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Jérôme Darmont
Universit́e de Lyon (ERIC Lyon 2)

5 avenue Pierre Mendès-France
69676 Bron Cedex, France

Email: jerome.darmont@univ-lyon2.fr

Abstract—With the rise of XML as a standard for representing
business data, XML data warehousing appears as a suitable
solution for decision-support applications. In this context, it is
necessary to allow OLAP analyses on XML data cubes. Thus,
XQuery extensions are needed. To define a formal framework
and allow much-needed performance optimizations on analytical
queries expressed in XQuery, defining an algebra is desirable.
However, XML-OLAP (XOLAP) algebras from the literature still
largely rely on the relational model. Hence, we propose in this
paper a rollup operator based on a pattern tree in order to
handle multidimensional XML data expressed within complex
hierarchies.

I. I NTRODUCTION

In many institutions, decision-support applications require
external data. In this context, the Web is a tremendous data
source and Web farming [1] is more and more casual. As a
consequence, a new trend toward on-line data warehousing
is currently emerging, including approaches such as XML
warehousing [2].

The XML language is indeed becoming a standard for rep-
resenting business data [3]. Moreover, it is particularly adapted
for modeling so-called complex data [4] from heterogeneous
sources, and particularly the Web. Thus, many studies aim at
extending the XQuery language [5] with OLAP (On-Line An-
alytical Processing)-like queries (grouping, aggregation, etc.)
[3], [6], [7]. Such extensions should not only allow classical
OLAP analyses, but also take the specificities of XML into
account, e.g., ragged hierarchies [3] that would be intricate to
handle in a relational environment.

In this context, we are working to propose an OLAP algebra
over multidimensional XML data (XML data modeled in mul-
tidimensional way). On the long run, we are actually aiming
at three objectives: contribute to define a formal framework
that does not currently exist in the XOLAP [8] context;
support the effort for extending the XQuery language to
allow OLAP queries, especially with XML-specific operators;
allow query optimization for OLAP XQueries. Native-XML
DBMSs (Database Management Systems), though in constant
progress, are indeed limited in term of performance and would
greatly benefit from automatic query optimization, especially
for costly analytical queries.

In this paper, we particularly focus on the first objective.
In a previous work, we have expressed classical (structural,

set and granularity-related) OLAP operators over multidimen-
sional XML data organized in simple hierarchies [9] with the
TAX XML algebra [10]. The next step is now to take XML
specifics into account and propose operators for data organized
in ragged, complex hierarchies. TAX, as many other XML
algebras, is based on pattern trees [11] to model user queries.
Further combining TAX operators to process hierarchies with
unpredictable structures would require to handle combinations
of many pattern trees. On the other hand, a more straightfor-
ward way to achieve our goal is to directly work at the pattern
tree level and design a single, ad-hoc pattern tree. Hence,
we propose a pattern tree model with advanced matching
capabilities, including aggregation, grouping and ordering; and
illustrate its use through a rollup operator that applies onto
complex hierarchies. This marks a first step in defining a full
set of pattern tree-based XOLAP operators.

The remainder of this paper is organized as follows. In Sec-
tion II, we formally define pattern trees and related concepts.
In Section III, we survey the pattern trees that are used in
XML algebras. In Section IV, we formally define the complex
hierarchies we want to handle. In Section V, we introduce our
pattern tree-based rollup operator. We finally conclude this
paper and discuss research perspectives in Section VI.

II. BACKGROUND

We define in this section the main concepts that lie behind
XML algebras, i.e., XML data trees and subtrees, pattern trees
and the operations of matching and embedding.

A. XML Data Trees and Subtrees

A data treet models an XML document or a document
fragment. It may be defined as a triplet = (r, N, E), whereN
is the set of nodes,r ∈ N is the root oft, andE is the set of
edges stitching together couples of nodes (ni, nj) ∈ N.

Given an XML data treet = (r, N, E) and e ∈ E an edge
connecting two nodes(ni, nj). t

′

= (r
′
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′
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′

) is a subtree
of t iff the following conditions are satisfied:N′⊆ N; there
exists an edgee

′

∈ E
′

connecting two nodes(n
′

i, n
′

j) such
that ni = n

′

i andnj = n
′

j .

B. Pattern Trees

A pattern treept, also called tree pattern or tree pattern
query (TPQ) [11] is a pair(t, F ) where: (1) t is a tree (r,



N, E). An edge may either be a parent-child (pc for short,
simple edge / in XPath) node relationship or an ancestor-
descendant (ad for short, double edge // in XPath) node
relationship; (2)F is a formula that specifies constraints on
node values. More explicitly,F is a boolean combination of
predicates on node values.

Basically, a pattern tree captures a useful fragment of XPath
[12]. But it can also be seen as the translation of a user query
formalized in natural language or in an XML query language
such as XQuery [13]. Translating an XML query plan into
a pattern tree is not a simple operation. Some XQueries are
written with complex combinations of XPath and FLWOR
expressions, and imply more than one pattern tree. Such
queries must be broken up into several patterns trees. Only a
single XPath expression can be translated into a single pattern
tree. The more a query is difficult, the more its translation
in pattern tree(s) is complex [14]. To this aim, starting from
patterns to express user queries in a first stage, and optimizing
them in a second stage is a very effective solution for XML
query optimization.

C. Matching and Embedding

Answers for pattern trees (named witness trees in TAX)
are formalized through one or multiple matchings. Matching
a pattern treept into an XML data tree t is a functionf:pt→t
that maps nodes ofpt to nodes oft such that: (1) structural
relationships are preserved, i.e., if nodes(x, y) are related
in t through apc node relationship (respectively anad node
relationship), their counterparts(x

′

, y
′

) in pt must be related
through a pc node relationship (respectively anad node
relationship) too; and (2) formulaF of pt must be satisfied.

Embedding a pattern treept into a data treet is a function
g : pt → t that maps each node ofpt to nodes oft such
that structural relationships (pc and ad) are preserved. The
difference between embedding and matching is that embedding
maps a pattern tree against a data treestructure only, whereas
matching maps a pattern tree against a data tree structureand
contents [15]. In the remainder of this paper, we use the more
general term matching when referring to mapping pattern trees
against data trees.

D. Example

For comprehensibility, let us consider the XML data tree
from Figure 1(a) that represents a collection of books. Root
doc unites books described by theirtitles, authors, editors,
years andsummaries. Data trees nodes are connected by sim-
ple edges (/), i.e.,pc relationships. Books are not necessarily
described the same way. For instance, a summary may not be
present in all books. Some books can be written by more than
one author.

The pattern tree from Figure 1(b) selects book titles, authors,
and editors. Moreover, formulaF indicates that author must
be different from Jill. Matching this pattern tree against the
data tree from Figure 1(a) outputs the data tree (or witness
tree) from Figure 1(c). Only one book is selected, since the

other one (title = “A dummy for a computer”) is written by
author = “Jill”, which contradicts formulaF .

Finally, thead relationship$1//$3 in Figure 1(b)’s pattern
tree is correctly taken into account. The book element (title =
“A dummy for a computer”) is indeed not disqualified because
of its structure, but because one of its authors is Jill. It this
author was Gill, the book would appear in output.

III. PATTERN TREESUSED IN XML T REE ALGEBRAS

The aim of an XML tree algebra is to feature a set of
algebraic operators to manipulate and query XML data tree
structures. The output of a query formulated over a tree must
also be a data tree that respects a tree structure, i.e., a pattern
tree.

First XML algebras have appeared in 1999 [16] in conjunc-
tion with efforts aiming to define a powerful query language
for XML [17]. Note that these XML algebras have appeared
before the first specification of XQuery, which is regarded as
the most popular XML query language, in 2001 [18].

TAX is one of the most popular XML tree algebras [10]. The
TAX pattern tree represents the most basic pattern tree usedin
an algebraic context. It preservespc-ad relationships from the
input ordered data tree in output and it satisfies the formula
associated to the pattern. The examples from Figure 1(a), (b)
and (c) correspond to TAX data, pattern and witness trees,
respectively.

Providing more matching options for edges connecting
output nodes allows a more efficient extraction of these
nodes when matching the relevant pattern tree. An important
limitation of the TAX pattern tree comes in case of absence of
one node in the subtrees matched with the pattern tree, which
prevents them to appear in the result. Generalized Tree Patterns
(GTPs) extend classical TAX pattern trees by creating groups
of nodes to facilitate their manipulation and by enriching edges
to be extracted by themandatory/optional matching option
[13].

An option more than a limitation of TAX pattern trees is
that a set of similar nodes of the same subtree appears in the
resulting tree. For example, a book written by more than one
author results from a matching of a pattern containing a single
author node. Edges of Annotated Pattern Trees (APTs) [19]
solve this problem and present four matching specifications:
one to many matches (+), one match only (-), zero to many
matches (*) and zero or one match (?).

APTs, like TAX pattern trees and GTPs, preserve the order
of nodes from the input XML data in the output (result),
whatever the order of nodes in the pattern tree. To avoid this
issue, it is necessary to specify node order in the pattern tree.
APTs used in the TLC (Tree Logical Classes) Select and Join
operators [19] are extended with an order parameter (ord) [20].

We recapitulate in Table I the characteristics of all pattern
trees studied in this section.

IV. COMPLEX HIERARCHIES

In this section, we define what we term complex hierar-
chies. To this aim, we first formalize the definitions of data
warehousing concepts.



Fig. 1. XML data (a), pattern (b) and witness trees (c)

TABLE I
COMPARISON OF PATTERN TREES USED INXML TREE ALGEBRAS

Matching features Reordering Hierarchies
TAX PT [10] Basic No No
GTP [13] Mandatory/optional edges No No
APT [19] Edge cardinality No No
Ordered APT [20] Order specification Yes No

A. Data Warehouses

1) Data Warehouse: A data warehouseW modeled w.r.t. a
snowflake schema (i.e., with dimension hierarchies) is defined
asW = (F,D), where:

• F is a set of facts to observe;
• D is a set of dimensions or analysis axes. Letd = |D|.
2) Dimension and Hierarchy: ∀i ∈ [1, d], a dimension

Di ∈ D is defined as a hierarchy made up of a set ofni

levels: Di = {Hij}j=1,ni
. By convention, we denoteHi1 as

the lowest granularity level.
∀j ∈ [1, ni], a hierarchy levelHij is defined in intention as

Hij = (IDij , {Aijk}k=1,aij
, Rij), where:

• IDij is the identifier attribute ofHij ;
• {Aijk} is a set ofaij so-called member attributes ofHij ;
• Rij is an attribute that references a hierarchy level at a

higher granularity than that ofHij (notion of rollup).
Let dom() be a function that associates to any attribute its

definition domain. Lethij = |Hij |. ∀l ∈ [1, hij ], instances of
Hij are tuples under form(σijl, {αijkl}k=1,aij

, ρijl), where:
• σijl ∈ dom(IDij);
• αijkl ∈ dom(Aijk) ∀k ∈ [1, aij ];
• ρijl ∈ dom(IDij

′ ) with j
′

∈ [1, ni].
3) Fact: F is defined in intention as F =

({∆i}i=1,d, {Mj}j=1,m), where:
• {∆i} is a set ofd attributes that reference instances of

hierarchy levelsHi1 of each dimensionDi ∈ D;
• {Mj} is a set ofm measure (or indicator) attributes that

characterize facts.

Let f = |F |. ∀k ∈ [1, f ], instances ofF are tuples under
form ({δik}i=1,d, {µjk}j=1,m), where:

• δik ∈ dom(IDi1) ∀i ∈ [1, d];
• µjk ∈ dom(Mj) ∀j ∈ [1,m].

B. Complex Hierarchies

A dimension hierarchyDi is termed complex if it is both
non-strict and non-covering.

1) Non-Strict Hierarchy: A hierarchy is non-strict [21]–
[23] or multiple-arc [24] when attributeRij is multivalued. In
other terms, from a conceptual point of view, a hierarchy is
non-strict if the relationship between two hierarchical levels
is many-to-many instead of one-to-many. For example, in
a dimension describing products, a product may belong to
several categories instead of just one.

Similarly, a many-to-many relationship between facts and
dimension instances may exist [24]. For instance, in a sale
data warehouse, a fact may be related to a combination
of promotional offers rather than just one. Formally, here,
attributes∆i (∀i ∈ [1, d]) may be multivalued.

2) Non-Covering Hierarchy: A hierarchy is non-covering
[21]–[23] or ragged [24] if attributeRij allows linking a
hierarchy levelHij to another hierarchy levelHij

′ by “skip-
ping” one or more intermediary levels, i.e.,ρij = σij

′ and
∃Hij

′′ ∈ Di / ρij
′′ = σij

′ . This occurs, for instance, if
in a dimension describing stores, the store-city-region-country
hierarchy allows a store to be located in a given region without
being related to a city (stores in rural areas).

Similarly, facts may be described at heterogeneous granu-
larity levels. For example, still in our sale data warehouse,



sale volume may be known at the store level in one part of
the world (e.g., Europe), but only at a more aggregate level
(e.g., country) in other geographical areas. This means that
∀i ∈ [1, d], δi ∈ dom(IDij) with j ∈ [1, ni] (constraintj = 1
is forsaken).

3) Notes:

• The notion of ragged hierarchy has different meanings
in the literature. For example, Beyer et al. define it
as a hierarchy that is both non-strict and non-covering
[3], while Rizzi defines it as non-covering only [24].
This is why we prefer and define the new terms of
complex hierarchy. Malinowski and Zim̀anyi use similar
switchable terms: generalized hierarchy [22] and complex
generalized hierarchy [25]. However, these hierarchies
include non-covering hierarchies, but not non-strict hi-
erarchies.

• Taking complex hierarchies into account involves impor-
tant summarizability issues [26]. However, taking them
into account in an XOLAP context is relevant (real cases
do exist) and necessary. Research devoted to normalizing
conceptual models with summarizability problems [27]
could be exploited for this sake.

C. Example

Let us expand the example from Figure 1 with Figure 2,
where book sales are described by titles, categories and sale
prices.

Each category is associated to a hierarchy level labeled C1
to C3, from the most detailed to the most general. Categories
form a complex hierarchy (Figure 3). A category includes
more than one book and a book is described by more than
one category, thus making this hierarchy non-strict. Moreover,
two books (title = “SQL” and “Manag. S.I”) are described by
complete hierarchies of categories (C3/C2/C1). While book
entitled “PHP 5” is described by an incomplete hierarchy of
categories (C3[SQL]//C1[Software]). Book entitled “SQL” is
also described by two hierarchies (one complete and one in-
complete). Hence, the hierarchy of categories is non-covering.
Being also non-strict, it is thus complex.

V. PATTERN TREE-BASED ROLLUP OPERATOR

A. Motivation

In a previous work, we expressed classical OLAP operators
with a succession of TAX operators of selection, grouping,
join, aggregation and node update [9]. Multidimensional XML
data introduced in this work were described by simple (strict
with no overlap between levels) hierarchies.

The problem with complex hierarchies is that, when aggre-
gating data, we handle facts described with respect to various
levels of granularity. It is then be difficult, in this case, to
aggregate measures. A second issue is that some data may
not be taken into account because of missing levels in non-
covering hierarchies (e.g., book entitled “PHP 5”).

Choosing to extend the pattern tree of one or more TAX
operators used to express the rollup operator (selection, group-
ing, join, aggregation and node update) from [9] is probably

a good but not generic solution, since multiple possibilities
of extension are possible. For example, we can employ a
pattern tree adapted to complex hierarchies in the input of the
TAX selection operator, but also join initial data with complex
hierarchies using an adapted pattern tree. Furthermore, the
TAX pattern tree and its extensions do not take hierarchies into
account (Table I). Thus, we had to handle them in a separate
representation [9].

Since we aim to define a formal framework for XOLAP,
rather than extending one or multiple TAX operators, we pro-
pose a new rollup operator based on a pattern tree independent
from TAX and respecting the definition of rollup [28].

In the following two sections, we detail our XOLAP rollup
operator by presenting the proposed pattern tree and the
algorithm allowing to aggregate multidimensional XML data
expressed in complex hierarchies using this pattern. This rollup
operator inputs a multidimensional XML data tree and outputs
a second a multidimensional XML data tree where measures
are aggregated. It is based on an algorithm allowing to match
a pattern tree against a multidimensional XML data tree.

B. Pattern Tree for Rollup

We detail here the structure of our pattern tree (Figure 4(a)).
The graph on the left-hand side represents the pattern tree,
while the right-hand side of the figure features formulaF .

Parent-child (pc) relationships are represented with single
edges (/); ancestor-descendant (ad) relationships are repre-
sented with double edges (//); nodes with a white background
($1, $4, $6 and $7) do not appear in the result, unlike nodes
with a black background; nodes connected to their parent by
dotted edges ($4) are not used in the matching process since
they do not have an equivalent in the data tree, unlike nodes
connected to their parent nodes by solid edges.

In Formula F , $0 is the root of the fact document. $1
is a fact described by its dimensions and measures. $2 is
the root of the complex hierarchy. $3 computes aggregation
from measure $7 of each fact $1. $4 counts the number of
matched facts. It is useful for aggregation operations such
as average. $5 is the most detailed element of the hierarchy,
child (direct descendant) of $2 in the data tree. $6 is any
descendant of $5. $6 is used to browse through the hierarchy
in the matched data tree.

C. Rollup Algorithm

Our rollup algorithm (Algoritm V-C) is based on the pattern
tree from Figure 4(a). For each fact $1, it checks whether the
highest hierarchical element (direct child $5 of the hierarchy
root $2) corresponds to the input hierarchical elementH-
el-agg. If so, aggregation is computed from measure $7,
$3 and $4 are updated (they are input-output parameters
of function AGGREGATE), and the algorithm steps to the
next fact. Otherwise, the algorithm continues to scan through
the hierarchy $6 until finding the hierarchical element to be
aggregated.



Fig. 2. Book sales expressed in complex hierarchy

Fig. 3. Category complex hierarchy

Fig. 4. Pattern tree for rollup (a) and witness tree (result)(b)

Algorithm 1 Rollup
Input: DT // Fact data tree

H-el-agg // Hierarchical element to be aggregated
$3← 0
$4← 0
Stop← FALSE
for all $1 in DT do

while exists child $5 of $2and not Stopdo
if $5.value = H-el-aggthen

AGGREGATE ($3, $4, $7)
Stop← TRUE

else if $6.value = H-el-aggthen
AGGREGATE ($3, $4, $7)
Stop← TRUE

end if
end while

end for

D. Example

Let us consider query Q: “compute total of book sales for
category Software”. Category Software means C1[Software]
or any descendant category. The aggregate function used in
AGGREGATE (Algorithm V-C) in this case issum. When
matching the pattern tree from Figure 4(a) against the data tree
from Figure 2, pattern node $0 takes the value “sales” and $1
takes the value “book”. $2 must be equal to “categories”
here. For each $2 = “categories” of every “book”, we check
whether the value of $5 (the most detailed category of the
book) is equal to the looked for hierarchical value (H-el-agg
= Software). If it is true, we step to the next book (next
$1). Otherwise, we continue to check whether one descendant
of $5 ($6, an ancestor category) corresponds to category



Software. In case a book of category “Software” is found,
$4 is incremented and $3 is incremented by measure value
$7 of this book (to compute sale total). When Software is not
found after searching for all categories of the current $1, we
step to the next fact ($1 = book) and continue searching. After
matching all the data tree with the pattern tree, the aggregate
is computed, $5 takes the value of the searched category
Software and $3 the computed total book sale, Aggregate,
as shown in Figure 4(b), which represents the witness tree
answering our initial query.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we propose to the best of our knowledge the
first pattern tree for multidimensional data since the introduc-
tion of pattern trees in XML approaches [11]. Though it is
simple, this pattern tree permits to aggregate data expressed
in complex hierarchies, no matter their structure. We thus
progressed toward the definition of a formal framework for
XOLAP. It is important that XML multidimensional data are
processed natively, which allows taking into account XML
specifics such as complex hierarchies, which are intricate to
handle in relational systems.

The perspectives of this work are twofold. We aim, in
a first step, to adapt the principle of the pattern tree we
introduce in this paper to other XOLAP operators (cube,
drill down, etc.) in order to complete our algebra. More
matching options (e.g., optional edges or edge cardinalities)
might have to be added to the pattern tree model at this
stage. Moreover, XOLAP operators performing aggregation
raise summarizability problems. We aim to present solutions
to detect and correct them in the algorithms (and patterns)
associated to the different operators.

In a second stage, we plan to implement our algebra (as a
proof of concept) and optimize its performance. Pattern tree-
based XQuery optimization approaches may help optimize our
operators under their physical form. For instance, we coulduse
minimization techniques. Minimizing a pattern treept consists
in constructing a minimal pattern that is equivalent topt while
bearing the minimum possible size [11].
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