens ion ” : {

” author ” : 970993142 ,

”age” : 23 ,

” gender ” : ”male” } ,

” t ime dimens ion ” : {

”minute” : 39 , ”hour” : 23 ,

”day” : 17 , ”month” : 9 , ” year ” : 2015 ,

” f u l l d a t e ” : ISODate ( ”2015−09−17T23 : 3 9 : 1 1Z” ) } ,

” l o ca t i on d imens i on ” : { ”X” : 32 , ”Y” : 79 } ,

”words” : [ { ” t f ” : 1 , ” count” : 1 , ”word” : ”amanda” } ,

{ ” t f ” : 1 , ” count” : 1 , ”word” : ” car ” } ,

{ ” t f ” : 1 , ” count” : 1 , ”word” : ”headache” }

] }

Figure 6: Sample T2K2D2 DODBMS Document

Queries. To compute the top-k keywords using T2K2D2 implementation and

to compute the top-k documents, regardless of the schema, only the MR imple-

mentation is used. Also, the benchmark tests are implemented in the DODBMS

native JavaScript language.
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5. Experiments

5.1. Experimental Conditions

All tests run on an IBM System x3550 M4 with 64GB of RAM and an In-

tel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz. The database systems we use

are MongoDB v3.4.6, Oracle v12.1.0.2.0 and PostgreSQL v9.6.1. Initially, we

planned to benchmark CouchDB 2.0.0, too. Unfortunately, we found no in-

database solution to implement T2K2’s queries, because of CouchDB’s limited

programming environment and MR framework. The code of all Oracle and Post-

greSQL queries and MongoDB functions, together with benchmarking results,

are available on Github1.

MongoDB’s performance is tested both in a single-instance and a distributed

environment. The distributed environment is composed of a configuration node

and 5 slave nodes; each slave becoming a worker in the MR algorithm. The

database is distributed using horizontal scaling to test whether weighting scheme

computing time decreases as the number of nodes increases. In MongoDB,

horizontal scaling is achieved using sharding, and each individual data partition

is refered as a shard [32].

The relational database implementations are tested only on a single-instance

environment, because the Oracle Real Application Cluster that is needed to dis-

tribute Oracle databases is not free; and because PostgreSQL does not distribute

natively, requiring third party software.

Besides indexes on primary keys, no other indexes are used in our tests. The

sharding key in the MongoDB distributed environment is the tweet’s unique

identifier.

Eventually, query parameterization is provided in Table 1.

5.2. Dataset

Experiments are done on a 2 500 000 tweets corpus. The initial corpus is split

into 5 different datasets that all keep an equal balance between the number of

1https://github.com/cipriantruica/T2K2D2_Benchmark
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Table 1: Query parameter values

pGender pStartDate pEndDate pStartX pEndX pStartY pEndY pWords

male |

female

2015-09-17

00:00:00

2015-09-18

00:00:00
20 40 -100 100

think |

today |

friday

tweets for both genders, location and date. These datasets contain 500 000,

1 000 000, 1 500 000, 2 000 000 and 2 500 000 tweets, respectively. They allow

scaling experiments and are associated to a scale factor (SF ) parameter, where

SF ∈ {0.5, 1, 1.5, 2, 2.5}, for conciseness sake.

5.2.1. Query Selectivity

Selectivity, i.e., the amount of retrieved data (n(Q)) w.r.t. the total amount

of data available (N), depends on the number of attributes in the where and

group by clauses. The selectivity formula used for a query Q is S(Q) = 1− n(Q)
N .

For T2K2, all queries traverse the Document, Vocabulary, Word and Gender

entities, and the Write and Vocabulary relationships, to extract lemmas and

compute weights. All queries use the the document fact, Word Dimnesion and

Author Dimension for T2K2D2.

All queries filter on gender, to determine the trending words for female and

male users. Starting from Q1, subsequent queries Q2 to Q4 are built by decreas-

ing selectivity (Table 2), regardless of the benchmark, i.e., T2K2 or T2K2D2.

Moreover, by adding a constraint on the location in Q3 and Q4, query complex-

ity changes, too.

Selectivity for the top-k documents is decreased even more by adding a con-

dition on the words attribute for all the queries. Moreover, for both benchmarks,

selectivity remains the same (Table 3).

5.2.2. Query Complexity

Complexity relates to the number of traversals involved in the query. Query

complexity depends on the number of relationship and entity traversals.
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Table 2: Top-k keywords query selectivity

SF
Q1

male

Q1

female

Q2

male

Q2

female

Q3

male

Q3

female

Q4

male

Q4

female

0.5 0.336 0.337 0.517 0.517 0.556 0.558 0.677 0.679

1 0.342 0.342 0.662 0.662 0.562 0.565 0.774 0.775

1.5 0.347 0.346 0.736 0.736 0.569 0.572 0.823 0.824

2 0.351 0.350 0.783 0.783 0.574 0.575 0.855 0.856

2.5 0.353 0.354 0.815 0.815 0.579 0.580 0.876 0.877

Table 3: Top-k documents selectivity for 3 search terms

SF
Q1

male

Q1

female

Q2

male

Q2

female

Q3

male

Q3

female

Q4

male

Q5

female

0.5 0.9844 0.9848 0.9904 0.9905 0.9921 0.9926 0.9951 0.9954

1 0.9866 0.9868 0.9952 0.9953 0.9932 0.9936 0.9975 0.9977

1.5 0.9835 0.9837 0.9968 0.9968 0.9917 0.9920 0.9984 0.9985

2 0.9822 0.9824 0.9976 0.9976 0.9910 0.9913 0.9988 0.9988

2.5 0.9825 0.9827 0.9981 0.9981 0.9912 0.9915 0.9990 0.9991

Independently from any weighting schema, for T2K2 computing the number

of tweets where a term appears and the total number of documents implies two

aggregation queries that traverse either all entities (Q3, Q4) or all entities but

Geo Location (Q1, Q2), resulting in a number of 5 traversals for Q3 and Q4

and 4 traversals for Q1 and Q2. Moreover, some weighting schemes may require

additional queries, e.g., Okapi BM25 involves tweet lengths. Table 4 presents

query complexities w.r.t. weighting schemes. Query complexity is the same

for T2K2 implementation regardless of computing the top-k keywords or top-k

documents.

Table 5 present the T2K2D2 queries complexity for top-k keywords.

The T2K2D2 queries complexity for top-k documents is presented in Table 6.
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Table 4: T2K2 query complexity

Q1 Q2 Q3 Q4

TF-IDF 12 12 15 15

Okapi BM25 17 17 21 21

Table 5: T2K2D2 query complexity for top-k keywords

Q1 Q2 Q3 Q4

TF-IDF 3 5 5 7

Okapi BM25 4 6 6 8

Table 6: T2K2D2 query complexity for top-k documents

Q1 Q2 Q3 Q4

TF-IDF 5 8 8 11

Okapi BM25 6 9 9 12

5.3. Experimental Results

5.3.1. T2K2

Weighting schema comparison. Figure 7 presents a comparison by database sys-

tem and weighting scheme of query response time for retrieving top-k keywords

w.r.t. scale factor SF . This comparison uses only MongoDB’s MR query im-

plementations in single-instance and distributed environments, because there is

no AP implementation for queries that use Okapi BM25.

In MongoDB, computing TF-IDF is faster than computing Okapi BM25 for

all queries, regardless of SF (Figure 7a). The same results are observed in the

distributed environment (Figure 7b). The biggest difference in computation

time between TF-IDF and Okapi BM25 is obtained for Q1, while the smallest

is obtained for Q4 because of its higher selectivity.

The execution times of Q2 and Q4 on Oracle and PostgreSQL are almost

constant for all tested scenarios, regardless of weighting scheme or SF , because

selectivity is constant in these queries. TF-IDF computing time is almost a third
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of the computing time for Okapi BM25’s for Q4 in Oracle (Figure 7c) due to the

complexity of the query itself and of the formula for computing Okapi BM25

w.r.t. TF-IDF. In PostgreSQL, the biggest performance difference between TF-

IDF and Okapi BM25 is obtained for Q1 (Figure 7d) due to the large number

of rows returned when joining all tables.

Figure 8 presents a comparison by database system and weighting scheme

of query response time for retrieving top-k documents w.r.t. scale factor SF .

In MongoDB, computing TF-IDF is faster than computing Okapi BM25

for all queries, regardless of SF (Figure 8a). The same results are observed

in the distributed environment (Figure 8b). In this case the performance of

MongoDB is stable, regardless of the environment (single node or distributed),

the performance curve increases linearly (Figures 8a and 8b). Such results are

an expected consequence of the variation of query selectivity and complexity, as

seletivity decreases and complexity increases from Q1 to Q2. Furthermore, as

SF increases, so does seletivity in all queries.

The execution times of Q1 and Q3 for Oracle are getting worse when SF

increases, since selectivity increases with the number of documents. In Oracle,

the execution time for computing TF-IDF is half of the execution time for com-

puting Okapi BM25 (Figure 8c) regardless of SF . This is a direct consequence

of query complexity. The complexity of queries that use the TF-IDF weighting

is indeed lower than those that use Okapi BM25 (Table 4). Moreover, in Oracle,

the execution time is unstable as the standard deviation fluctuates w.r.t SF due

to automatic cache cleaning when query results are too big to be stored in the

database’s internal buffers.

In PostgreSQL, the biggest performance difference between TF-IDF and

Okapi BM25 is obtained for all the queries as the SF increases (Figure 8d).

Moreover, the performance time for computing Okapi BM25 is smaller in all

test scenarios than when computing TF-IDF. This is unexpected, as query com-

plexity for computing the top-k documents with TF-IDF is smaller then when

using Okapi BM25. We hypothesize that such results are a direct consequence

of how the DBMS builds query execution plans, with Oracle being the most
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Figure 7: Top-k keywords TF-IDF vs. Okapi BM25 comparison
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proficient.

Database Implementation Comparison. This set of experiments presents a time

performance comparison of database implementations w.r.t. SF and weighting

schemes for the top-k keywords queries. We also test the performance of the

distributed MongoDB environment, labeled Dist. Moreover, MongoDB queries

use both the AP and MR implementations for TF-IDF, but only the MR im-

plementation for Okapi BM25.

Oracle outperforms PostgreSQL in the single-instance environment for all

test cases. Query execution time in Oracle is indeed half of the time than in

PostgreSQL in the worse case (Figures 9 and 10). Our hypothesis is that Oracle

performs some optimization while PostgreSQL does not, but we could not verity

it.

In MongoDB, using AP instead of MR for computing TF-IDF yields better

execution time. In the worst case, AP execution time is indeed half of the time

than MR’s (Figure 9), because MongoDB is optimized to use AP instead of MR.

Thus, AP provides an alternative to MR and may be preferred sfor aggregation

tasks, where the complexity of MP may be unwarranted. However, AP bears

some limitations on value types, result size [33] and memory use [34].

In the distributed environment, computing TF-IDF using AP takes almost

half the time than when using MR for all queries, too, regardless of SF (Fig-

ure 9), because AP is also optimized to perform better in a distributed envi-

ronment than MR, though in both cases, the workload is distributed among all

shards.

Figure 11 presents a time performance comparison of database implemen-

tations w.r.t. SF and weighting schemes for the top-k documents queries that

use the TF-IDF weighting schema, while Figure 12 for the queries that use the

Okapi BM25 weighting schema.

PostgreSQL has the worst execution time regardless of the weighting schema

or SF . Our hypothesis is that PostgreSQL does not optimize the query execu-

tion plan due to the absence of indexes.
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Oracle outperforms MongoDB in a single instance environment for both

weighting schemas. Moreover, Oracle is optimized to make the best use of

system resources in a single instance environment [35].

MongoDB in a distributed environment has the best performance time re-

gardless of the weighting schema. Query execution performance in MongoDB

is improved because the workload is distributed between shards and results are

aggregated after each shard finishes a task.

5.3.2. T2K2D2

Weighting schema comparison. Figure 13 present a comparison by database

system and weighting schema of query response time for retrieving the top-k

keywords w.r.t. scale factor SF for the multidimensional implementation, while

Figure 14 for retrieving top-k documents.

For MongoDB the same patterns in performance appear as for the T2K2 test

scenarios. The time performance is almost non-existent between the queries run

on T2K2 (Figures 7a and 7b) and the ones executed on T2K2D2 (Figures 13a

and 13b). This pattern emerges because MongoDB is a schemaless database

and the data modeling does not really influence performance. The same results

are optained for the top-k documents (Figures 14a and 14b).

Using a multidimensional model improves performance with both Oracle and

PostgreSQL. Using such a model, the indexes used for primary and foreign keys

to associate entities make query execution plan optimization easy, because a

join does not have to pass through multiple tables as in the normalized model.

For Oracle, the execution time of queries Q1 and Q3 that use TF-IDF is

half the time of the execution time of the same queries that use Okapi BM25

for top-k keywords (Figure 13c) w.r.t. SF . For top-k documents, the execution

time for queries Q1 and Q2 is almost the same regardless of weight. It should

be noted that Oracle’s query execution time for top-k documents is unstable, as

the standard deviation fluctuates. We think this fluctuation might be a direct

consequence of cache and buffer cleaning.

PostgreSQL query execution time is also improved when using a multidi-
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mensional model. The query execution time are stable with a low standard

deviation. For top-k documents, Q1 has the worst execution time. Moreover,

the execution time between the queries that compute the weights with TF-IDF

and the ones that compute the weights with Okapi BM25 has a factor of ∼1.2

regardless of SF . For top-k documents, Q1 execution time is the same regard-

less of weighting schema. The execution time of Q3 with Okapi BM25 is half

the time of the execution of the same query with TF-IDF.

Database implementation comparison.. Oracle has the best execution time re-

gardless of weighting schema in a single instance for both top-k keywords and

top-k documents (Figures 15, 16, 17 and 16). Besides the resource allocation

optimization used by Oracle in a single instance environment, query complexity

also plays an important role in query execution performance, as the number of

joins decreases when using a multidimensional model.

MongoDB in a distributed environment has the overall best performance

time for the queries that use the TF-IDF weighting schema, but it is outper-

formed by both Oracle and PostgreSQL when using Okapi BM25. Because

MongoDB uses a schemaless flexible model, the design and implementation of

the schema indeed do not really affect query performance results. Further-

more, query complexity, which depends a lot on the weighting scheme used

(Tables 5 and 6), plays an important role. In Oracle and PostgreSQL, Okapi

BM25 weights are computed through nested queries, but in MongoDB, separate

queries are needed. To improve MongoDB query performance, an indexing and

sharding key analysis should be made, but such a extensive study is outside the

scope of this paper.

MongoDB in a single environment has the overall worst performance between

the tested databases for top-k keywords (Figures 15 and 16), while PostgreSQL

for top-k documents (Figures 17 and 16).

Using a multidimensional model significantly improves query performance

in PostgreSQL, because query complexity is decreased. The multidimensional

model used in T2K2D2 indeed only features one-to-many relationships at the
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conceptual level, and thus does not include any bridge tables at the logical level

for expressing many-to-many relationships, as in T2K2. Therefore, the number

of joins in queries decreases and so does query complexity.

6. Conclusion

Jim Gray defined four primary criteria to specify a “good” benchmark [36]:

• Relevance: The benchmark must deal with aspects of performance that

appeal to the largest number of users. Considering the wide usage of top-k

keywords and documents queries in various text analytics tasks, we think

T2K2 and T2K2D2 fulfills this criterion. We also show in Section 5 that

our benchmark achieves what it is designed for.

• Portability: The benchmark must be reusable to test the performances of

different database systems. We successfully used T2K2 and T2K2D2 to

compare two types of database systems, namely relational and document-

oriented systems.

• Simplicity: The benchmark must be feasible and must not require too

many resources. We designed T2K2 and T2K2D2 with this criterion in

mind (Section 3), which is particularly important for reproducibility. We

notably made up parameters that are easy to setup.

• Scalability: The benchmark must adapt to small or large computer archi-

tectures. By introducing scale factor SF , we allow users to simply param-

eterize T2K2 and T2K2D2 and achieve some scaling, though it could be

pushed further in terms of data volume.

Regarding experimental results, for T2K2’s top-k keywords the best TF-

IDF computing time in single-instance mode is obtained by MongoDB using

PA. Oracle registers the best execution time among relational databases. More-

over, the best solution for computing TF-IDF is to use MongoDB in a dis-

tributed environment because increasing the number of nodes expectingly helps
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decreasing query execution time. Oracle outperforms the other database sys-

tems when computing Okapi BM25. Moreover, MongoDB in single-instance

mode has the worst execution time for computing Okapi BM25 with queries Q1

and Q3, while PostgreSQL has the worst execution time for queries Q2 and Q4.

This is unexpected, because the trends should have remained the same for these

two database systems. When computing the top-k documents with T2K2, the

best performance time is obtained by MongoDB in a distributed environment

and by Oracle in a single instance regardless of the schema, while PostgreSQL

has the worst performance.

When using a multidimensional model with T2K2D2, MongoDB registers the

same performance or both top-k keywords and top-k documents as with T2K2.

Oracle in a single instance has the overall best performance for both tasks. For

top-k keywords MongoDB in a single instance has the worst performance while

for top-k documents, PostgreSQL has the worst performance.

In future work, we plan to expand T2K2 and T2K2D2 dataset significantly

to aim at big data-scale volume (scalability). We also plan to adapt our bench-

marks so that they run in the Hadoop and Spark environments. Moreover,

we intend to further our proof of concept and validation efforts by benchmark-

ing other NoSQL database systems and gain insight regarding their capabilities

and shortcomings (relevance). Eventually, we considered in this paper that

TF-IDF and Okapi BM25 were enough for machine learning tasks. Yet, the

next version of our benchmarks should include other weighting schemes, such

as KL-divergence [37], also to improve their relevance.
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[11] C.-O. Truică, J. Darmont, T2k2: The twitter top-k keywords bench-

mark, in: 21st European Conference on Advances in Databases and In-

formation Systems (ADBIS 17), CCIS, 2017, pp. 21–28. doi:10.1007/

978-3-319-67162-8_3.
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