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Abstract: It is widely acknowledged that a good object clustering is critical to the perform-

ance of OODBs. Clustering means storing related objects close together on secondary stor-

age so that when one object is accessed from disk, all its related objects are also brought into 

memory. Then access to these related objects is a main memory access that is much faster 

than a disk access. The aim of this paper is to compare the performance of three clustering 

algorithms: Cactis, CK and ORION. Simulation experiments we performed showed that the 

Cactis algorithm is better than the ORION algorithm and that the CK algorithm totally out-

performs both other algorithms in terms of response time and clustering overhead. 
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1. INTRODUCTION 

 

 There are several ways to improve response time (i.e., to limit the number of disk 

Input/Output) in a DBMS. Indexing, clustering (i.e., storing related entities close together on 

secondary storage) and buffering (i.e., fetching clustered entities at the same time and setting 

up replacement strategies) are widely used techniques in conventional DBMSs. However, 

OODBs present additional semantics like structural properties (inheritance, composite ob-

jects) and interrelationships between objects. Hence, the existing clustering algorithms (used 

in relational databases, for instance) have to be adapted to the object-oriented model. 

 We have chosen to study three clustering algorithms found in the literature: the Cactis 

[HUDS89], the CK [CHAN89b, CHAN90] and the ORION [BANE87, KIM90a] clustering 

algorithms. The Cactis and ORION clustering algorithms are already implemented in DBMSs. 

We have chosen these particular algorithms because we consider them to be different enough 

from each other to be representative of the current research on clustering techniques in 

OODBs. 
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 They have also been selected because they present characteristics that are interesting to 

compare. For instance, CK and ORION are dynamic clustering algorithms as the Cactis clus-

tering algorithm is static. ORION uses only users’ hints to cluster a database as the Cactis 

clustering algorithm uses only statistics about the database and the CK algorithm makes use of 

both. 

 Furthermore, the aim of previous performance evaluations performed on these algorithms 

was only to compare the effects of one particular clustering strategy to those of a "no 

clustering" policy [CHAN89a, HUDS89]. We intend to compare each of these three algo-

rithms to each other to determine which one performs the best in a given environment. The 

characteristics that make this algorithm the best should be isolated. 

 This paper is organized as follows. Section 2 explains the principles of clustering in 

OODBs. The three studied clustering algorithms are described in Section 3. Section 4 de-

scribes our simulation model. In Section 5, the simulation results are analyzed. Section 6 

concludes this paper and provides future research directions. 

 

 

2. CLUSTERING IN OODBs 

 

2.1. OODB concepts 

 

 The notion of object abstraction was first introduced by object-oriented programming lan-

guages. Recently, OODBs have added database functionality to this abstraction as an attempt 

to increase the modeling power and the applicability of databases [TSAN92b]. The object-

oriented programming language object abstraction is an extension of the data structure con-

cept with the following basic characteristics: 

• structure: consisting of components that can be atomic (i.e., flat attributes like integers, 

reals, or strings), objects (i.e., other objects) or object identifiers (i.e., “pointers” to other 

objects); unlike data structures, the object state (i.e., values of the structure components) is 

neither directly changeable nor visible to the user; 

• behavior: determined by methods, predefined fragments of code that manipulate and export 

the object state (unlike conventional languages that allow arbitrary code to manipulate data 

structures); 

• type: prescribing the “structure” and the “behavior” of an object through the specification 

of its components and its methods; 

• identity: naming and locating an object in a manner independent of its state; identity is 

typically supported identifying objects by an unique number, the object identifier (OID); 

OIDs are assigned by the system at object creation time and cannot be reused, changed or 

synthesized. 
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 Conceptually, objects can be viewed as vertices of a directed and possibly cyclic graph: the 

Object Graph. The directed edges of the graph represent the object to object references and 

they are labeled by the names of their components (Figure 1). 

 

salary name

department

floor name

manager

EMPLOYEE object

DEPARTMENT object

Atomic object

NULL object pointer  

Figure 1: Sample Object Graph 

 

 OODBs support additional database functionality: 

• persistence: i.e., the ability of objects to maintain their state even after the termination of 

the program that has created them; unlike object-oriented programming languages that only 

support as many objects as can fit into main memory, OODBs provide access to large 

collections of objects stored in “stable” secondary storage; 

• storage management: efficient ways to represent objects in main memory, store them to 

disk and distribute them to servers; that way OODBs relieve the clients from the burden of 

storing and retrieving objects from secondary storage, managing main memory as well as 

the secondary memory; 

• concurrency control and recovery: to allow concurrent accesses to the objects, and still 

ensure their integrity; the state of the object base is guaranteed to change only in a consis-

tent manner and is immune to client failures; 

• ad-hoc query facilities: declarative languages to efficiently apply operations on large sets 

of objects. 
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2.2. Clustering principles 

 

 The goal of object clustering is to reduce the number of disk I/Os for object retrieval. 

Typically, the unit of data transferred from disk is a page instead of an individual object. If 

two objects are clustered on the same page, it will take only one disk I/O to access both ob-

jects successively [HURS93]. 

 Clustering algorithms attempt to improve the performance of object-oriented database 

systems by placing on the same page related sets of objects [TSAN92a]. In object-oriented 

databases, complex objects are the basic units of data manipulation. The subobjects of a 

complex object may come from different classes. Traditional storage systems tend to group 

records of the same type physically close to each other on disk. This results in tedious and 

expensive reconstruction procedures (such as join operations) to retrieve complex objects. 

Therefore, it is logical to cluster related objects of different classes together to achieve ac-

ceptable performance [HURS93]. 

 The problem of clustering can be seen as a graph partitioning problem. The nodes of the 

graph are the objects and the edges are the links between objects. This problem is NP-

complete. However, as the graph of objects represents the database state, all is needed is an 

incremental solution where new objects are placed at the “right place”. Most of the algorithms 

used can be classified as greedy algorithms: they scan the objects according to their links and 

try to place them into the same cluster unit [BENZ90]. 

 

2.3. Clustering strategies 

 

 According to [CATT91], clustering in an OODB can actually be performed in many differ-

ent ways: 

• composite objects: objects can be clustered according to aggregation relationships; 

• references: some OODBs allow objects to be clustered according to relationships with 

other objects; composite objects clustering is, in fact, a special case of this, clustered by 

aggregation relationships; 

• object types: objects may also be clustered by their types; if there is a generalization hier-

archy, subtype instances may also be clustered in the same segment; 

• indexes: as in relational DBMSs, it may be possible to cluster objects by an index on their 

attributes; 

• custom: some OODBs allow clustering to be performed “on the fly”. 

 Unless objects are stored redundantly, an object can generally be clustered according to one 

of these rules. Where the rules do not conflict, however, it is possible to follow multiple 

clustering rules. 

 Clustering may be performed at two levels: 
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• pages: objects may be clustered according to the smallest physical unit read from disk, 

which is normally a page; this type of clustering can produce the greatest gains in perform-

ance when a “working set” of objects cannot be precisely defined for all applications; page 

clustering is more useful for clustering by index, reference and composite objects; 

• segments: objects may be clustered in larger units, when the user is able to specify a 

meaningful logical grouping for segmentation; segment clustering is most useful for type 

clustering; it may also be used for composite objects, if used at a sufficiently course grain. 

 The largest performance gains are generally afforded by page clustering, since pages are the 

unit of access from the disk and a “working set” of pages is selected dynamically according to 

the access characteristics of an application program. Segment clustering produces efficiency 

gains only if relatively large contiguous units are transferred from disk, or when efficiency 

gains can be made through grouping operations (for example, for composite objects deletion). 

 

2.4. Users’ hints 

 

 To expedite the retrieval of related data, database systems often take hints from the user (or 

database administrator) to store related data physically close together [KIM90b]. For example, 

the GemStone database administrator, or a savvy application programmer can hint GemStone 

that certain objects are often used together and so should be clustered on disk [MAIE86]. The 

VBASE system allows explicit clustering hints when objects are created [ANDR91a]. The 

strategy adopted in ONTOS is to allow the programmer to specify clustering and to provide 

tools for reclustering when more experience with the applications permits better choices to be 

made [ANDR91b]. 

 

2.5. Static versus dynamic clustering 

 

 In the static case, clustering is done at the time objects are created and no reorganization is 

implied when the links between objects are updated [BENZ90]. A static clustering scheme 

offers a good placement policy for complex objects but does not take into account the dy-

namic evolution of objects. In applications such as design databases, objects are constantly 

updated during early parts of the design cycle. Frequent updates may destroy the initially 

clustered structure. To keep the object structure optimized, reorganization might be necessary 

for efficient future accesses [DEUX90]. 

 Dynamic clustering is done at run time when objects are accessed concurrently and be-

comes attractive in an environment where the read operations dominate the write operations 

[BENZ90]. A dynamic clustering scheme should try to recluster when scattered access cost 

becomes too high. However, reclustering will generate overhead such as extra disk I/Os, so it 

is important to determine when a reorganization should occur. If the overhead is not justified, 

reclustering may actually degrade the overall performance [CHEN91]. 
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3. CLUSTERING ALGORITHMS 

 

3.1. Cactis clustering algorithm 

 

3.1.1. Algorithm presentation 

 

 Cactis [HUDS89] is an object-oriented, multi-user DBMS developed at the University of 

Colorado. It is designed to support applications that require rich data modeling capabilities 

and the ability to specify functionally-defined data. 

 The Cactis clustering algorithm is designed to place objects that are frequently referenced 

together into the same block (i.e., page, i.e., I/O unit) on secondary storage. It can improve 

response time up to 60%. 

 In order to improve the locality of data references, data is clustered on the basis of usage 

patterns. A count of the total number of times each object in the database is accessed is kept, 

as well as the number of times each relationship between objects in the process of attribute 

evaluation or marking out-of-date is crossed. Then, the database is periodically reorganized on 

the basis of this information. The database is packed into blocks using the greedy algorithm 

shown in Figure 2. 

 

Repeat 

 Choose the most referenced object in the database that has not yet been assigned a block. 

 Place this object into a new block. 

 Repeat 

  Choose the relationship belonging to some object assigned to the block such that: 

   (1) the relationship is connected to an unassigned object outside the block and, 

   (2) the total usage count for the relationship is the highest. 

  Assign the object attached to this relationship to the block. 

 Until the block is full. 

Until all objects are assigned blocks. 

Figure 2: Cactis clustering algorithm [HUDS89] 

 

 This clustering algorithm is also implemented in the Zeitgeist system [FORD88]. 

 The Cactis clustering algorithm is a static algorithm since it is periodically used to recluster 

the database when the database is idle. This implies that the database is not clustered on the 

first run because no information about the database is available [CHAB93]. 

 This algorithm does not require users' hints. This is an advantage since no arbitrary choice 

has to be made by the user [CHAB93]. But it also implies some time overhead (time to com-

pute total number of times each object is accessed and number of times each relationship is 

crossed) and space overhead (the main memory space used to store the counters grows with 

the database size). It also raises the problem of getting pertinent statistics about the database. 
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3.1.2. Clustering example with Cactis 

 

 Let us say we want to cluster six objects into blocks of size 10. The objects' characteristics 

are given by Table 1. It gives for each object its size, the number of times it has been accessed, 

a list of objects with which it is related and the number of times each of these relationships 

has been crossed. 

 
Object name Size Number of times 

accessed 

Relationships Number of times 

crossed 

O1 7 90 O3 

O4 

30 

80 

O2 2 200 O3 

O6 

70 

200 

O3 5 80 O1 

O2 

30 

70 

O4 6 50 O1 

O5 

80 

100 

O5 4 300 O4 

O6 

100 

50 

O6 3 170 O2 

O5 

200 

50 

Table 1: Objects' characteristics for the clustering example with Cactis 

 

Algorithm trace: NEW BLOCK O5 selected 

  O5-O4 relationship selected, O4 selected, block full 

 NEW BLOCK O2 selected 

  O2-O6 relationship selected, O6 selected 

  O2-O3 relationship selected, O3 selected, block full 

 NEW BLOCK O1 selected, all objects clustered 

 

3.2. ORION clustering method 

 

 ORION is a series of next-generation database systems that have been prototyped at MCC 

(Microelectronics Computer Technology Corp.) as vehicles for research into the next-genera-

tion database architecture and into the integration of programming languages and databases 

[KIM90a]. ORION has been designed for Artificial Intelligence (AI), Computer-Aided Design 

and Manufacturing (CAD/CAM) and Office Information System (IOS) applications 

[BANE87]. 

 ORION supports only a simple clustering scheme. Instances of the same class are clustered 

in the same physical segment (i.e., a number of blocks or pages). Each class is associated with 

one single segment. [KIM90a] 

 But ORION also provides direct support for composite objects, i.e., objects with a hierar-

chy of exclusive component objects (Figure 3). The hierarchy of classes to which the objects 

belong is a composite object hierarchy. The object-oriented data model, in its conventional 
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form, is sufficient to represent a collection of related objects. However, it does not capture the 

IS-PART-OF relationship between objects; one object simply references, but does not own, 

other objects. A composite object hierarchy captures the IS-PART-OF relationship between a 

parent class and its component classes, whereas a class hierarchy represents the IS-A relation-

ship between a superclass and its subclasses [BANE87]. 

 

Vehicle

Manufacturer

Body

Drivetrain

Name

Location

Divisions

Chassis

Interior

Doors

Engine

Transmission  

Figure 3: Example of composite object 

 

 Then it becomes advantageous to store instances of multiple classes in the same segment. 

User assistance is required to determine which classes should share the segment. The user can 

at run time issue a Cluster message containing a “ListOfClassNames” argument specifying the 

classes that are to be placed in the same segment [BANE87]. 

 In ORION, segments have a fixed size. So the number of pages they contain gives the 

number of I/Os necessary to load the segment. When a segment is full, a new page is allocated 

and linked to the segment (a pointer must be maintained in the segment descriptor). This 

implies some overhead to find the address of each additional page [CHAB93]. 

 The advantage of this method is its simplicity that makes the method fast and easy to im-

plement since no cost model is defined and no overhead is implied to determine what is the 

optimal storage unit for an object. But simplicity also turns to a limitation since users' hints 

can only be based on the static information given by the data model and not on some infor-

mation determined by the database usage and which could lead to a better clustering 

[CHAB93]. 

 Figure 4 illustrates the way we implemented the ORION clustering method in our 

simulation models. 

 

Considering a set of objects to cluster: 

1) Select the first object to cluster. 

2) Get the whole composite hierarchy (if any) attached to this object. 

3) Cluster all the objects belonging to this composite hierarchy into a new segment. 

4) Remove the objects belonging to this composite hierarchy from the set of objects to cluster. 

5) Select the next object to cluster. 

6) Reiterate from Step 2 until all the composite hierarchies are clustered. 

7) Cluster together by class the remaining objects into distinct segments. 

Figure 4: Our implementation of the ORION clustering method 
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3.3. CK clustering algorithm 

 

 The CK algorithm (from its authors' names: Chang and Katz) is defined in the CAD/CAM 

context. It can improve response time up to 200% when the Read/Write ratio is high (which is 

true for real CAD applications) [CHAN89b]. The CK algorithm makes use of several new 

concepts, such as structural relationships and instance-to-instance inheritance. 

 

3.3.1. Structural relationships 

 

 Structural relationships are versions, configurations and equivalence relationships. 

 Objects sharing the same interface but having different implementations are called versions 

[BATO85]. They represent different design alternatives. For example, if an object is identified 

by the pattern: Name[Version].Type where "Name" is the object name, "Version" its version 

number and "Type" its type; Nice[1].car, Nice[2].car and Nice[3].car would be three versions 

of the same object "Nice" type of which is "car". 

 A very important characteristic of OODBs is the presence of composite (complex or 

nested) objects. This concept is represented through composite/component relationships 

among objects. Coupling the concept of versions with composite objects leads to configura-

tions. A configuration is a composite unit whose components are bound to specific versions 

(Figure 5) [CHAN90]. 

 If two objects are alternative representations of the same real world entity, they are 

equivalent. 

 

Nice[1].car

Sport[2].body

Good[3].drivetrain

Plastic[1].chassis

Fun[2].doors

Big[5].engine

Cool[3].transmission

Nice[2].car

Sport[3].body

Good[3].drivetrain

Plastic[2].chassis

Fun[3].doors

Big[5].engine

Cool[3].transmission  

Figure 5: Example of configurations 

 

3.3.2. Instance-to-instance inheritance 

 

 Besides structural relationships, inheritance provides additional semantics. As in object-

oriented programming languages, a class/subclass hierarchy can be defined for an OODB 

based on the IS-A relationship. A subclass inherits the structure (i.e., attributes' definitions) 
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and the methods of its superclass. However, in OODBs, this form of inheritance (called type 

inheritance) is not sufficient. [CHAB93] 

 The CK algorithm also uses instance-to-instance inheritance that not only transfers the 

existence of attributes from one object to another (like type inheritance), but moreover the 

values of these attributes [WILK88]. 

 Instance-to-instance inheritance is important in computer-aided design databases, since a 

new version tends to resemble its immediate ancestor. It is useful if a new version can inherit 

its attributes' values, and more importantly its constraints, from its ancestor [KATZ91]. 

 

3.3.3. Algorithm presentation 

 

 Instance-to-instance inheritance introduces more complexity because it allows attributes to 

be selectively inherited at run-time. This run-time flexibility requires a sophisticated approach 

for clustering. The CK algorithm is based on inter-objects access frequencies (given by the 

user at data type creation time) for each kind of structural relationship, e.g., 20% of access 

along version relationships, 75% of access along configuration relationships and 5% of access 

along equivalence relationships. 

 When a new object is created, the algorithm chooses an initial placement based on which 

relationship is most frequently used to reach the object (in the above example, a new instance 

would probably be placed in the same page as its composite objects). Then, for each inherited 

attribute, cost formulas are used to choose between implementation by copy or by reference, 

i.e., either by copying the attribute's value or referencing it with a pointer. The augmented ac-

cess frequencies (i.e., relationship traversal frequencies plus inheritance traversal frequencies) 

may change the initial placement. The clustering algorithm pseudo code is given in Figure 6. 

 Then, if the best candidate page is full, either the next best candidate page is chosen or the 

page is split if the expected access cost resulting from the split is an improvement over 

placement in the next best candidate page. 

 Page splitting is performed by a greedy algorithm that partitions the inheritance-

dependency graph into two sub-graphs that each fit into one page. This algorithm is not opti-

mal, but it is linear (whereas an exact partitioning algorithm would be NP-complete). It is de-

scribed in Figure 7. 
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• Step 1: get initial information (Is page splitting enabled? What are the attributes implemented by reference?, 

etc.) 

• Step 2: calculate lookup cost for attributes implemented by reference for each page 

 FOR each page 

  FOR each attribute implemented by reference 

   IF attribute NOT IN page THEN increase lookup cost for the page 

• Step 3: calculate lookup and storage costs for attributes implemented by copy for each page 

 FOR each attribute implemented by copy 

  FOR each page 

   IF attribute NOT IN page THEN increase lookup and storage costs for the page 

• Step 4: calculate total cost of every page 

• Step 5: pick up the best candidate page and try to insert the object 

 candidate page = page with lower total cost 

 IF cluster policy IS no split THEN 

  WHILE object does not fit into candidate page DO candidate page = page with next lower total cost 

 IF cluster policy IS page split AND object does not fit into candidate page THEN 

  page_split (candidate page) 

Figure 6: CK clustering algorithm 

 

 The Page_split algorithm assumes that the arc costs Cei (i.e., run-time lookup cost) between objects are al-

ways maintained and sorted. The node capacity Capvi (i.e., the object size) is also maintained. Subset A and B 

represent the sets of objects assigned to the new pages after splitting. Both subsets are empty ate the beginning. E 

is the initial set of arcs relating the objects. 

 

• Step (1): Select the maximum value arc from E as etarget and set E to be (E - {etarget}). Let vhead and vtail be 

the head and the tail nodes of etarget. 

• Step (2): Supposed both vhead and vtail are new to subsets A and B. Insert vhead and vtail in subset A if Capvhead 

plus Capvtail is less than the remaining capacity of subset A. Otherwise, insert vhead and vtail in subset B if subset 

B has space for these nodes. If neither subset A or B could accommodate both vhead and vtail, a broken arc is 

found and Cetarget is added into Ctotal. 

• Step (3): Supposed vhead is in subset A and vtail is not in subset A or B. Insert vtail into subset A if feasible. 

Otherwise, a broken arc is found and Cetarget is added into Ctotal. 

• Step (4): Supposed both vhead and vtail are visited before, a broken arc is found and Cetarget is added into Ctotal. 

• Step (5): Look back to step (1) until arc set E is empty. 

Figure 7: Page_split algorithm 

 

3.3.4. Clustering example with CK 

 

 Let us consider the object hierarchy given by Figure 8. Objects are represented according 

to the following format: Name[Version].Type where "Name" is the object name, "Version" its 

version number and "Type" its type. Numbers above arcs represent the run-time look-up cost 

of the structural relationship. We want to cluster these objects in pages of size 5. Table 2 gives 

types’ characteristics. Objects are clustered in their creation order. The algorithm trace is 

provided by Table 3. 

 
Type Object size Access frequency 

along version 

Access frequency 

along configuration 

Access frequency 

along equivalence 

Ferrari 2 20% 10% 70% 

car 2 65% 30% 5% 

body 3 25% 75% 0% 

drivetrain 3 30% 70% 0% 
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Table 2: Types characteristics for the clustering example with CK 

 

Nice[1].car

Nice[2].car

F40[0].Ferrari

Sport[2].body

Sport[3].body

Good[3].drivetrain

1

2

1

4 2

1

composite/component relationships (configuration)

ancestor/descendant relationships (version)

equivalence
 

Figure 8: Sample object hierarchy 

 
Object  Placement  Notes 

to cluster along relationship with object in page  

Nice[1].car version — #1 — 

F40[0].Ferrari equivalence Nice[1].car #1 — 

Sport[2].body configuration Nice[1].car #1: impossible – No Page Splitting: 

placement in page 

#2 

– Page Splitting: 

Nice[1].car and 

Sport[2].body are 

placed together in 

page #1, 

F40[0].Ferrari is 

moved to page #2 

Good[3].drivetrain configuration Nice[1].car #1: impossible – No Page Splitting: 

placement in page 

#3 

– Page Splitting: 

Nice[1].car and 

Sport[2].body stay 

together in page #1, 

Good[3].drivetrain 

is placed into page 

#3 

Nice[2].car version Nice[1].car #1: impossible – No Page Splitting: 

placement in page 

#4 

– Page Splitting: 

Nice[1].car and 

Sport[2].body stay 

together in page #1, 

Nice[2].car is placed 

into page #4 

Sport[3].body configuration Nice[2].car #4 — 

Table 3: CK algorithm trace 
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4. SIMULATION MODEL 

 

 We choose to use simulation to compare the Cactis clustering algorithm, the CK clustering 

algorithm and the ORION clustering method for several reasons. First of all, it is important for 

the results to be meaningful that the performance evaluation is done using the same 

"environment" for each algorithm, since we focus specifically on clustering. Therefore we 

could not have benchmarked each OODB since Cactis and ORION use, for example, different 

buffering and caching strategies. Furthermore, CK clustering algorithm is not implemented in 

an OODB yet. Building our own simulation model allows us to ensure that the algorithms are 

compared in the same conditions. Mathematical analysis has also already been performed on 

these three algorithms [CHAB93]. Although it provides exact results, it only gives a general 

idea of the algorithm performances and cannot detect in which specific cases an algorithm 

performs better than an other as simulation can. 

 

4.1. Object base 

 

 For our simulations, we used a random object base whose class hierarchy forms a DAG, as 

in [HE93]. The database generation was performed in two phases: first generate class hier-

archies and class definition (Figure 9), then generate instances for these classes. To simplify 

the class hierarchy, we did not take into account multiple inheritance because it has no effect 

on clustering. We also assumed that a given class had one single ancestor version and one 

single descendant version but could have several component classes or equivalent classes. 

 

 Given a number of classes, we first build a class hierarchy that includes versions (1). Then we build a 

composite hierarchy and add equivalence relationships (2). 

 

(1) A new class is added. 

  A random number of versions of this class is added (descendant versions). 

  If the new class has a superclass (given a probability of having a superclass) then 

   randomly select a superclass among the existing classes, 

   inherit attributes and methods of the superclass, 

   for each additional version of the class: 

    randomly select a superclass among the initial class superclass descendant 

    versions, 

    inherit attributes and methods of the superclass. 

  Add additional random attributes and methods to all versions 

   (sizes of attributes and methods are assigned randomly). 

  Compute object size for these classes. 

 

(2) Scan all the classes. 

  For each class: 

   If it is a component of one class (given a probability of being component) then 

    randomly select a class composed of the new class. 

   If it has an equivalent class (given a probability of having an equivalent) then 

    randomly select an equivalent class. 

Figure 9: Class lattice generation 
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 Instance creation has been designed as a special kind of transaction. However, the initial 

database is to be created before any other query can occur, given an initial number of objects. 

The method we used to generate instances is shown in Figure 10. 

 

For each new object: 

 Randomly select a class. 

 If the new object class is a component of another class then 

  randomly select an instance of this class (if any) to be composed of the new object. 

 If the new object class is a version then 

  randomly select one ancestor object in the new object class ancestor class, 

  If using CK, inherit values of common attributes (either by copy or by reference). 

 If the new object class has an equivalent class then 

  randomly select one equivalent object among instances of the equivalent class. 

Figure 10: Instances generation 

 

4.2. Query generation 

 

 The HyperModel Benchmark [ANDE90, BERR91] provides 20 different types of transac-

tions. From those 20, we have isolated 15 types of transactions (some of them are slightly 

modified to match the structural relationships we use) that were relevant to study the behavior 

of clustering algorithms. Each transaction has a probability to occur. 

• Name Lookup: Retrieve a randomly selected object; fetch one of its (randomly selected) 

attributes' value. 

• Range Lookup: Select a class at random; select one of its attributes at random; determine 

randomly two test values; fetch all the attributes of all the instances of the class whose se-

lected attribute's value are in the range defined by the test values. 

• Group Lookup: Given a randomly selected starting object, fetch all the attributes of either: 

­ all its component objects, 

­ all its equivalent objects, 

­ all its descendant versions. 

• Reference Lookup: Given a randomly selected starting object, fetch all the attributes of 

either: 

­ its composite object, 

­ all its ancestor versions. 

• Sequential Scan: Select a class at random; select one of its attributes at random; fetch this 

attribute's values for every instance of the class. 

• Closure Traversal: Given a randomly selected starting object, follow one of the three 

structural relationships (i.e., version, configuration or equivalence) to a certain predefined 

(random) depth D; fetch a random attribute from the resulting object; the followed rela-

tionship can be either always the same or randomly selected. 

• Editing: Select an object at random; update one of its attribute (randomly chosen) with a 

random value. 
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• Object Creation: Creation of a new object (cf. object base generation). This activates the 

CK clustering algorithm. 

• Reclustering: The ORION clustering algorithm needs a “Cluster message” to be activated 

at run time [BANE87]. The Cactis clustering algorithm is static. We can assume it will also 

wait for a cluster message before reorganizing the database. However, cluster messages for 

the Cactis algorithm should be far less frequent than cluster messages for the ORION 

algorithm since the Cactis clustering algorithm is supposed to run when the database is idle 

[HUDS89]. 

 

4.3. Overall model 

 

 The overall simulation model is inspired by the one provided in [CHAN89a]. It is com-

posed as follows (Figure 11). 

• Client module: After a predefined think time, the client issues the transactions to the 

Transaction Manager according to some frequencies of occurrence. 

• Transaction Manager module: The transaction manager extracts from transactions which 

objects have to be accessed or updated, and performs the operations. In the case of a regu-

lar operation, object requests are sent to the Buffering Manager. In the case of instance 

creation or a Cluster message, the Clustering Manager is invoked. 

• Buffering Manager: The Buffering Manager checks if an object is in main memory and 

requests it to the I/O Subsystem if it is not. It also deals with the page replacement strategy 

(when a new page is needed, the oldest page in memory is dropped and replaced by the new 

one; if the dropped page has been modified, it is saved on secondary storage). 

• Clustering Manager: The Clustering Manager is activated depending on the algorithm (i.e., 

Cactis, CK or ORION) it implements. It deals with reorganizing the database on secondary 

storage to achieve better performance. 

• I/O Subsystem: This module deals with physical accesses to secondary storage. 
 

CLIENT TRANSACTION MGR.

BUFFERING MGR. CLUSTERING MGR.

I/O SUBSYSTEM

transactions

object requests
New objects / cluster messages

object requests

page requests page writes

results

objects

objects

pagespage writes

 

Figure 11: Overall simulation model 
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4.4. Simulation parameters 

 

 Parameters are divided into two categories: static parameters that may not change from 

one simulation to another and dynamic parameters that can vary from one simulation to an-

other. Tables 4 and 5 provide the simulation parameters we used for our simulation experi-

ments. 

 
Parameter name Designation Value References 

RCC Average 

locking/unlocking time 

(concurrency control) 

0.5 ms [SRIN91] 

IMLVL Multiprogramming level 10 [GRUE91] 

IWDSIZE Memory word size 4 bytes [GRUE91] 

ICPU CPU power 2 Mips [GRUE91] 

RMACC Memory word access 

time 

0.0001 ms [GRUE91] 

RMTEST Time for comparison of 

two memory words 

0.0007 ms Two memory accesses, 

one subtraction 

IPGSIZE Size of disk page 2048 bytes [CHEN91] 

RSEEK Average disk seek time 28 ms [CHEN91] 

RLATENCY Average disk latency 

time 

8,33 ms [CHEN91] 

RTRANSFER Disk page transfer time 1.28 ms [CHEN91] 

Table 4: Static parameters 

 

Note: We chose to use a relatively small page size in our simulations. Hence, to remain con-

sistent in terms of scale, we also chose to use small objects. These choices have been made for 

two reasons: 

• for simplicity, 

• to minimize the size of the database in main memory during the simulations. Since simu-

lation is very greedy in terms of memory, it is important to optimize memory usage. 

 

 

5. SIMULATION RESULTS 

 

 To compare the performance of the three clustering algorithms, we conducted three testing 

cases: varying the database size, the buffer capacity and the Read/Write ratio. 

 The comparison criteria we adopted are the following: 

• Response Time: response time is measured for all transaction types except reclustering 

(which is considered as a special transaction in the Cactis and ORION simulation models; 

however, time when transactions are blocked because of a reclustering is also taken into 

account); it is a good metric for overall performance; 

• Transactions I/Os: transactions I/Os is the number of I/Os performed to complete regular 

transactions; transactions I/Os may be an indication on how well objects are clustered; 
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Parameter name Designation Default value Range 

RAVGTHINK Average client think 

time 

4 s 0.1-10 s 

NCL Number of classes 20 10-30 

IAVGVER Average number of 

versions per class 

3 1-5 

RPSUPER Probability for a class of 

having a superclass 

0.9 0-1 

RPCOMP Probability for a class of 

being a component class 

0.5 0-1 

RPEQUI Probability for a class of 

having an equivalent 

class 

0.1 0-1 

INOBJ Initial number of objects 400 100-1000 

IAVGASIZE Average attribute size 1 word 1-3 words 

IAVGNATTR Average number of 

attributes per class 

10 5-20 

IBUFF Size of memory buffer 10 pages 10-100 pages 

IMD Maximum depth in 

Closure Traversals 

5 3-10 

ISEGSIZE Default segment size 

(ORION) 

5 3-10 

ITHRESHOLD Update Threshold (CK) 25 0-255 

ISCALEF Scale factor (CK) 0.5 0-1 

ISPLIT Page split policy (CK) ON ON/OFF 

PT1-PT12 Probability of Read 

Transaction (#1-12) 

0.065 0-1 

PT13 Probability of Editing 0.1695 (Cactis) 

0.169 (ORION) 

0.17 (CK) 

0-1 

PT14 Probability of Object 

Creation 

0.05 0-1 

PT15 Probability of 

Reclustering 

0.0005 (Cactis) 

0.001 (ORION) 

0 (CK) 

0-1 

SIMTIME Simulation Time 10,800 s 3,600-86,400 

Table 5: Dynamic parameters 

 

• Clustering Time Overhead: clustering time overhead measures the time needed to reorgan-

ize the database; it includes I/O time and the time necessary to perform the memory op-

erations needed by the clustering algorithm but it does not take into account the counters 

updates performed by Cactis and CK since those take a negligible amount of time 

compared to even one single I/O; 

• Clustering I/O Overhead: clustering I/O overhead is the number of I/Os performed during 

database reorganizations and object clustering; 

• Maximum number of pages used: maximum number of pages used is the maximum number 

of disk pages needed by a clustering algorithm to cluster all the objects of the database; 

• System Throughput: system throughput is the number of transactions completed per sec-

ond. 
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 Due to space limitation, we present in the following subsections only some of the results 

we obtained. 

 

5.1. Effects of the database size 

 

 We first tested the effect of varying the initial number of objects in the database using a 

uniform random distribution to choose the transactions' starting objects. This is not always 

realistic since there may be objects that are "hotter" (i.e., more frequently accessed) than oth-

ers in real world applications. Furthermore, the performance of the Cactis clustering algorithm 

depends on run-time computed statistics, such as object's access frequencies, that are not the 

same when using different random distributions to select the transactions' starting objects. So 

we implemented in a second series of simulations a normal random distribution for the 

transactions starting object, which is very similar to the "skewed random" function introduced 

in [TSAN92a]. 

 Figure 12a shows that response time when using Cactis is 24% lower than when using 

ORION. Figure 12b shows that, for CK, response time increases linearly with the number of 

objects and that CK algorithm totally outperforms the other two (being about 800 times better 

than Cactis). In the CK graphs, "PS ON" and "PS OFF" stand for page splitting enabled and 

page splitting disabled. "U" stands for uniform random distribution for starting object and "N" 

stands for normal random distribution for starting object. 
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Figure 12a: Response time function of number of objects (U) 

 

 Figures 12a and 13 show indeed that Cactis performs 1.5 times better when objects are not 

accessed through a uniform distribution, especially for intermediate numbers of objects 

(between 400 and 600). 

 On the contrary, the CK and ORION algorithms does not show any significant change of 

performance since they do not use such statistics. 
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Figure 12b: Response time function of number of objects (U) 
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Figure 13: Response time function of number of objects (N) 

 

 Transactions I/Os give an idea of how good is a clustering scheme. Figure 14 thus shows 

that objects are 3.8 times better clustered by Cactis and CK (Cactis being slightly better) than 

they are by ORION. It seems surprising that Cactis clusters so well and performs worse than 

CK, but Figures 15a and 15b show again that CK outperforms both Cactis and ORION in 

terms of low clustering overhead (being 266 times better than Cactis and 502 times better than 

ORION). Furthermore, clustering overhead is almost constant for CK. Such an outstanding 

performance is due to the true dynamic nature of CK, which is called only at object creation 

time and only accesses the object to cluster related objects once. Variations in clustering 

overhead come from variations in the number of created objects. 
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Figure 14: Transaction I/Os function of number of objects (U) 
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Figure 15a: Clustering I/O overhead function of number of objects (U) 
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Figure 15b: Clustering I/O overhead function of number of objects (U) 

 

 The more a clustering algorithm is complex (i.e., the more it clusters object according to 

precise rules), the greater amount of disk pages it uses to cluster the object base. The maxi-

mum number of disk pages used (Figure 16), as expected, is higher for the more complex 

algorithms, i.e., CK needs 1.8 times as many pages as Cactis and Cactis needs 1.3 times as 

many pages as ORION, for which number of pages increases linearly. 
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Figure 16: Maximum number of pages used function of number of objects (U) 

 

 Since average client think time (i.e., time between two transaction generations) is 4 sec-

onds, optimal throughput lies around 0.25 transactions per second. Figure 17 is coherent with 

Figures 12a and 12b, showing a near constant throughput for CK. Throughput is high for all 

algorithms because a typical transaction is executed in much less time than the average think 

time. 
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Figure 17: System throughput function of number of objects (U) 

 

Note: Though page splitting should allow a better performance, our simulations show that the 

CK algorithm performances are very close whenever using the page splitting policy or not. 

This is due to our implementation of the page splitting algorithm that is not as efficient as it 

could be in reality, because we had no way to know or compute lookup costs in our simula-

tions. Hence we used random lookup costs and thus could not achieve optimal object place-

ment. 
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5.2. Effect of the buffer capacity 

 

 On one hand, increasing the buffer capacity may lessen the effects of clustering since a 

given set of related objects has a higher probability of being in main memory instead of on 

secondary storage. On the other hand, objects are also accessed when reorganizing the data-

base. Thus, increasing buffer capacity should decrease clustering overhead, especially for the 

ORION clustering algorithm that may make several non-consecutive accesses to each object. 

We performed this set of simulations using an initial database of 400 objects and selecting the 

transactions' starting objects from a uniform random distribution. 

 Figures 18a and 18b show that response time decrease linearly with the buffer size for the 

Cactis and CK algorithms. The dual effect of increasing the buffer capacity is seen on both 

transactions I/Os and clustering overhead (Figures 19, 20a and 20b). The ORION algorithm 

has a similar behavior, but the gain in performance is seen earlier than with the other algo-

rithms and then the gain in performance is less important (Figure 18a). We can explain this by 

the fact that the ORION algorithm uses a smaller amount of pages than the other algorithms to 

cluster the database. Thus, the buffer size grows faster relatively to the database size. For 

instance, a buffer size of 20 pages represents 25% of the database size for ORION versus only 

15% for Cactis and 9% for CK. Figure 18a presents rather big variations in performance for 

ORION when buffer capacity grows over 40 pages. These odd variations are due to random 

events in the simulations. However, they oscillate around a mean value that decreases slowly 

but linearly. 
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Figure 18a: Response time function of buffer size 
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Figure 18b: Response time function of buffer size 
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Figure 19: Transaction I/Os function of buffer size 
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Figure 20a: Clustering I/O overhead function of number of buffer size 
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Figure 20b: Clustering I/O overhead function of number of buffer size 

 

5.3. Effect of the Read/Write ratio 

 

 Read/Write ratio is an important factor when seeking to evaluate DBMSs performances. 

Furthermore, [CHAN89a] claims that CK algorithm performs better when the Read/Write 

ratio is high. For our simulation experiments, we used an initial database of 400 objects and a 

buffer size of 10 pages. 

 The performance of the Cactis and ORION algorithms decreases when the Read/Write ratio 

decreases (Figure 21a). On the contrary, response time decreases along with the Read/Write 

ratio in the case of CK (Figure 21b). 
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Figure 21a: Response time function of Read/Write ratio 
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Figure 21b: Response time function of Read/Write ratio 

 

 Since Object Creation is a write operation, the more the Read Percentage drops, the more 

the database size increases, thus implying more clustering overhead and confirming what is 

said in [CHAN89a] (Figures 23a and 23b). Parallely, transactions I/Os are slowly decreasing 

in number for Cactis and CK (Figure 22). This is because one single Object Creation is less 

costly than, for instance, such read transactions as Sequential Scans or Range Lookups. That 

explains the raise in performance for CK, since transactions I/Os drops from 10,000 to 5000 

while clustering I/O overhead only rises from 100 to 500. In the Cactis case, clustering over-

head is too important to compensate the decrease in transactions I/Os. For ORION, transac-

tions I/Os increase anyway because of the poor clustering ability of the algorithm (Figure 22). 
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Figure 22: Transaction I/Os function of Read/Write ratio 
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Figure 23a: Clustering I/O overhead function of Read/Write ratio 
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Figure 23b: Clustering I/O overhead function of Read/Write ratio 

 

 

6. CONCLUSION 

 

 It is clear from our simulation experiments that the CK algorithm outperforms both Cactis 

and ORION in terms of overall performance. The results we obtained showed that this is due 

to both a good clustering capability and to the dynamic conception of the algorithm that al-

lows an extremely low clustering overhead. Such a good behavior is achieved because the CK 

algorithm is activated only at object creation time and only accesses the few objects that are 

related to the newly created object once. Therefore, transactions are never blocked very long 

during clustering, as they are when the Cactis or the ORION algorithm are used. (The Cactis 

and ORION algorithms have to access all the objects in the database, even several times in the 

case of ORION, to reorganize the database; and transactions cannot be run when a reor-

ganization occurs). CK’s good clustering capability is based on the users' hints that specify the 

inter-objects access frequencies for each structural relationship and thus allows to cluster to-

gether objects that are likely to be accessed together. 
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 Our simulations showed too that Cactis also had a good clustering capability. This is due to 

the use of statistics (i.e., objects access frequencies and relationships use frequencies) that 

allow to cluster together objects that are actually accessed together. However, the Cactis algo-

rithm is still completely outperformed by the CK algorithm. This is because, when using 

Cactis, clustering overhead increases very quickly with the number of objects, thus annihilat-

ing any gain achieved from good clustering capability. 

 However, in order to maximize any gain from clustering, we made Cactis and ORION re-

organize the database quite frequently. Hence, we obtained a high clustering overhead for 

these two algorithms. We have though to keep in mind that the Cactis algorithm has been 

designed to run when the database is idle, so that reclustering does not alter the database per-

formance. Thus, if clustering overhead was not taken into account, the Cactis algorithm 

should perform about as well as the CK algorithm as long as the statistics used during the last 

reorganization are valid. Our simulations also show that ORION's clustering capability is 

much lower than that of both Cactis and CK. Hence, if the ORION clustering algorithm was 

run less frequently, even with a big gain from the decrease in clustering overhead, ORION 

would still not behave as well as CK. Furthermore, any gain from clustering achieved after 

these frequent reorganizations is then canceled, making the performances worsen. 

 In terms of disk space, the simpler a clustering algorithm is, the less space it should use. 

Actually, the more complex a clustering algorithm is, the more it clusters objects according to 

sharp criteria (for instance, not only according to the objects’ classes, but also to various 

structural relationships, etc.). Thus, a smaller number of objects are likely to be clustered in 

the same clustering unit (either a page or a segment). So the number of pages needed to store 

the database is greater. Our simulation experiments confirm that fact. The ORION algorithm 

is the less greedy algorithm in terms of disk pages used. Then the Cactis algorithm follows, 

using almost half the number of disk pages needed by CK to cluster the database. However, 

when reorganizing the database, the Cactis and ORION algorithms need to build a new set of 

pages before deleting the old one. Thus they require about twice as much space as our graphs 

show. 

 

 Future research about this subject could be in a first step completing the simulation tests, 

notably by determining the effects of database changes, e.g., varying the probability for a class 

to belong to a composite class hierarchy, the average number and size of attributes, etc. We 

also need to perform tests when the workload varies (variation of the average client think time 

and the transactions’ probabilities). 

 Then the next step would be the design and evaluation of one or several new clustering 

algorithms. One alternative would be to build a dynamic clustering algorithm that would use 

the same statistics as Cactis (i.e., objects access frequencies and relationships use frequencies) 

to cluster objects together, but could be able to use them at run-time (e.g., an algorithm 
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activated at object creation time, like CK). Such an algorithm could have Cactis' good cluster-

ing capability without being handicapped by an important clustering overhead. 

 Another alternative would be to modify the CK algorithm so that it does not use users' hints 

for inter-objects access frequencies any more and rely only on statistics, in order to make the 

algorithm even more accurate and performant. The problem with users' hints is that their 

accuracy depends on the user’s (either the database administrator or a programmer) 

knowledge of the database. On the other hand, automatically gathered statistics show an exact 

image of the database status. Thus, by computing inter-objects access frequencies for each 

structural relationship and each object at run-time, a better performance should be achieved. 
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