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Abstract—With the rise of XML as a standard for representing ~ set and granularity-related) OLAP operators over multetm
business data, XML data warehousing appears as a suitable sjonal XML data organized in simple hierarchies [9] with the
solution for decision-support applications. In this context, it is TAX XML algebra [10]. The next step is now to take XML

necessary to allow OLAP analyses on XML data cubes. Thus, - .
XQuery extensions are needed. To define a formal framework specifics into account and propose operators for data aani

and allow much-needed performance optimizations on analytical in ragged, complex hierarchies. TAX, as many other XML
queries expressed in XQuery, defining an algebra is desirable. algebras, is based on pattern trees [11] to model user guerie
However, XML-OLAP (XOLAP) algebras from the literature still  Further combining TAX operators to process hierarchies wit
largely rely on the relational model. Hence, we propose in this n5redictable structures would require to handle comizinat
paper a rollup operator based on a pattern tree in order to .
handle multidimensional XML data expressed within complex of many pattern _trees. On thg other_ hand, a more straightfor-
hierarchies. ward way to achieve our goal is to directly work at the pattern
tree level and design a single, ad-hoc pattern tree. Hence,
. INTRODUCTION we propose a pattern tree model with advanced matching
In many institutions, decision-support applications tiegju capabilities, including aggregation, grouping and omlgrand
external data. In this context, the Web is a tremendous ddtastrate its use through a rollup operator that applietoon
source and Web farming [1] is more and more casual. Ascamplex hierarchies. This marks a first step in defining a full
consequence, a new trend toward on-line data warehousgay of pattern tree-based XOLAP operators.
is currently emerging, including approaches such as XML The remainder of this paper is organized as follows. In Sec-
warehousing [2]. tion 1, we formally define pattern trees and related coreept
The XML language is indeed becoming a standard for rep? Section Ill, we survey the pattern trees that are used in
resenting business data [3]. Moreover, it is particuladg@ted XML algebras. In Section 1V, we formally define the complex
for modeling so-called complex data [4] from heterogeneolnserarchies we want to handle. In Section V, we introduce our
sources, and particularly the Web. Thus, many studies aimpaitern tree-based rollup operator. We finally concluds thi
extending the XQuery language [5] with OLAP (On-Line Anpaper and discuss research perspectives in Section VI.
alytical Processing)-like queries (grouping, aggregatﬁc.)_ Il. BACKGROUND
[3], [6], [7]. Such extensions should not only allow clasdic

OLAP analyses, but also take the specificities of XML into We define in_this section the main concepts that lie behind
account, e.g., ragged hierarchies [3] that would be intica XML algebras, i.e., XML data trees and subtrees, pattemstre

handle in a relational environment and the operations of matching and embedding.

In this context, we are working to propose an OLAP algebra XML Data Trees and Subtrees
over multidimensional XML data (XML data modeled in mul- A §ata treet models an XML document or a document
tidimensional way). On the long run, we are actually aimingagment. It may be defined as a trigle (r,N, E), whereN
at three objectives: contribute to define a formal framewogk the set of nodes, € N is the root oft, andE is the set of
that does not currently exist. in the XOLAP [8] contextgqges stitching together couples of nodes 6,) € N.
support the effort for extending the XQuery language to Gjven an XML data tred = (r, N, E) ande € E an edge
allow OLAP queries, especially with XML-specific operatorsconnecting two noden;, n;). t = (r', N, E) is a subtree
allow query optimization for OLAP XQueries. Native-XML of t iff the following conditions are satisfieti’C N; there

DBMSs (Database Management Systems), though in constagikts an edge’ € E' connecting two nodesn;,n'j) such
progress, are indeed limited in term of performance and &voy}, ;.- ‘

greatly benefit from automatic query optimization, espécia J
for costly analytical queries. B. Pattern Trees

In this paper, we particularly focus on the first objective. A pattern treept, also called tree pattern or tree pattern
In a previous work, we have expressed classical (structurquery (TPQ) [11] is a pail(t, F') where: (1)t is a tree f,

’
=n,; andn; =n



N, E). An edge may either be a parent-chilpc(for short, other one {itle = “A dummy for a computer”) is written by

simple edge / in XPath) node relationship or an ancestarathor = “Jill”, which contradicts formulaF'.

descendantad for short, double edge // in XPath) node Finally, thead relationship$1//$3 in Figure 1(b)'s pattern

relationship; (2)F is a formula that specifies constraints orree is correctly taken into account. The book eleméittd =

node values. More explicitlyf" is a boolean combination of “A dummy for a computer”) is indeed not disqualified because

predicates on node values. of its structure, but because one of its authors is Jill. i$ th
Basically, a pattern tree captures a useful fragment of IXPaguthor was Gill, the book would appear in output.

[12]. But it can also be seen as the translation of a user queryj;  patTERN TREESUSED IN XML T REE ALGEBRAS

formalized in natural language orin an XML query Iangu_age The aim of an XML tree algebra is to feature a set of

such as XQuery [13]. Translating an XML query plan |nt0I brai tors t oulat q XML data t

a pattern tree is not a simple operation. Some XQueries ggeoraic operators 1o manipuiate and query ata tree

r
written with complex combinations of XPath and FLWORStrUCtureS' The output of a query formulated over a tree must
. ) also be a data tree that respects a tree structure, i.e.tearpat
expressions, and imply more than one pattern tree. SL{?ee
queries must be brokpn up into several pa.tterns trees. Only First XML algebras have appeared in 1999 [16] in conjunc-
single XPath expression can be translated into a singlerpatt,. : o !
tion with efforts aiming to define a powerful query language

tree. The more a query is difficult, the more its translatio,
in pattern tree(s) is complex [14]. To this aim, startingnfro for XL [17]. Note that these XML algebras have appeared

patterns to express user queries in a first stage, and 0.pﬁjmzbefore the first specification of XQuery, which is regarded as

. : . ! he most popular XML query language, in 2001 [18].
them in a S?CO.”O' stage s a very effective solution for XML TAX is one of the most popular XML tree algebras [10]. The
query optimization.

TAX pattern tree represents the most basic pattern treeinsed
: ' an algebraic context. It preservps-ad relationships from the
C. Matching and Embedding input ordered data tree in output and it satisfies the formula
Answers for pattern trees (named witness trees in TAX)ssociated to the pattern. The examples from Figure 1(g), (b
are formalized through one or multiple matchings. Matchingnd (c) correspond to TAX data, pattern and witness trees,
a pattern tre@t into an XML data tree tis a functioh: pt —t  respectively.
that maps nodes gft to nodes oft such that: (1) structural Providing more matching options for edges connecting
relationships are preserved, i.e., if nodgsy) are related output nodes allows a more efficient extraction of these
in ¢ through apc node relationship (respectively aa node nodes when matching the relevant pattern tree. An important
relationship), their counterpar(s:’, y') in pt must be related limitation of the TAX pattern tree comes in case of absence of
through apc node relationship (respectively aad node one node in the subtrees matched with the pattern tree, which
relationship) too; and (2) formul& of pt must be satisfied. prevents them to appear in the result. Generalized TreerRsatt
Embedding a pattern tree into a data treé is a function (GTPs) extend classical TAX pattern trees by creating gsoup
g : pt — t that maps each node o¢f to nodes oft such of nodes to facilitate their manipulation and by enrichiniges
that structural relationshipgp¢ and ad) are preserved. Theto be extracted by thenandatory/optional matching option
difference between embedding and matching is that embeddj3].
maps a pattern tree against a data steecture only, whereas  An option more than a limitation of TAX pattern trees is
matching maps a pattern tree against a data tree struatdre that a set of similar nodes of the same subtree appears in the
contents [15]. In the remainder of this paper, we use the mor@sulting tree. For example, a book written by more than one
general term matching when referring to mapping pattestreauthor results from a matching of a pattern containing alsing

against data trees. author node. Edges of Annotated Pattern Trees (APTs) [19]
solve this problem and present four matching specifications
D. Example one to many matches (+), one match only (-), zero to many

matches (*) and zero or one match (?).

For c_:omprehensibility, let us consider t_he XML data tree APTs, like TAX pattern trees and GTPs, preserve the order
from Figure 1(a) that represents a collection of books. R08F nodes from the input XML data in the output (result),

doc unites books 'descnbed by theititles, authors, editors, . whatever the order of nodes in the pattern tree. To avoid this
years andsummaries. Data trees nodes are connected by sim-

) . . .ISsue, it is necessary to specify node order in the pattem tr
ple edges (/), i.e.pc relationships. Books are not necessaril . . .
. . PTs used in the TLC (Tree Logical Classes) Select and Join
described the same way. For instance, a summary may not be :
resent in all books. Some books can be written by more tha erators [19] are extended with an order parametep) (20]
P ' y e recapitulate in Table | the characteristics of all patter

one author. . . trees studied in this section.
The pattern tree from Figure 1(b) selects book titles, astho
and editors. Moreover, formul& indicates that author must IV. COMPLEX HIERARCHIES

be different from Jill. Matching this pattern tree agains¢t In this section, we define what we term complex hierar-
data tree from Figure 1(a) outputs the data tree (or witnesisies. To this aim, we first formalize the definitions of data
tree) from Figure 1(c). Only one book is selected, since thearehousing concepts.
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Fig. 1. XML data (a), pattern (b) and witness trees (c)

TABLE |
COMPARISON OF PATTERN TREES USED IKML TREE ALGEBRAS

Matching features Reordering | Hierarchies
TAX PT [10] Basic No No
GTP [13] Mandatory/optional edges No No
APT [19] Edge cardinality No No
Ordered APT [20] Order specification Yes No
A. Data Warehouses Let f = |F|. Vk € [1, f], instances off’ are tuples under

1) Data Warehouse: A data warehous& modeled w.rt. a form ({dix}i=1.a, {#jx }i=1.m), Where:
snowflake schema (i.e., with dimension hierarchies) is defin ¢ i € dom(ID;1) Vi € [1,d];

asW = (F, D), where: o [k € dom(M;) Vj € [1,m].
o Fis a set of facts to observe; B. Complex Hierarchies
« D is a set of dimensions or analysis axes. et |D|. A dimension hierarchyD; is termed complex if it is both

2) Dimension and Hierarchy: Vi € [1,d], a dimension non-strict and non-covering.
D; € D is defined as a hierarchy made up of a setnpf 1) Non-Strict Hierarchy: A hierarchy is non-strict [21]-
levels: D; = {H;;};j=1,,. By convention, we denoté/;; as [23] or multiple-arc [24] when attributé;; is multivalued. In

the lowest granularity level. other terms, from a conceptual point of view, a hierarchy is
Vj € [1,n;], a hierarchy leveH;; is defined in intention as non-strict if the relationship between two hierarchicalels

Hij = (ID;j, {Aiji }k=1a,,, Rij), where: is many-to-many instead of one-to-many. For example, in
« ID;; is the identifier attribute off,;; a dimension describing products, a product may belong to

« {4} is a set ofa;; so-called member attributes &f,; Several categories instead of just one.
« R;; is an attribute that references a hierarchy level at aSimilarly, a many-to-many relationship between facts and

higher granularity than that off;; (notion of rollup). dimension instances may exist [24]. For instance, in a s_ale
gata warehouse, a fact may be related to a combination

of promotional offers rather than just one. Formally, here,
attributesA; (Vi € [1,d]) may be multivalued.
2) Non-Covering Hierarchy: A hierarchy is non-covering
o oiji € dom(IDy); [21]-[23] or ragged [24] if attributeR,; allows linking a
o aijr € dom(Aiji) Vk € [_1’,%']; hierarchy levelH;; to another hierarchy level;; - by “skip-
* piji € dom(ID;; ) with j = & [1,7]. ping” one or more intermediary levels, i.,; = o;; - and

Let dom() be a function that associates to any attribute i
definition domain. Leth;; = |H,;|. VI € [1, hy;], instances of
H;; are tuples under fornio i, {cijri }r=1,a,,, piji), Where:

3) Fact: I is defined in intention asF = 3H,. . € D;/p,;» = o, . This occurs, for instance, if
({Ai}i=1,d, {M;}j=1,m), where: in a dimension describing stores, the store-city-regionatry
o {A;} is a set ofd attributes that reference instances dfierarchy allows a store to be located in a given region witho
hierarchy levelsH;; of each dimensiorD; € D; being related to a city (stores in rural areas).

« {M;} is a set ofm measure (or indicator) attributes that Similarly, facts may be described at heterogeneous granu-
characterize facts. larity levels. For example, still in our sale data warehquse



sale volume may be known at the store level in one part afgood but not generic solution, since multiple possibtiti
the world (e.g., Europe), but only at a more aggregate leva extension are possible. For example, we can employ a
(e.g., country) in other geographical areas. This meants tipattern tree adapted to complex hierarchies in the inpuhef t
Vi € [1,d], 6; € dom(ID;;) with j € [1,n;] (constraintj =1 TAX selection operator, but also join initial data with coleyp
is forsaken). hierarchies using an adapted pattern tree. Furthermoee, th
3) Notes: TAX pattern tree and its extensions do not take hierarciies i
« The notion of ragged hierarchy has different meaningcount (Table I). Thus, we had to handle them in a separate
in the literature. For example, Beyer et al. define fepresentation [9].
as a hierarchy that is both non-strict and non-covering Since we aim to define a formal framework for XOLAP,
[3], while Rizzi defines it as non-covering only [24].rather than extending one or multiple TAX operators, we pro-
This is why we prefer and define the new terms gfose a new rollup operator based on a pattern tree independen
complex hierarchy. Malinowski and Ziamyi use similar from TAX and respecting the definition of rollup [28].
switchable terms: generalized hierarchy [22] and complex In the following two sections, we detail our XOLAP rollup
generalized hierarchy [25]. However, these hierarchieperator by presenting the proposed pattern tree and the
include non-covering hierarchies, but not non-strict hialgorithm allowing to aggregate multidimensional XML data
erarchies. expressed in complex hierarchies using this pattern. Diligr
« Taking complex hierarchies into account involves impomleperator inputs a multidimensional XML data tree and owgput
tant summarizability issues [26]. However, taking thema second a multidimensional XML data tree where measures
into account in an XOLAP context is relevant (real caseme aggregated. It is based on an algorithm allowing to match
do exist) and necessary. Research devoted to normalizan@attern tree against a multidimensional XML data tree.
conceptual models with summarizability problems [27]
could be exploited for this sake. B. Pattern Tree for Rollup

C. Example We detail here the structure of our pattern tree (Figure)4(a)

Let us expand the example from Figure 1 with Figure Zihe graph on the left-hand side represents the pattern tree,
where book sales are described by titles, categories ard s@hile the right-hand side of the figure features formiila
prices. Parent-child jfc) relationships are represented with single
Each category is associated to a hierarchy level labeled gdges (/): ancestor-descendaat))( relationships are repre-
to C3, from the most detailed to the most general. Categorigsnted with double edges (//); nodes with a white background
form a complex hierarchy (Figure 3). A category includegs1 $4, $6 and $7) do not appear in the result, unlike nodes
more than one book and a book is described by more thgfih a black background; nodes connected to their parent by
one category, thus making this hierarchy non-strict. Meeeo dotted edges ($4) are not used in the matching process since
two books (title = “SQL” and “Manag. S.I") are described bythey do not have an equivalent in the data tree, unlike nodes
complete hierarchies of categories (€2/C1). While book connected to their parent nodes by solid edges.
entitled “PHP 5" is described by an incomplete hierarchy of |, Formula F, $0 is the root of the fact document. $1
categories (C3[SQI//C1[Software]). Book entitled “SQL"is js 5 fact described by its dimensions and measures. $2 is
also described by two hierarchies (one complete and one Rz (oot of the complex hierarchy. $3 computes aggregation
complete). Hence, the hierarchy of categories is non-eWer fom measure $7 of each fact $1. $4 counts the number of
Being also non-strict, it is thus complex. matched facts. It is useful for aggregation operations such
V. PATTERN TREE-BASED ROLLUP OPERATOR as average. $5 is the most detailed element of the hierarchy,
child (direct descendant) of $2 in the data tree. $6 is any

descendant of $5. $6 is used to browse through the hierarchy
In a previous work, we expressed classical OLAP operatqfsthe matched data tree.

with a succession of TAX operators of selection, grouping,
join, aggregation and node update [9]. Multidimensional XM .
data introduced in this work were described by simple (strig' Rollup Algorithm
with no overlap between levels) hierarchies. Our rollup algorithm (Algoritm V-C) is based on the pattern
The problem with complex hierarchies is that, when aggréee from Figure 4(a). For each fact $1, it checks whether the
gating data, we handle facts described with respect to warichighest hierarchical element (direct child $5 of the hiengr
levels of granularity. It is then be difficult, in this case, troot $2) corresponds to the input hierarchical elemient
aggregate measures. A second issue is that some data ehaagg. If so, aggregation is computed from measure $7,
not be taken into account because of missing levels in nd8 and $4 are updated (they are input-output parameters
covering hierarchies (e.g., book entitled “PHP 5"). of function AGGREGATE), and the algorithm steps to the
Choosing to extend the pattern tree of one or more TAXext fact. Otherwise, the algorithm continues to scan thinou
operators used to express the rollup operator (selectionpg the hierarchy $6 until finding the hierarchical element to be
ing, join, aggregation and node update) from [9] is probabbggregated.

A. Motivation
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Fig. 4. Pattern tree for rollup (a) and witness tree (reqblf)

Algorithm 1 Rollup

Input: DT // Fact data tree

H-el-agg // Hierarchical element to be aggregated
$3+—0
$4—0

D. Example

Let us consider query Q: “compute total of book sales for
category Software”. Category Software means C1[Software]

Stop — FALSE
for all $1 in DT do
while exists child $5 of $2and not Stopdo
if $5.value = H-el-agdhen
AGGREGATE ($3, $4, $7)
Stop «— TRUE
else if $6.value = H-el-agghen
AGGREGATE ($3, $4, $7)
Stop«+— TRUE
end if
end while

end for

or any descendant category. The aggregate function used in
AGGREGATE (Algorithm V-C) in this case issum. When
matching the pattern tree from Figure 4(a) against the da¢a t
from Figure 2, pattern node $0 takes the value “sales” and $1
takes the value “book”. $2 must be equal to “categories”
here. For each $2 = “categories” of every “book”, we check
whether the value of $5 (the most detailed category of the
book) is equal to the looked for hierarchical valud-€l-agg

= Software). If it is true, we step to the next book (next
$1). Otherwise, we continue to check whether one descendant
of $5 ($6, an ancestor category) corresponds to category



Software. In case a book of category “Software” is found[7]
$4 is incremented and $3 is incremented by measure value
$7 of this book (to compute sale total). When Software is o,
found after searching for all categories of the current $&, w
step to the next fact ($1 = book) and continue searching.rAft%]
matching all the data tree with the pattern tree, the agtgega
is computed, $5 takes the value of the searched category
Software and $3 the computed total book sale, Aggregated
as shown in Figure 4(b), which represents the witness tr%e]
answering our initial query.

VI. CONCLUSION AND PERSPECTIVES [11]

In this paper, we propose to the best of our knowledge the
first pattern tree for multidimensional data since the i@
tion of pattern trees in XML approaches [11]. Though it i€l
simple, this pattern tree permits to aggregate data exguless
in complex hierarchies, no matter their structure. We thut3l
progressed toward the definition of a formal framework for
XOLAP. It is important that XML multidimensional data are
processed natively, which allows taking into account XMI14]
specifics such as complex hierarchies, which are intricate t
handle in relational systems. [15]

The perspectives of this work are twofold. We aim, in
a first step, to adapt the principle of the pattern tree we
introduce in this paper to other XOLAP operators (cubgig
drill down, etc.) in order to complete our algebra. More
matching options (e.g., optional edges or edge cardies)iti (17
might have to be added to the pattern tree model at this
stage. Moreover, XOLAP operators performing aggregatid#s]
raise summarizability problems. We aim to present solgtion
to detect and correct them in the algorithms (and patterns)
associated to the different operators. [19]

In a second stage, we plan to implement our algebra (as a
proof of concept) and optimize its performance. Pattera-tre
based XQuery optimization approaches may help optimize diel
operators under their physical form. For instance, we caskl
minimization techniques. Minimizing a pattern trgieconsists
in constructing a minimal pattern that is equivalenptavhile
bearing the minimum possible size [11].
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