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Abstract

With the wide development of databases in general and
data warehouses in particular, it is important to reduce the
tasks that a database administrator must perform manually.
The aim of auto-administrative systems is to administrate
and adapt themselves automatically without loss (or even
with a gain) in performance. The idea of using data mining
techniques to extract useful knowledge for administration
from the data themselves has existed for some years. How-
ever, little research has been achieved. This idea neverthe-
less remains a very promising approach, notably in the field
of data warehousing, where queries are very heterogeneous
and cannot be interpreted easily. The aim of this study is to
search for a way of extracting useful knowledge from stored
data themselves to automatically apply performance opti-
mization techniques, and more particularly indexing tech-
niques. We have designed a tool that extracts frequent item-
sets from a given workload to compute an index configu-
ration that helps optimizing data access time. The experi-
ments we performed showed that the index configurations
generated by our tool allowed performance gains of 15% to
25% on a test database and a test data warehouse.

1 Introduction

Large-scale usage of databases requires a Database Ad-
ministrator (DBA) whose principal role is data manage-
ment, both at the logical level (schema definition) and the
physical level (files and disk storage), as well performance
optimization. With the wide development of Database Man-
agement Systems (DBMSs), minimizing the administration
function has become critical to achieve acceptable response
times even at load peaks [22]. One important DBA task is
the selection of suitable physical structures to improve the
system performances by minimizing data access time [10].

Indexes are physical structures that allow a direct access
to the data. From the DBA’s point of view, performance op-

timization lies mainly in the selection of indexes and mate-
rialized views [4, 12]. These physical structures play a par-
ticularly significant role in decision-support databases such
as data warehouses due to their huge volume and complex
queries.

The problem of selecting an optimal index set for a
database has been studied since the seventies. The most re-
cent studies regarding index selection use the DBMS’ query
optimizer to estimate the cost of various configurations of
candidate indexes [3, 7, 8, 11]. However, the idea of using
data mining techniques to extract useful knowledge for ad-
ministration from the data themselves has been around for
some years [6]. Little work has been done, though. In this
paper, we designed and coded a tool that exploits data min-
ing to recommend a relevant index configuration.

Assuming that index utility is strongly correlated to the
usage frequency of the corresponding attributes within a
given workload, the search for frequent itemsets [1] ap-
peared well adapted to highlight this correlation and facili-
tate index selection. Our tool parses the transaction log file
(the set of queries executed by the DBMS) to build a context
for mining frequent itemsets. This context connects queries
from the input workload to the attributes that may be in-
dexed. The output frequent itemsets are sets of attributes
forming a configuration of candidate indexes. Finally, vari-
ous strategies can be applied to select the indexes to effec-
tively build from within this configuration.

In the remainder of this paper, we present our proposal
in Section 2 and some preliminary experimental results in
Section 3, and then finally conclude the paper and present
future research perspectives in Section 4.

2 Frequent itemsets mining for index selec-
tion

2.1 Principle

Our approach exploits the transaction log to extract an
index configuration. The queries from the transaction log



Q1: SELECT * FROM T1, T2 WHERE A BETWEEN 1 AND 10 AND C=D

Q2: SELECT * FROM T1, T2 WHERE B LIKE ’%this%’ AND C=5 AND E<100

Q3: SELECT * FROM T1, T2 WHERE A=30 AND B>3 GROUP BY C HAVING SUM(E)>2

Q4: SELECT * FROM T1 WHERE B>2 AND E IN (3, 2, 5)

Q5: SELECT * FROM T1, T2 WHERE A=30 AND B>3 GROUP BY C HAVING SUM(E)>2

Q6: SELECT * FROM T1, T2 WHERE B>3 GROUP BY C HAVING SUM(E)>2

Figure 1. Sample workload

constitute a workload that is treated by an SQL query an-
alyzer. The SQL query analyzer extracts all the attributes
that may be indexed (indexable attributes). Then, we build
a “query-attribute” matrix, the rows of which are the work-
load queries, and the columns are the indexable attributes.
The role of this matrix is to link each indexable attribute to
the workload queries it appears in.

This matrix represents the extraction context for frequent
itemsets. To compute these frequent itemsets, we selected
the Close algorithm [17, 18], because its output is the set of
the frequent closed intemsets (closed regarding the Galois
connection [18]), which is a generator for all the frequent
itemsets and their support. In most cases, the number of fre-
quent closed itemsets is much lower than the total number
of frequent itemsets obtained by classical algorithms such
as Apriori [2]. In our context, using Close enables us to
obtain a smaller (though still significant) configuration of
candidate indexes faster.

Finally, we select from the configuration of candidate in-
dexes (that corresponds to the input workload) the most rel-
evant indexes and create them.

2.2 Workload extraction

We assume that a workload similar to the one presented
in Figure 1 is available. Such a workload can be easily ob-
tained either from the DBMS’ transaction logs, or by run-
ning an external application such as Lumigent’s Log Ex-
plorer [14].

2.3 Indexable attributes extraction

To reduce response time when running a database query,
it is best to build indexes on the very attributes that are
used to process the query. These attributes belong to the
WHERE, ORDER BY, GROUP BY, and HAVING clauses
of SQL queries [7].

We designed a syntactic analyzer that is able to op-
erate on any SQL query type (selections and updates —
subqueries are allowed), and extracts all the indexable at-
tributes. This process is applied to all the queries from the
workload.

2.4 Building the extraction context for the fre-
quent closed itemsets

We build a matrix (Figure 2) the rows of which repre-
sent the workload queries, and the columns represent the
set of all the indexable attributes identified in the previous
step. This “query-attribute” matrix links each query to the
indexable attributes within it. Attribute presence in a query
is symbolized by 1, and absence by 0.

Attributes
Queries A B C D E
Q1 1 0 1 1 0
Q2 0 1 1 0 1
Q3 1 1 1 0 1
Q4 0 1 0 0 1
Q5 1 1 1 0 1
Q6 0 1 1 0 1

Figure 2. Sample extraction context

2.5 Frequent closed itemsets mining

The Close algorithm scans in breadth first a lattice of
closed itemsets in order to extract the frequent closed item-
sets and their support. Its input is an extraction context such
as the one presented in Figure 2.

Intuitivelty, a closed itemset is a maximal set of items (at-
tributes) that are common to a set of transactions (queries).
For instance, in Figure 2’s extraction context, the BCE item-
set is closed because it is the largest set of common at-
tributes for the set of queries{Q2, Q3, Q5, Q6}. On the
other hand, the BC itemset is not closed since all the queries
containing attributes B and C (Q2, Q3, Q5, and Q6) also
contain attribute E. Eventually, a closed itemset is said fre-
quent when its support is greater or equal to a threshold
parameter namedminsup(minimal support).

The application of Close on the context presented in Fig-
ure 2 outputs the following set of frequent closed item-
sets (and their support) for a minimal support equal to 2/6:
{(AC, 3/6), (BE, 5/6), (C, 5/6), (ABCE, 2/6), (BCE, 4/6)}.



We consider this set as our configuration of candidate in-
dexes.

2.6 Indexes construction

The higher the size of the input workload is, the higher
the number of candidate indexes obtained with our approach
becomes. Thus, it is not feasible to build all the proposed
indexes. Index creation time, and later update time, would
both be too costly. Hence, it is necessary to devise filtering
methods or processes to reduce the number of indexes to
generate.

The first naive method is to build all the candidate in-
dexes. This method is only applicable when the number of
indexes is relatively small. In that particular case, creation
and update times remain acceptable.

In the context of decision-support databases, and more
particularly, of data warehouses, building indexes is a fun-
damental issue because of the huge volume of data stored
in fact tables and some dimension tables. Thus, it is more
critical to build indexes on large tables. Index contribution
on small tables can indeed prove negligible, and even some-
times, costly.

Statistical input, such as the cardinality of the attributes
to be indexed, may also be exploited to build indexes. An
attribute’s cardinality is the distinct number of values for
this attribute within a given relation. Depending on the
cardinality, indexing may be more or less efficient. If the
cardinality is very large, an index degenerates toward a se-
quential scan (of the index structure itself); and if it is very
small, an index might not bring a very significant improve-
ment [21]. Hence, the best choice might be to build indexes
on attributes with an “average” cardinality.

In this first study, we took a particular interest in table
sizes. We indeed established two strategies to build indexes
from the union of the frequent closed itemsets provided by
Close. The first strategy systematically builds all the pro-
posed indexes (naive method). In this case, each frequent
closed itemset corresponds to an index to be created. The
second strategy takes the size of the tables an index refers
to into account. In this case, the DBA must define whether
a table is large or not, and only indexes on attributes from
these large tables are built.

2.7 Comparison with the existing methods

Unlike the index selection methods that have been re-
cently developed, the tool that we propose does not com-
municate with the DBMS’ query optimizer. The communi-
cation between the index selection tool and the optimizer is
usually costly and must be minimized. An index configu-
ration computing time is indeed proportional to the size of
the workload, which is typically large. Our method based

on frequent itemsets mining is also greedy in terms of com-
puting time, but it is currently difficult for us to determine
which approach generates the heaviest overhead for the sys-
tem.

However, we are more interested in the quality of
the generated indexes. For instance, theIndex Selection
Tool (IST) developed by Microsoft within the SQL Server
DBMS [7] exploits a given workload and provides a config-
uration of mono-attribute candidate indexes. A greedy algo-
rithm selects the best indexes from this configuration, using
estimated costs computed by the query optimizer. The pro-
cess then reiterates to generate two-attribute indexes using
the mono-attribute indexes, and similarly, to generate multi-
attribute indexes of higher order. By mining frequent closed
itemsets, our tool directly extracts a set of mono-attribute
andmulti-attribute indexes. Hence, we do not build an ini-
tial mono-attribute index configurationa priori, and we do
not need to use any heuristic to build multi-attribute candi-
date indexes by successive iterations like IST. We believe
that this approach avoids the generation and cost evaluation
of irrelevant indexes.

3 Experiments

In order to validate our approach, we have applied it on
a test database and a test data warehouse. Our objective
here is more to find out whether our proposal makes sense
in practice than to perform true performance tests.

We have chosen the TPC-R decision-support bench-
mark [20] for our experiments on a relational database be-
cause it is a standard that should allow us to easily compare
our approach to the other existing methods in the future.
We have generated the TPC-R 1 GB database and used the
benchmark’s 22 read-only queries (labeled Q1 to Q22). In
this first experiment, we suppose refresh operations occur
off-line. However, in order to take index management over-
head into account, future performance tests will also include
TPC-R’s RF1 and RF2 refresh functions.

On the other hand, to the best of our knowledge, there
is no standard benchmark for data warehouses yet (TPC-
DS is still in development [19]). Hence, we worked on a
small datamart that had been previously developed in our
laboratory. This accidentology datamart is composed of an
Accidentfact table and four dimension tables:Place, Con-
dition, Date and PersonResponsible. It occupies 15 MB on
disk. Starting from our previous analyses on this datamart,
we also designed a realistic decision-support workload that
is specifically adapted to it. This workload includes both
selection and update operations. We cannot present it in de-
tail here due to lack of space; interested readers are referred
to [5].

Both the TPC-R database and the accidentology data-
mart have been implanted within the SQL Server 2000



// Cold run (no timing)

FOR each query in the workload DO

Execute current query

END FOR

// Warm run

FOR i = 1 TO number of replications DO

FOR each query in the workload DO

Execute current query

Compute response time for current query

END FOR

END FOR

Compute global mean response time and confidence interval

Figure 3. Test protocol

DBMS.
The test protocol we adopted is presented in Figure 3.

This algorithm has been executed for various values of the
Closeminsup(minimal support) parameter. In practice, this
parameter helps us limiting the number of indexes to gener-
ate by selecting only those that are the most frequently used
by the workload. At each step corresponding to a value of
minsup, we compute the mean response time for the input
workload.

3.1 Experiments on TPC-R

The results we obtained are presented in Figure 4 and 5.
The results from Figure 4 correspond to the creation of all
the candidate indexes obtained with Close, while the results
of Figure 5 correspond to a filter on this configuration (in-
dexes on large tables only; cf. Section 2.6).
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Figure 4. TPC-R results — All indexes

01:55


02:02


02:09


02:16


02:24


02:31


02:38


02:45


0%
 20%
 40%
 60%
 80%
 100%


minsup


M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 


(m
in

u
te

s
)


with indexes
 without indexes


Figure 5. TPC-R results — Indexes on large
tables

Figure 4 and 5 show that, in comparison with a sequen-
tial scan with no indexes, we achieve a gain in performance
for the two strategies regardless of the value ofminsup. The
maximum response time gain, which is computed as the dif-
ference between the mean response time without indexes
and the lowest mean response time with indexes, is close to
22% in the first case and 25% in the second case. The aver-
age response time gains computed over all values of minsup
are 14.4% and 13.7% in the first and second case, respec-
tively. In the first case, the response time improves until
minsupreaches 15%, and then degrades at a steady rate,
while in the second case, it remains at its lower value in
a broader range (from 20%minsupto 50%minsup) before
degrading abruptly. The large number of indexes to be gen-
erated in the first case can explain this behavior. Consider-
ing only indexes associated with large tables helps reducing
the number of generated indexes and avoids index creation



for small tables (since they induce a low benefit).
Finally, for high values ofminsup, the mean response

time becomes close to that obtained without generating any
index in both cases. This was predictable since for a very
highminsup, no or very few indexes are actually generated.
In the second case, this state is reached sooner since fewer
indexes are built, which explains the lower average gain.

3.2 Data warehouse experiments

For this series of experiments, we applied the same pro-
tocol (Figure 3). However, we did not employ the large
table index creation strategy since all the tables in our test
datamart have similar sizes.

The results we obtained are presented in Figure 6. The
maximum gain in performance is close to 15% while the av-
erage gain is 6.4%. Figure 6 shows that building indexes is
actually more costly than not building them forminsupval-
ues ranging between 10% and 25%. This may be explained
by the high number of generated indexes, and thus a high
index generation time. Furthermore, since the 15 MB data-
mart is stored completely in the main memory, the indexes
are useful only when it is first loaded. In this context, many
sparsely used indexes must also be loaded, which penalizes
global performance.
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Figure 6. Accidentology datamart results

The best gain in response time appears forminsupval-
ues ranging between 30% and 85%, when the number of
indexes is such that the index generation overhead is lower
than the performance increase achieved when loading the
datamart. Beyond that point, response time degrades and
becomes close to that obtained without indexes because
there are a few or no indexes to generate.

Another possible explanation to the lower performances
obtained for our datamart, in comparison to the results

achieved on the TPC-R database, may come from the struc-
ture of the created indexes. Bitmap and star-join indexes are
best adapted to data warehouses [15, 16], while the default
indexes in SQL Server are variants of B-trees.

4 Conclusions and perspectives

We presented in this paper a novel approach for auto-
matic index selection in DBMSs. The originality of our
study rests on the extraction of frequent itemsets to deter-
mine an index configuration. Indeed, we assume that the
importance of an indexable attribute is strongly correlated
with its frequency of appearance in the workload’s queries.
In addition, the use of a frequent itemsets mining algorithm
such as Close enables us to generate mono-attribute and
multi-attribute indexes on the fly, without having to imple-
ment an iterative process that successively creates increas-
ingly large multi-attribute indexes based on an initial setof
mono-attribute indexes.

Our first experimental results show that our technique in-
deed allows response time improvements of 20% to 25% for
a decision-support workload applied to a relational database
(TPC-R benchmark). We also proposed two strategies to
carry out an index selection among the candidate indexes:
the first strategy systematically creates all the candidatein-
dexes, while the second only creates the indexes that are
related to so-called large tables. The second strategy allows
better performance improvements because it proposes a bet-
ter compromise between the space occupied by the indexes
(the number of created indexes is limited to those that are
defined on attributes from large tables) and the use of cre-
ating an index (it is not beneficial to create an index on a
small table).

We also performed tests on an accidentology datamart,
on which we applied an ad hoc decision-support workload.
The gain in response time, about 14%, is less significant
than in the case of TPC-R. This can be explained by the fact
that the default indexes created by SQL Server are B-tree
variants and not bitmap or star-join indexes, which would
be better adapted for a data warehouse.

Our study shows that using data mining techniques for
DBMS auto-administration is promising. However, it is
only a first approach and it opens up many prospects for
research. Our first research perspective is to improve index
selection by designing more elaborated strategies than the
exhaustive use of a configuration or the exploitation of rel-
atively basic information relating to table sizes. A more ac-
curate cost model regarding table features (other than size),
or a strategy for weighting the workload’s queries (by type
of query: selection or update), could help us. The use of
other unsupervised data mining methods such as clustering
could also provide smaller sets of frequent itemsets.

It also appears essential to test our method further to bet-



ter evaluate the overhead it generates, both in terms of in-
dexes generation time and maintenance time. In particular,
it is necessary to apply it on large data warehouses, while
exploiting adapted indexes. It would also be very interest-
ing to compare it in a more systematic way to the IST tool
that has been developed by Microsoft, either through com-
plexity computations of the index configuration generation
heuristics (overhead), or by experiments aiming at evaluat-
ing the quality of these configurations (response time im-
provement and overhead due to index maintenance).

Extending or coupling our approach with other perfor-
mance optimization techniques (materialized views, buffer
management, physical clustering, etc.) also constitutes a
promising research perspective. Indeed, in the context of
data warehouses, it is mainly in conjunction with other
physical structures (primarily materialized views) that in-
dexing allows the most significant performance gains [3, 4,
12].

Finally, it would also be interesting to study how algo-
rithms for mining functional dependencies [13] or inclu-
sion dependencies [9] in databases might be exploited in
our context. Many join operations (natural joins) are in-
deed carried out following inclusion dependencies (concept
of foreign key). Discovering hidden dependencies within
the data could thus help us generating relevant indexes or
materialized views without needing an input workload.
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