
An Automatic Schema-Instance Approach for Merging
Multidimensional Data Warehouses

Yuzhao Yang
IRIT-CNRS (UMR 5505), Université de Toulouse

Toulouse, France
yuzhao.yang@irit.fr

Jérôme Darmont
Université de Lyon, Lyon 2, UR ERIC

Lyon, France
jerome.darmont@univ-lyon2.fr

Franck Ravat
IRIT-CNRS (UMR 5505), Université de Toulouse

Toulouse, France
franck.ravat@irit.fr

Olivier Teste
IRIT-CNRS (UMR 5505), Université de Toulouse

Toulouse, France
olivier.teste@irit.fr

ABSTRACT
Using data warehouses to analyse multidimensional data is a sig-
nificant task in company decision-making. The need for analyzing
data stored in different data warehouses generates the requirement
of merging them into one integrated data warehouse. The data
warehouse merging process is composed of two steps: matching
multidimensional components and then merging them. Current
approaches do not take all the particularities of multidimensional
data warehouses into account, e.g., only merging schemata, but
not instances; or not exploiting hierarchies nor fact tables. Thus,
in this paper, we propose an automatic merging approach for star
schema-modeled data warehouses that works at both the schema
and instance levels. We also provide algorithms for merging hierar-
chies, dimensions and facts. Eventually, we implement our merging
algorithms and validate them with the use of both synthetic and
benchmark datasets.

CCS CONCEPTS
• Information systems→ Data warehouses.

KEYWORDS
Multidimensional data warehouse, schema-instance merging, auto-
matic integration
ACM Reference Format:
Yuzhao Yang, Jérôme Darmont, Franck Ravat, and Olivier Teste. 2021. An
Automatic Schema-Instance Approach for Merging Multidimensional Data
Warehouses. In 25th International Database Engineering & Applications Sym-
posium (IDEAS 2021), July 14–16, 2021, Montreal, QC, Canada. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3472163.3472268

1 INTRODUCTION
Data warehouses (DWs) are widely used in companies and organi-
zations as an important Business Intelligence (BI) tool to help build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8991-4/21/07. . . $15.00
https://doi.org/10.1145/3472163.3472268

decision support systems [9]. Data in DWs are usually modeled in
a multidimensional way, which allows users to consult and analyze
the aggregated data through multiple analysis axes with On-Line
Analysis Processing (OLAP) [14]. In a company, various indepen-
dent DWs containing some common elements and data may be
built for different geographical regions or functional departments.
There may also exist common elements and data between the DWs
of different companies. The ability to accurately merge diverse
DWs into one integrated DW is therefore considered as a major
issue [8]. DW merging constitutes a promising solution to provide
more opportunities of analysing the consistent data coming from
different sources.

A DW organizes data according to analysis subjects (facts) asso-
ciated with analysis axes (dimensions). Each fact is composed of
indicators (measures). Finally, each dimension may contain one or
several analysis viewpoints (hierarchies). Hierarchies allow users
to aggregate the attributes of a dimension at different levels to
facilitate analysis. Hierarchies are identified by attributes called
parameters.

Merging two DWs is a complex task that implies solving several
problems. The first issue is identifying the common basic compo-
nents (attributes, measures) and defining semantic relationships
between these components. The second issue is merging schemata
that bear common components. Merging two multidimensional
DWs is difficult because two dimensions can (1) be completely iden-
tical in terms of schema, but not necessarily in terms of instances;
(2) have common hierarchies or have sub-parts of hierarchies in
common without necessarily sharing common instances. Likewise,
two schemata can deal with the same fact or different facts, and
even if they deal with the same facts, they may or may not have
measures in common, without necessarily sharing common data.

Moreover, a merged DW should respect the constraints of the
input multidimensional elements, especially the hierarchical rela-
tionships between attributes. When we merge two dimensions hav-
ing matched attributes of two DWs, the final DW should preserve
all the partial orders of the input hierarchies (i.e., the binary aggre-
gation relationships between parameters) of the two dimensions.
It is also necessary to integrate all the instances of the input DWs,
which may cause the generation of empty values in the merged DW.
Thus, the merging process should also include a proper analysis of
empty values.

https://doi.org/10.1145/3472163.3472268
https://doi.org/10.1145/3472163.3472268

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Yuzhao Yang, Jérôme Darmont, Franck Ravat, and Olivier Teste

In sum, the DWmerging process concernsmatching andmerging
tasks. The matching task consists in generating correspondences
between similar schema elements (dimension attributes and fact
measures) [4] to link two DWs. The merging task is more complex
and must be carried out at two levels: the schema level and the
instance level. Schema merging is the process of integrating several
schemata into a common, unified schema [12]. Thus, DW schema
merging aims at generating a merged unified multidimensional
schema. The instance level merging deals with the integration and
management of the instances. In the remainder of this paper, the
term “matching” designates schema matching without considering
instances, while the term “merging” refers to the complete merging
of schemata and corresponding instances.

To address these issues, we define an automatic approach to
merge two DWs modeled as star schemata (i.e., schemata contain-
ing only one fact table), which (1) generates an integrated DW
conforming to the multidimensional structures of the input DWs,
(2) integrates the input DW instances into the integrated DW and
copes with empty values generated during the merging process.

The remainder of this paper is organized as follows. In Section
2, we review the related work about matching and merging DWs.
In Section 3, we specify an automatic approach to merge different
DWs and provide DW merging algorithms at the schema and in-
stance levels. In Section 4, we experimentally validate our approach.
Finally, in Section 5, we conclude this paper and discuss future
research.

2 RELATEDWORK
DW merging actually concerns the matching and the merging of
multidimensional elements. We classify the existing approaches
into four levels: matching multidimensional components, matching
multidimensional schemata, merging multidimensional schemata
and merging DWs.

Amultidimensional component matching approach for matching
aggregation levels is based on the fact that the cardinality ratio of
two aggregation levels from the same hierarchy is nearly always the
same, no matter the dimension they belong to [3]. Thus, by creating
and manipulating the cardinality matrix for different dimensions,
it is possible to discover the matched attributes.

The matching of multidimensional schemata directs at discover-
ing the matching of every multidimensional components between
two multidimensional schemata. A process to automatically match
two multidimensional schemata is achieved by evaluating the se-
mantic similarity of multidimensional component names [2]. At-
tribute and measure data types are also compared in this way. The
selection metric of bipartite graph helps determine the mapping
choice and define rules aiming at preserving the partial orders of
the hierarchies at mapping time. Another approach matches a set
of star schemata generated from both business requirements and
data sources [5]. Semantic similarity helps find the matched facts
and dimension names. Yet, the DW designer must intervene to
manually identify some elements.

A two-phase approach for automatic multidimensional schema
merging is achieved by transforming the multidimensional schema
into a UML class diagram [7]. Then, class names are compared and
the number of common attributes relative to the minimal number

of attributes of the two classes is computed to decide whether two
classes can be merged.

DW merging must operate at both schema and instance levels.
Two DW merging approaches are the intersection and union of
the matched dimensions. Instance merging is realized by a d-chase
procedure [15]. The second merging strategy exploits similar di-
mensions based on the equivalent levels in schema merging [11]. It
also uses the d-chase algorithm for instance merging. However, the
two approaches above do not consider the fact table. Another DW
merging approach is based on the lexical similarity of schema string
names and instances, and by considering schema data types and
constraints [8]. Having the mapping correspondences, the merging
algorithm takes the preservation requirements of the multidimen-
sional elements into account, and is formulated to build the final
consolidated DW. However, merging details are not precise enough
and hierarchies are not considered.

To summarize, none of the existing merging methods can satisfy
our DW merging requirements. Some multidimensional compo-
nents are ignored in these approaches, and the merging details of
each specific multidimensional components is not explicit enough,
which motivates us to propose a complete DW merging approach.

3 PRELIMINARIES
We introduce in this section the basic concepts of multidimensional
DW design [13]. The multidimensional DW can be modelled by a
star or a constellation schema. In the star schema, there is a single
fact connected with different dimensions, while the constellation
schema consists of more than one fact which share one or several
common dimensions.

Definition 3.1. A constellation denoted 𝐶 is defined as (𝑁𝐶 , 𝐹𝐶 ,

𝐷𝐶 , 𝑆𝑡𝑎𝑟𝐶) where 𝑁𝐶 is a constellation name, 𝐹𝐶 = {𝐹𝐶1 , ..., 𝐹
𝐶
𝑚}

is a set of facts, 𝐷𝐶 = {𝐷𝐶
1 , ..., 𝐷

𝐶
𝑛 } is a set of dimensions, 𝑆𝑡𝑎𝑟𝐶 :

𝐹𝐶 → 2𝐷
𝐶
associates each fact to its linked dimensions. A star is a

constellation where 𝐹𝐶 contains a single fact; i.e.𝑚 = 1.

A dimension models an analysis axis and is composed of at-
tributes (dimension properties).

Definition 3.2. A dimension, denoted 𝐷 ∈ 𝐷𝐶 is defined as
(𝑁𝐷 , 𝐴𝐷 , 𝐻𝐷 , 𝐼𝐷) where𝑁𝐷 is a dimension name,𝐴𝐷 = {𝑎𝐷1 , ..., 𝑎

𝐷
𝑢 }

∪{𝑖𝑑𝐷 } is a set of attributes, where 𝑖𝑑𝐷 represents the dimension
identifier, which is also the parameter of the lowest level and called
the root parameter. 𝐻𝐷 = {𝐻𝐷

1 , ..., 𝐻𝐷
𝑣 } is a set of hierarchies,

𝐼𝐷 = {𝑖𝐷1 , ..., 𝑖
𝐷
𝑝 } is a set of dimension instances. The value of the

instance 𝑖𝐷𝑝 for an attribute 𝑎𝐷𝑢 is annotated as 𝑖𝐷𝑝 .𝑎𝐷𝑢 .

Dimension attributes (also called parameters) are organised ac-
cording to one or more hierarchies. Hierarchies represent a partic-
ular vision (perspective) and each parameter represents one data
granularity according to which measures could be analysed.

Definition 3.3. A hierarchy of a dimension 𝐷 , denoted 𝐻 ∈
𝐻𝐷 is defined as (𝑁𝐻 , 𝑃𝑎𝑟𝑎𝑚𝐻) where 𝑁𝐻 is a hierarchy name,
𝑃𝑎𝑟𝑎𝑚𝐻 =< 𝑖𝑑𝐷 , 𝑝𝐻2 , ..., 𝑝

𝐻
𝑣 > is an ordered set of dimension at-

tributes, called parameters, which represent useful graduations
along the dimensions, ∀𝑘 ∈ [1...𝑣], 𝑝𝐻

𝑘
∈ 𝐴𝐷 . The roll up rela-

tionship between two parameters can be denoted by 𝑝𝐻1 ⪯𝐻 𝑝𝐻2

An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

for the case where 𝑝𝐻1 roll up to 𝑝𝐻2 in 𝐻 . For 𝑃𝑎𝑟𝑎𝑚𝐻 , we have
𝑖𝑑𝐷 ⪯𝐻 𝑝𝐻1 , 𝑝

𝐻
1 ⪯𝐻 𝑝𝐻2 , ..., 𝑝

𝐻
𝑣−1 ⪯𝐻 𝑝𝐻𝑣 . The matching of multidi-

mensional schemata is based on the matching of parameters, the
matching relationship between two parameters of two hierarchies
𝑝
𝐻1
𝑖

and 𝑝𝐻2
𝑗

is denoted as 𝑝𝐻1
𝑖
≃ 𝑝

𝐻2
𝑗
.

A sub-hierarchy is a continuous sub-part of a hierarchy which
we call the parent hierarchy of the sub-hierarchy. This concept will
be used in our algorithms, but it is not really meaningful. So a sub-
hierarchy has the same elements than a hierarchy, but its lowest
level is not considered as "𝑖𝑑". All parameters of a sub-hierarchy are
contained in its parent hierarchy and have the same partial orders
than those in the parent hierarchy. "Continuous" means that in the
parameter set of the parent hierarchy of a sub-hierarchy, between
the lowest and highest level parameters of the sub-hierarchy, there
is no parameter which is in the parent hierarchy but not in the
sub-hierarchy.

Definition 3.4. A sub-hierarchy 𝑆𝐻 of 𝐻 ∈ 𝐻𝐷 is defined as
(𝑁𝑆𝐻 , 𝑃𝑎𝑟𝑎𝑚𝑆𝐻) where 𝑁𝑆𝐻 is a sub-hierarchy name, 𝑃𝑎𝑟𝑎𝑚𝑆𝐻 =

< 𝑝𝑆𝐻1 , ..., 𝑝𝑆𝐻𝑣 > is an ordered set of parameters, called parameters,
∀𝑘 ∈ [1...𝑣], 𝑝𝐻

𝑘
∈ 𝑃𝑎𝑟𝑎𝑚𝐻 . According to the relationship between

a sub-hierarchy and its parent hierarchy, we have: (1) ∀𝑝𝑆𝐻1 , 𝑝𝑆𝐻2 ∈
𝑃𝑎𝑟𝑎𝑚𝑆𝐻 , 𝑝𝑆𝐻1 ⪯𝑆𝐻 𝑝𝑆𝐻2 ⇒ 𝑝𝑆𝐻1 , 𝑝𝑆𝐻2 ∈ 𝑃𝑎𝑟𝑎𝑚𝐻 ∧ 𝑝𝑆𝐻1 ⪯𝐻 𝑝𝑆𝐻2 ,
(2) ∀𝑝𝐻1 , 𝑝

𝐻
2 , 𝑝

𝐻
3 ∈ 𝑃𝑎𝑟𝑎𝑚

𝐻 , 𝑝𝐻1 ⪯𝐻 𝑝𝐻2 ∧ 𝑝
𝐻
2 ⪯𝐻 𝑝𝐻3 ∧ 𝑝

𝐻
1 , 𝑝

𝐻
3 ∈

𝑃𝑎𝑟𝑎𝑚𝑆𝐻 ⇒ 𝑝𝐻2 ∈ 𝑃𝑎𝑟𝑎𝑚
𝑆𝐻 .

A fact reflects information that has to be analysed according
to dimensions and is modelled through one or several indicators
called measures.

Definition 3.5. A fact, noted 𝐹 ∈ 𝐹𝐶 is defined as (𝑁 𝐹 , 𝑀𝐹 , 𝐼𝐹 ,

𝐼𝑆𝑡𝑎𝑟𝐹) where 𝑁 𝐹 is a fact name, 𝑀𝐹 = {𝑚𝐹
1 , ...,𝑚

𝐹
𝑤} is a set of

measures. 𝐼𝐹 = {𝑖𝐹1 , ..., 𝑖
𝐹
𝑞 } is a set of fact instances. The value of a

measure𝑚𝐹
𝑤 of the instance 𝑖𝐹𝑞 is denoted as 𝑖𝐹𝑞 .𝑚𝐹

𝑤 . 𝐼𝑆𝑡𝑎𝑟𝐹 : 𝐼𝐹 →
D𝐹 is a function where D𝐹 is the cartesian product over sets of
dimension instances, which is defined as D𝐹 =

∏
𝐷𝑘 ∈𝑆𝑡𝑎𝑟𝐶 (𝐹) 𝐼

𝐷𝑘 .
𝐼𝑆𝑡𝑎𝑟𝐹 associates fact instances to their linked dimension instances.

We complete these definitions by a function 𝑒𝑥𝑡𝑒𝑛𝑑 (𝐻1, 𝐻2) al-
lowing to extend the parameters of the first (sub)hierarchy 𝐻1 by
the other one (𝐻2).

4 AN AUTOMATIC APPROACH FOR DW
MERGING

Like illustrated in Figure 1, merging two DWs implies matching
steps and steps dedicated to the merging of dimensions and facts.
The matching of parameters and measures are based on syntac-
tic and semantic similarities [10][6] for the attribute or measure
names. Since the matching is intensively studied in the literature,
we focus in this paper only on the merging steps of our process
(green rectangle in Figure 1). In regard to the merging, we firstly
define an algorithm for the merging of hierarchies by decomposing
two hierarchies into sub-hierarchy pairs and merging them to get
the final hierarchy set. Then, we define an algorithm of dimension
merging concerning both instance and schema levels and which
completes some empty values. Finally, we define an algorithm of

the star merging based on the dimension merging algorithm which
merges the dimensions and the facts at the schema and instance
levels and corrects the hierarchies after the merging.

Figure 1: Overview of the merging process

4.1 Hierarchy merging
In this section, we define the schema merging process of two hier-
archies coming from two different dimensions. The first challenge
is that we should preserve the partial orders of the parameters. The
second one is how to decide the partial orders of the parameters
coming from different original hierarchies. These challenges are
solved in the algorithm proposed below which is achieved by 4
steps: record of the matched parameters, generation of the sub-
hierarchy pairs, merging of the sub-hierarchy pairs and generation
of the final hierarchy set.
Algorithm 1𝑀𝑒𝑟𝑔𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠 (𝐻1, 𝐻2)
Output: A set of merged hierarchies 𝐻 ′ or two sets of merged hierarchies
𝐻 1′ and 𝐻 2′

1: 𝑀,𝑆𝐻 ′, 𝐻 ′ ← ∅; //𝑀 is an ordered set of the couples of matched
parameters with possibly the couple of the last parameters, for the 𝑛th
parameter couple𝑀 [𝑛 − 1],𝑀 [𝑛 − 1] [0] represents the parameter of
𝐻1 in𝑀 [𝑛 − 1], while𝑀 [𝑛 − 1] [1] represents the one of 𝐻2.

2: 𝑃𝑎𝑟𝑎𝑚𝑆𝐻1 , 𝑃𝑎𝑟𝑎𝑚𝑆𝐻1′ , 𝑃𝑎𝑟𝑎𝑚𝑆𝐻2 , 𝑃𝑎𝑟𝑎𝑚𝑆𝐻2′ ← ∅;
3: for each 𝑝

𝐻1
𝑖
∈ 𝑃𝑎𝑟𝑎𝑚𝐻1 do

4: for each 𝑝
𝐻2
𝑗
∈ 𝑃𝑎𝑟𝑎𝑚𝐻1 do

5: if 𝑝𝐻1
𝑖
≃ 𝑝

𝐻2
𝑗

then

6: 𝑀 ← 𝑀+ < 𝑝
𝐻1
𝑖

, 𝑝
𝐻2
𝑗

>;
7: end if
8: end for
9: end for
10: if 𝑀 = ∅ then
11: 𝐻 1′ ← {𝐻1 }; 𝐻 2′ ← {𝐻2 };
12: return 𝐻 1′ , 𝐻 2′

13: else
14: 𝑚𝑙 ←< 𝑃𝑎𝑟𝑎𝑚𝐻1 [|𝑃𝑎𝑟𝑎𝑚𝐻1 | − 1], 𝑃𝑎𝑟𝑎𝑚𝐻2 [|𝑃𝑎𝑟𝑎𝑚𝐻2 | − 1] >;

//pair of the last parameters
15: if𝑚𝑙 ∉ 𝑀 then
16: 𝑀 ← 𝑀 +𝑚𝑙 ;
17: end if
18: for 𝑖 = 0 to |𝑀 | − 2 do
19: 𝑝

𝑆𝐻1
1 ← 𝑀 [𝑖] [0]; //first parameter of 𝑆𝐻1

20: 𝑝
𝑆𝐻1
𝑣1 ← 𝑀 [𝑖 + 1] [0]; //last parameter of 𝑆𝐻1

21: 𝑝
𝑆𝐻2
1 ← 𝑀 [𝑖] [1]; //first parameter of 𝑆𝐻2

22: 𝑝
𝑆𝐻2
𝑣2 ← 𝑀 [𝑖 + 1] [1]; //last parameter of 𝑆𝐻2

23: if 𝑃𝑎𝑟𝑎𝑚𝑆𝐻1 ⊆ 𝑃𝑎𝑟𝑎𝑚𝑆𝐻2 then
24: 𝑆𝐻 ′ ← {𝑆𝐻2 };
25: else if 𝑃𝑎𝑟𝑎𝑚𝑆𝐻2 ⊆ 𝑃𝑎𝑟𝑎𝑚𝑆𝐻1 then

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Yuzhao Yang, Jérôme Darmont, Franck Ravat, and Olivier Teste

26: 𝑆𝐻 ′ ← {𝑆𝐻1 };
27: else if 𝐹𝐷𝑆𝐻1_𝑆𝐻2 ≠ ∅ then
28: for each 𝑃𝑎𝑟𝑎𝑚′ ∈ 𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐹𝐷𝑆𝐻1_𝑆𝐻2) do
29: 𝑃𝑎𝑟𝑎𝑚𝑆𝐻𝑎 ← 𝑃𝑎𝑟𝑎𝑚′; 𝑆𝐻 ′ ← 𝑆𝐻 ′ + 𝑆𝐻𝑎 ;
30: end for
31: else
32: 𝑆𝐻 ′ ← {𝑆𝐻1, 𝑆𝐻2 };
33: end if
34: 𝐻 ′ ← {𝐻 ′𝑎 .𝑒𝑥𝑡𝑒𝑛𝑑 (𝑆𝐻 ′𝑏) | (𝐻

′
𝑎 ∈ 𝐻 ′) ∧ (𝑆𝐻 ′𝑏 ∈ 𝑆𝐻

′) };
35: end for
36: end if
37: if 𝑖𝑑𝐷1 ≃ 𝑖𝑑𝐷2 then
38: 𝐻 ′ ← 𝐻 ′ ∪ {𝐻1, 𝐻2 };
39: return 𝐻 ′

40: else
41: 𝑝

𝑆𝐻1′
1 ← 𝑝

𝐻1
1 ; //first parameter of 𝑆𝐻1′

42: 𝑝
𝑆𝐻1′
𝑣′1

← 𝑀 [0] [0]; //last parameter of 𝑆𝐻1′

43: 𝑝
𝑆𝐻2′
1 ← 𝑝

𝐻2
1 ; //first parameter of 𝑆𝐻2′

44: 𝑝
𝑆𝐻2′
𝑣′2

← 𝑀 [0] [1]; //last parameter of 𝑆𝐻2′

45: for each 𝐻 ′𝑐 ∈ 𝐻 ′ do
46: 𝐻 1′ ← 𝑆𝐻1′ .𝑒𝑥𝑡𝑒𝑛𝑑 (𝐻 ′𝑐) ; 𝐻 2′ ← 𝑆𝐻2′ .𝑒𝑥𝑡𝑒𝑛𝑑 (𝐻 ′𝑐) ;
47: end for
48: 𝐻 1′ ← 𝐻 1′ ∪ {𝐻1 }; 𝐻 1′ ← 𝐻 2′ ∪ {𝐻2 };
49: return 𝐻 1′ , 𝐻 2′

50: end if

4.1.1 Record of the matched parameters. The first step of the al-
gorithm consists in matching the parameters of the two hierar-
chies and record the matched parameter pairs(𝐿1-𝐿9). If there is
no matched parameter between the two hierarchies, the merging
process stops (𝐿11-𝐿12).

4.1.2 Generation of the sub-hierarchy pairs. Then the algorithm
generates pairs containing 2 sub-hierarchies (𝑆𝐻1 and 𝑆𝐻2) of the
original hierarchies whose lowest and highest level parameters are
adjacent in the list of matched parameter pairs that we created in
the previous step (𝐿18-𝐿22). To make sure that the last parameters
of the two hierarchies are included in the sub-hierarchies, we also
add the pair of the last parameters into the matched parameter pair
(𝐿14-𝐿17).

Example 4.1. In Figure 2, for (a), we have 𝐻1.𝐶𝑜𝑑𝑒 ≃ 𝐻2.𝐶𝑜𝑑𝑒 ,
𝐻1.𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 ≃ 𝐻2.𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 , 𝐻1.𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 ≃ 𝐻2.𝐶𝑜𝑛𝑡𝑖-
𝑛𝑒𝑛𝑡 . So for the first sub-hierarchy pair, the first parameter of 𝑆𝐻1
and 𝑆𝐻2 is𝐶𝑜𝑑𝑒 and their last parameter is𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 , so we have:
𝑃𝑎𝑟𝑎𝑚𝑆𝐻1 =< 𝐶𝑜𝑑𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 >, 𝑃𝑎𝑟𝑎𝑚𝑆𝐻2 =< 𝐶𝑜𝑑𝑒,𝐶𝑖𝑡𝑦,

𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 >. In the second sub-hierarchy pair, we get the sub-
hierarchy of 𝐻1 from 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 to 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 : 𝑃𝑎𝑟𝑎𝑚𝑆𝐻1 =<

𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >, and the sub-hierarchy of 𝐻2
from𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 to𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 : 𝑃𝑎𝑟𝑎𝑚𝑆𝐻2 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡,𝐶𝑜𝑢𝑛-
𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. If the last parameters of the two original hier-
archies do not match, like 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 of 𝐻1 and 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 of 𝐻3 in
(b), < 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡,𝐶𝑜𝑢𝑛𝑡𝑟𝑦 > is added into the matched parame-
ter pair 𝑀 of the algorithm so that the last sub-hierarchies of 𝐻1
and 𝐻3 are 𝑃𝑎𝑟𝑎𝑚𝑆𝐻1 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 > and
𝑃𝑎𝑟𝑎𝑚𝑆𝐻3 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡,𝐶𝑜𝑢𝑛𝑡𝑟𝑦 >.

4.1.3 Merging of the sub-hierarchies. We then merge each sub-
hierarchy pair to get a set of merged sub-hierarchies (𝑆𝐻 ′) and

Figure 2: Example of generation of the sub-hierarchy pairs

combine each of these sub-hierarchy sets to get a set of merged
hierarchies (𝐻 ′) (𝐿23-𝐿35).

The matched parameters will be merged into one parameter, so
it’s the unmatched parameters that we should deal with. We have
2 cases in terms of the unmatched parameters.

If one of the sub-hierarchies has no unmatched parameter, we
obtain a sub-hierarchy set containing one sub-hierarchy whose
parameter set is the same as the other sub-hierarchy (𝐿23-𝐿26).

Example 4.2. For the first parameter pair 𝑆𝐻1 =< 𝐶𝑜𝑑𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡-
𝑚𝑒𝑛𝑡 > and 𝑆𝐻2 =< 𝐶𝑜𝑑𝑒,𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 > of 𝐻1 and 𝐻2 in
Figure 4. We see that 𝑆𝐻1 does not have any unmatched parame-
ter, so the obtained sub-hierarchy set contains one sub-hierarchy
whose parameter set is the same as 𝑆𝐻2 which is 𝑃𝑎𝑟𝑎𝑚𝑆𝐻 ′ =<<

𝐶𝑜𝑑𝑒,𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 >>.

The second case is that both two sub-hierarchies have unmatched
parameters (𝐿27-𝐿30). We then see if these unmatched parameters
can be merged into one or several hierarchies and discover their
partial orders. Our solution is based on the functional dependencies
(FDs) of these parameters. To be able to detect the FDs of the param-
eters of the two sub-hierarchies, we should make sure that there are
intersections between the instances of these two sub-hierarchies
which means that they should have same values on the root pa-
rameter of the sub-hierarchies. We keep only the FDs which have
a single parameter in both hands and which can not be inferred
by transitivity. These FDs are represented in the form of ordered
set (𝐹𝐷𝑆𝐻1_𝑆𝐻2) are then treated by algorithm 2𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

to get the parameter sets of the merged sub-hierarchies. If it’s not
possible to discover the FDs, the two sub-hierarchies are impossible
to be merged (𝐿31-𝐿32).

Algorithm 2𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 constructs recursively the param-
eter sets from the FDs in the form of ordered sets. In each recursion
loop, for each one of these sets, we search for the other ones whose
non-last (or non-first) elements have the same values and order as
its non-first (or non-last) elements and then merge them (𝐿6-𝐿21).
The recursion is finished until there are no more two sets being
able to be merged (𝐿22-𝐿31).

Example 4.3. If we have 𝐹𝐷 =<< 𝐴, 𝐵 >, < 𝐵,𝐶 >, < 𝐵, 𝐹 >

, < 𝐶, 𝐸 >, < 𝐷, 𝐵 >>. Like illustrated in Figure 3, in the first
recursion, by merging the ordered set, we get 𝑃𝑎𝑟𝑎𝑚 =<< 𝐴, 𝐵,𝐶 >

, < 𝐴, 𝐵, 𝐹 >, < 𝐵,𝐶, 𝐸 >, < 𝐷, 𝐵,𝐶 >, < 𝐷, 𝐵, 𝐹 >>, all the ordered
sets in 𝐹𝐷 are merged, so there are only merged ordered set in
𝑃𝑎𝑟𝑎𝑚. 𝑃𝑎𝑟𝑎𝑚 is then inputted to the second recursion, we then
get the next 𝑃𝑎𝑟𝑎𝑚 =<< 𝐴, 𝐵,𝐶, 𝐸 >, < 𝐷, 𝐵,𝐶, 𝐸 >> after the
merging of the ordered sets, since < 𝐴, 𝐵, 𝐹 > and < 𝐷, 𝐵, 𝐹 > are
notmerged, they are also added into 𝑃𝑎𝑟𝑎𝑚, andwe get 𝑃𝑎𝑟𝑎𝑚 =<<

𝐴, 𝐵,𝐶, 𝐸 >, < 𝐷, 𝐵,𝐶, 𝐸 >, < 𝐴, 𝐵, 𝐹 >, < 𝐷, 𝐵, 𝐹 >>. In the final

An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

recursion, it’s no more possible to merge any two ordered sets,
so the parameter set of the final result of the hierarchy set is <<
𝐴, 𝐵,𝐶, 𝐸 >, < 𝐷, 𝐵,𝐶, 𝐸 >, < 𝐴, 𝐵, 𝐹 >, < 𝐷, 𝐵, 𝐹 >>.

Figure 3: Example of parameter merging based on FDs

Algorithm 2𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐹𝐷)
Output: A set of parameter sets 𝑃𝑎𝑟𝑎𝑚
1: 𝑙 ← |𝐹𝐷 |;
2: for 𝑛 ← 0 to 𝑙 − 1 do
3: 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑛] ← 𝐹𝑎𝑙𝑠𝑒 ; //Boolean indicating whether an element

in 𝐹𝐷 is mergerd
4: end for
5: 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ; //Boolean indicating whether there are

elements that are merged in a recursion loop
6: for 𝑖 ← 0 to 𝑙 − 1 do
7: for 𝑗 ← 𝑖 + 1 to 𝑙 do
8: if 𝐹𝐷 [𝑖] [1 : 𝑙 − 1] = 𝐹𝐷 [𝑗] [0 : 𝑙 − 2] //𝐹𝐷 [𝑎] [𝑏 : 𝑐]

represents the ordered set having the values and order from the
𝑏th element to the 𝑐th element of 𝐹𝐷 [𝑎] then

9: 𝑃𝑎𝑟𝑎𝑚𝑡 ← 𝐹𝐷 [𝑖] [1 : 𝑙 − 1] ;
10: 𝑃𝑎𝑟𝑎𝑚𝑡 ← 𝑃𝑎𝑟𝑎𝑚𝑡 + 𝐹𝐷 [𝑗] [𝑙 − 1];
11: 𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚 + 𝑃𝑎𝑟𝑎𝑚𝑡 ;
12: 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑖], 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑗], 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
13: end if
14: if 𝐹𝐷 [𝑖] [0 : 𝑙 − 2] = 𝐹𝐷 [𝑗] [1 : 𝑙 − 1] then
15: 𝑃𝑎𝑟𝑎𝑚𝑡 ← 𝐹𝐷 [𝑗] [1 : 𝑙 − 1] ;
16: 𝑃𝑎𝑟𝑎𝑚𝑡 ← 𝑃𝑎𝑟𝑎𝑚𝑡 + 𝐹𝐷 [𝑖] [𝑙 − 1];
17: 𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚 + 𝑃𝑎𝑟𝑎𝑚𝑡 ;
18: 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑖], 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑗], 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ;
19: end if
20: end for
21: end for
22: if 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 = 𝑇𝑟𝑢𝑒 then
23: for𝑚 ← 0 to 𝑙 − 1 do
24: if 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑚] = 𝐹𝑎𝑙𝑠𝑒 then
25: 𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚 + 𝐹𝐷 [𝑚];
26: end if
27: end for
28: 𝑃𝑎𝑟𝑎𝑚 ← 𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑃𝑎𝑟𝑎𝑚) ;
29: else
30: 𝑃𝑎𝑟𝑎𝑚 ← 𝐹𝐷 ;
31: end if
32: return 𝑃𝑎𝑟𝑎𝑚

After the merging of each sub-hierarchy pair, we extend the final
merged hierarchy set by the new merging result (𝐿34).

4.1.4 Generation of the final hierarchy set. 𝐿37-𝐿49 concerns the
generation of the final hierarchy set. The two original hierarchies
may have different instances, so there may be empty values in the
instances of the merged hierarchies. Some empty values can be
completed, which is introduced in the next section of dimension

merging. But not all empty values can be completed. The empty
values generate the incomplete hierarchies and make the analysis
difficult. Inspired by the concept of the structural repair[1], we
also add the two original hierarchies into the final hierarchy set.
Then for a parameter which appears in different hierarchies, it
can be divided into different parameters in different hierarchies of
the hierarchy set so that each hierarchy is complete. Thus, for the
multidimensional schema that we get, we provide an analysis form
like shown in Figure 4. In the analysis form, one parameter can be
marked with different numbers if it is in different hierarchies.

For the generation of the final hierarchy set, we discuss 2 cases
where the 2 hierarchies have the matched root parameters which
means their dimensions are the same analysis axis and the opposite
case which will lead to 2 kinds of output results (one or two sets of
merged hierarchies).

If the root parameters of the two original hierarchies match, we
simply add the two original hierarchies into the merged hierarchy
set obtained in the previous step to get one final merged hierarchy
set. (𝐿37-𝐿39).

Example 4.4. For the hierarchies 𝐻1 and 𝐻2 in Figure 4, we
combine the merged hierarchy obtained in 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.4 with the
result gained in 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.2 to get the merged hierarchy 𝐻𝑚 :
< 𝐶𝑜𝑑𝑒,𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛,𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. We add
𝐻𝑚 into the hierarchy set 𝐻 ′ and then also add the original hierar-
chies 𝐻1 and 𝐻2. Thus 𝐻 ′ is the final merged hierarchy set.

Figure 4: Hierarchy merging example

If the root parameters of the two original hierarchies do not
match, we will get two merged hierarchy sets instead of one. For
each original hierarchy, the final merged hierarchy set will be the
extension of the sub-hierarchy containing all the parameters which
are not included in any one of the sub-hierarchies created before
(𝑆𝐻1′ and 𝑆𝐻2′) with the merged hierarchy set that we get plus this
original hierarchy itself (𝐿41-𝐿49).

Example 4.5. In Figure 5, between𝐻1 and𝐻3, we have𝐻1 .𝐷𝑒𝑝𝑎𝑟𝑡-
𝑚𝑒𝑛𝑡 ≃ 𝐻3 .𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 and 𝐻1 .𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 ≃ 𝐻3 .𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 . We
can then get one sub-hierarchy pair in which there are 2 sub-
hierarchies containing parameter sets < 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛,𝐶𝑜𝑛-
𝑡𝑖𝑛𝑒𝑛𝑡 > and < 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡,𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. By merging
the sub-hierarchy pairs, we get the merged hierarchy whose param-
eter set is < 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛,𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. For 𝐻1,
the remaining part < 𝐶𝑜𝑑𝑒 > is associated to it to get the merged
hierarchy 𝐻1

13. We then get the merged hierarchy set of 𝐻1 contain-
ing 𝐻1 and 𝐻1

13. We do the same thing for 𝐻3 and get the merged
hierarchy set containing 𝐻3 and 𝐻2

13.

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Yuzhao Yang, Jérôme Darmont, Franck Ravat, and Olivier Teste

4.2 Dimension merging
This section concerns themerging of two dimensions havingmatched
attributes which is realized by algorithm 3𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 . We
consider both the schema and instance levels for the merging of
dimensions. The schema merging is based on the merging of hier-
archies. Concerning the instances, we have 2 tasks: merging the
instances and completing the empty values.

Algorithm 3𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐷1, 𝐷2)
Output: One merged dimension 𝐷′ or two merged dimensions 𝐷1′ and
𝐷2′

1: if 𝑖𝑑𝐷1 ≃ 𝑖𝑑𝐷2 then
2: 𝐻𝐷′ ← ∅;
3: for each 𝐻

𝐷1
𝑖
∈ 𝐻𝐷1 do

4: for each 𝐻
𝐷2
𝑗
∈ 𝐻𝐷2 do

5: 𝐻𝐷′ ← 𝐻𝐷′ ∪𝑀𝑒𝑟𝑔𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠 (𝐻𝐷1
𝑖

, 𝐻
𝐷2
𝑗
) ;

6: end for
7: end for
8: 𝐴𝐷′ ← 𝐴𝐷1 ∪𝐴𝐷2 ; 𝐻𝑚 ← 𝐻𝐷′ \ (𝐻𝐷1 ∪𝐻𝐷2) ;
9: 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 (𝐷′, 𝐷′, 𝐻𝑚) ;
10: return 𝐷′

11: else
12: 𝐻𝐷1′

, 𝐻𝐷2′
, 𝐴𝐷1′

, 𝐴𝐷2′ ← ∅;
13: for each 𝐻

𝐷1
𝑖
∈ 𝐻𝐷1 do

14: for each 𝐻
𝐷2
𝑗
∈ 𝐻𝐷2 do

15: 𝐻 1′ , 𝐻 2′ ←𝑀𝑒𝑟𝑔𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠(𝐻𝐷1
𝑖

, 𝐻
𝐷2
𝑗

);

16: 𝐻𝐷1′ ← 𝐻𝐷1′ ∪𝐻 1′ ; 𝐻𝐷2′ ← 𝐻𝐷2′ ∪𝐻 2′ ;
17: end for
18: end for
19: for each 𝐻𝐷1′

𝑢 ∈ 𝐻𝐷1′
do

20: 𝐴𝐷1′ ← 𝐴𝐷1′ ∪ 𝑃𝑎𝑟𝑎𝑚𝐻𝐷1′
𝑢 ;

21: end for
22: for each 𝐻𝐷2′

𝑣 ∈ 𝐻𝐷2′
do

23: 𝐴𝐷2′ ← 𝐴𝐷2′ ∪ 𝑃𝑎𝑟𝑎𝑚𝐻𝐷2′
𝑣 ;

24: end for
25: 𝐻𝑚1 ← 𝐻𝐷′ \𝐻𝐷1 ; 𝐻𝑚2 ← 𝐻𝐷′ \𝐻𝐷2 ;
26: 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 (𝐷1′ , 𝐷2′ , 𝐻𝑚1) ;
27: 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 (𝐷2′ , 𝐷1′ , 𝐻𝑚2) ;
28: return 𝐷1′ , 𝐷2′

29: end if

4.2.1 Schema merging. If the root parameters of the two dimen-
sions match, the algorithm generates a merged dimension (𝐿1-𝐿8).
The hierarchy set of the merged dimension is the union of the hier-
archy sets generated by merging every 2 hierarchies of the original
dimensions (𝐿3-𝐿7). We also get a hierarchy set containing only the
merged hierarchies but no original hierarchies (𝐻𝑚) which is to be
used for the complement of the empty values (𝐿8). The attribute set
of the merged dimension is the union of the attribute sets of the
original dimensions (𝐿8).

Example 4.6. Given 2 original dimensions 𝐷1 and 𝐷2 in Figure 8
and their instances in Figure 6, we can get the merged dimension
schema 𝐷 ′ in Figure 8. In 𝐷 ′,𝐻1 and𝐻2 are the original hierarchies
of 𝐷1, 𝐻3 and 𝐻4 are those of 𝐷2, 𝐻13 is a merged hierarchy of
𝐻1 and 𝐻3, and 𝐻24 is a merged hierarchy of 𝐻2 and 𝐻4. We can
thus get 𝐻𝐷′ = {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻13, 𝐻24}, 𝐻𝑚 = {𝐻13, 𝐻24}, 𝐴𝐷′ =

{𝐶𝑜𝑑𝑒,𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛,𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝑃𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛,

𝑆𝑢𝑏𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦,𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦}

Figure 5: Dimension merging example (schema)

When the root parameters of the two dimensions don’t match,
we will get a merged dimension for each original dimension, which
is realized by 𝐿13-𝐿25. For each original dimension, the hierarchy
set of its corresponding merged dimension is the union of all hier-
archy sets generated by merging every 2 hierarchies of the original
dimensions (𝐿13-𝐿18), the attribute set is the union of the attributes
of each hierarchy in the merged dimension (𝐿19-𝐿24). Similar to
the first case, we get a hierarchy set containing only the merged
hierarchies for each original dimension (𝐻𝑚1 and 𝐻𝑚2) (𝐿26-𝐿27).

Example 4.7. Given 2 original dimensions 𝐷1 and 𝐷2 in Figure 5
and their instances in Figure 7, after the execution of algorithm 3
𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 , we can get the merged dimension schema 𝐷1′

and 𝐷2′ in Figure 5. In 𝐷1′ , 𝐻1 and 𝐻2 are the original hierarchies
of 𝐷1, 𝐻1

13 is the merged hierarchy of 𝐻1 and 𝐻3. In 𝐷2′ , 𝐻3 is the
original hierarchy of 𝐷2, 𝐻2

13 is the merged hierarchy of 𝐻1 and

𝐻3. So for 𝐷1, we have𝐻𝐷1′
= {𝐻1, 𝐻2, 𝐻1

13},𝐻𝑚1 = {𝐻1
13},𝐴

𝐷1′
=

{𝐶𝑜𝑑𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛,𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝑃𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛,𝐶𝑎𝑡𝑒-
𝑔𝑜𝑟𝑦}, while for 𝐷2, we get 𝐻𝐷2′

= {𝐻3, 𝐻2
13}, 𝐻𝑚2 = {𝐻2

13},
𝐴𝐷2′

= {𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛,𝐶𝑜𝑢𝑛𝑡𝑟𝑦,𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡}

4.2.2 Instance merging and complement. When the root parameters
of the two dimensions match, the instance of the merged dimension
is obtained by the union of the two original dimension instances
which means that we insert the data of the two original dimension
tables into the merged dimension table and merge the lines which
have the same root parameter instance (𝐿9).

Example 4.8. The instance merging result of Example 4.2.1 is
presented in Figure 6. All the data in the original dimension tables
𝐷1, 𝐷2 are integrated into the merged dimension table 𝐷 ′. The
original tables of the instances are marked on the left of the merged
table𝐷 ′ with different colors. There are instances coming from both
𝐷1 and 𝐷2, which means that they have the same root parameter
in 𝐷1 and 𝐷2, and are therefore merged together.

The attribute set of the merged dimension contains all the at-
tributes of two original dimensions, while the original dimensions
may contain their unique attributes. So there may be empty values
in the merged dimension table on the instances coming from only
one of the original dimension tables and we should complete the
empty values on the basis of the existing data (𝐿9).

The complement of the empty values is realized by Algorithm
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 where the input𝐷1′ is the merged dimension table
having empty values to be completed, 𝐷2′ is the merged dimension
table which provides the completed values and 𝐻𝑚 is the hierarchy

An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

Figure 6: Dimension merging example (instance)

set of 𝐷1′ containing only merged hierarchies but no original hier-
archies. In this discussed case, 𝐷 ′ is inputted as both 𝐷1′ and 𝐷2′

in 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 since we get one merged dimension including
all data of two original dimensions (𝐿11).

Algorithm 4𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 (𝐷1′ , 𝐷2′ , 𝐻𝑚)
1: for each 𝐻𝑚

𝑎 ∈ 𝐻𝑚 do
2: 𝐼𝑛 ← ∅;
3: 𝐼𝑛 ← 𝐼𝑛 ∪ {𝑖𝐷1′

𝑘
∈ 𝐼𝐷1′ | (𝑖𝐷1′

𝑘
.𝑝

𝐻𝑚
𝑎

1 is not null) ∧(∃𝑝𝐻
𝑚
𝑎

𝑣 ∈
𝑃𝑎𝑟𝑎𝑚𝐻𝑚

𝑎 , 𝑖𝐷
1′

𝑘
.𝑝

𝐻𝑚
𝑎

𝑣 is null) };
4: for each 𝑖𝑛

𝑏
∈ 𝐼𝑛 do

5: 𝑃𝑛 ← {𝑝𝐻
𝑚
𝑎

𝑣 ∈ 𝑃𝑎𝑟𝑎𝑚𝐻𝑚
𝑎 |𝑖𝑛

𝑏
.𝑝

𝐻𝑚
𝑎

𝑣 is null};
6: 𝑃𝑟 ← {𝑝𝐻

𝑚
𝑎

𝑣 ∈ 𝑃𝑎𝑟𝑎𝑚𝐻𝑚
𝑎 | (𝑖𝑛

𝑏
.𝑝

𝐻𝑚
𝑎

𝑣 is not null) ∧(∀𝑝𝑛𝑠 ∈
𝑃𝑛, 𝑝

𝐻𝑚
𝑎

𝑣 ⪯𝐻 𝑝𝑛𝑠) };
7: if ∃𝑖𝐷2′

𝑢 ∈ 𝐼𝐷
2′ ∃𝑝𝑟𝑤 ∈ 𝑃𝑟 , (𝑖𝐷2′

𝑢 .𝑝𝑟𝑤 = 𝑖𝑛
𝑏
.𝑝𝑟𝑤) ∧ (∀𝑝𝑛𝑞 ∈

𝑃𝑛, 𝑖𝐷
2′

𝑢 .𝑝𝑛𝑞 is not null) then
8: for each 𝑝𝑛𝑐 ∈ 𝑃𝑛 do

9: 𝑖𝑛
𝑏
.𝑝𝑛𝑐 ← 𝑖𝐷

2′
𝑢 .𝑝𝑛𝑐 ;

10: end for
11: end if
12: end for
13: end for

For an empty value, we search for an instance which has the
same value as the instance of this empty value on one of the pa-
rameters rolling up to the parameter of the empty value and whose
value of the parameter of the empty value is not empty, we can
then fill the empty by this non-empty value. The complement of
the empty values is also possibly a change of hierarchies. Never-
theless, after completing the empty values of an instance, there
may be some completed parameters which are not included in the
hierarchies of the instance, so the complement of such values does
not make sense in this case. The possible change of the hierarchy
is from the hierarchies containing less parameters to those con-
taining more parameters. We know that the merged hierarchies
contain more parameters than their corresponding original hierar-
chies. Hence, before the complement of an instance, we will first
look at the merged hierarchies to decide which parameter values
can be completed.

In algorithm 4 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 which aims to complete the
empty values, for each hierarchy in the merged hierarchy set we
see, if (a) there exists instances in the merged dimension table
which contains empty values on the parameters of this hierarchy

(𝐿3) and (b) where the value of the second lowest parameter is not
empty (𝐿3). The condition a is basic because we need empty values
to be completed. Since we will complete the empty values by the
other lines of the merged dimension table, we can only complete
the empty values based on the non-id parameters since the id is
unique, so if the second lowest parameter is empty, it can never
be completed so that the hierarchy can never be completed. That’s
why we have the condition b. For each one of the instances satisfy-
ing these conditions (𝐼𝑛), we search for the parameters (𝑃𝑛) having
empty values (𝐿5) and to make sure that each one of them can be
completed, we search also for the parameters (𝑃𝑟) which roll up to
the lowest of them and to which we refer to complete the empty
values (𝐿6). We can then complete the empty values like discussed
in the previous paragraph (𝐿7-𝐿11).

Example 4.9. After themerging in 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.9, we get the empty
values of 𝐷 ′ which are in red in Figure 6. The merged hierarchies
are 𝐻13 and 𝐻24 as illustrated in Figure 5. For 𝐻13, the instances of
code 𝐶3 and 𝐶5 have empty values on the second root parameter
𝐶𝑖𝑡𝑦, which do not satisfy the condition b. As we can see, for the
instance of 𝐶3, although the value of 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 can be retrieved
through the value of 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 which is the same as the instance
of 𝐶1, the value of 𝐶𝑖𝑡𝑦 can not be completed and thus we should
give up this complement. For the instance of𝐶9, the value of 𝑅𝑒𝑔𝑖𝑜𝑛
is completed by 𝐶7 which has the same value of 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 and
whose value of 𝑅𝑒𝑔𝑖𝑜𝑛 is not empty. When it’s the turn of 𝐻24,
values of 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 of 𝐶8 and 𝐶9 are completed in the same way.

When the root parameters of the two dimensions don’t match,
the instance merging and complement are done by 𝐿26-𝐿27. The
values of the attributes of one of the dimension tables coming from
the other dimension table are empty, so there is only instance com-
plement but no merging. We also call algorithm 4 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦

to complete the instances for each one of the merged dimension
tables.

Example 4.10. The instance merging and complement of the ex-
ample for 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.8 is demonstrated in Figure 7. For𝐷1′ ,𝐶𝑜𝑢𝑛𝑡𝑟𝑦
comes from the dimension table 𝐷2, so the values of 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 are
completed by the values in 𝐷2′ . The same operation is also done
for 𝑅𝑒𝑔𝑖𝑜𝑛 of 𝐷2′ .

Figure 7: Dimension merging example (instance)

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Yuzhao Yang, Jérôme Darmont, Franck Ravat, and Olivier Teste

4.3 Star merging
In this section, we discuss the merging of two stars. Having two
stars, we can get a star schema or a constellation schema because
the fact table of each schema may be merged into one schema or
not. The star merging is related to the dimension merging and
fact merging. Two stars are possible to be merged only if there are
dimensions having matched root parameters between them.

Algorithm 5𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑆1, 𝑆2)
Output:A set of merged dimensions 𝐷𝑆′

1: for each 𝐷
𝑆1
𝑖
∈ 𝐷𝑆1 do

2: for each 𝐷
𝑆2
𝑗
∈ 𝐷𝑆2 do

3: if 𝑖𝑑𝐷
𝑆1
𝑖 ; 𝑖𝑑

𝐷
𝑆2
𝑗 then

4: 𝐷
𝑆1
𝑖
, 𝐷

𝑆2
𝑗
← 𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐷𝑆1

𝑖
, 𝐷

𝑆2
𝑗
) ;

5: end if
6: end for
7: end for
8: 𝐷𝑆′ ← ∅;
9: for each 𝐷

𝑆1
𝑢 ∈ 𝐷𝑆1 do

10: for each 𝐷
𝑆2
𝑣 ∈ 𝐷𝑆2 do

11: if 𝑖𝑑𝐷
𝑆1
𝑢 ≃ 𝑖𝑑𝐷

𝑆2
𝑣 then

12: 𝐷𝑆′ ← 𝐷𝑆′ ∪𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐷𝑆1
𝑢 , 𝐷

𝑆2
𝑣) ;

13: end if
14: end for
15: end for
16: for each 𝐷𝑆′

𝑘
∈ 𝐷𝑆′ do

17: for each 𝐻
𝐷𝑆′
𝑘

𝑚 ∈ 𝐻𝐷𝑆′
𝑘 do

18: if �𝑖
𝐷𝑆′
𝑘

𝑟 ∈ 𝐼𝐷
𝑆′
𝑘 , (𝑖

𝐷𝑆′
𝑘

𝑟 is on 𝐻
𝐷𝑆′
𝑘

𝑚) ∨ (𝑖
𝐷𝑆′
𝑘

𝑟 is only on

𝐻
𝐷𝑆′
𝑘

𝑚 ∧ (𝐻
𝐷𝑆′
𝑘

𝑚 ∈ 𝐻𝐷𝑆1 ∨𝐻
𝐷𝑆′
𝑘

𝑚 ∈ 𝐻𝐷𝑆2)) then

19: 𝐻
𝐷𝑆′
𝑘 ← 𝐻

𝐷𝑆′
𝑘 −𝐻

𝐷𝑆′
𝑘

𝑚 ;
20: end if
21: end for
22: end for
23: return 𝐷𝑆′

For the dimensions of the two stars, we have two cases: 1. The two
stars have the same number of dimensions and for each dimension
of one schema, there is a dimension havingmatched root parameters
in the other schema. 2. There exists at least one dimension between
the two stars which does not have a dimension having a matched
root parameter in the other.

The dimension merging of two stars is common for the two cases
which is done by algorithm 5𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. We first merge
every two dimensions of the two stars which have unmatched
root parameters because the merging of such dimensions is able to
complete the original dimensions with complementary attributes
(𝐿1-𝐿7). Then the dimensions having matched root parameters are
merged to generate the merged dimensions of the merged multidi-
mensional schema (𝐿8-𝐿15). After the merging and complement of
the instances of the dimension tables, there may be some merged
hierarchies to which none of the instances belong. In this case, if
there will be no more update of the data, such hierarchies should
be deleted. There may also be original hierarchies in the merged
dimensions such that there is no instance which belongs to them
but does not belong to any merged hierarchy containing all the pa-
rameters of this original hierarchy. The instances belonging to this

kind of hierarchies belong also to other hierarchies which contains
more parameters,so they become useless and should also be deleted
(𝐿18-𝐿19).

Example 4.11. For the merging of the dimensions of two stars
𝑆1 and 𝑆2 in Figure 8. The dimension 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆1 and the dimen-
sion 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 of 𝑆2 are firstly merged since their root parameters
don’t match but they have other matched parameters. There are
then attributes of dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 of 𝑆2 added into dimension
𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆1. The two dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and the two dimen-
sions 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 have matched root parameters, so they are merged
into the final star schema. After the merging and complement of
the instance, we verify each hierarchy in the merged dimension ta-
bles. If the merging of 𝑆1 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 is as shown in
Figure 5 at the schema level and in Figure 6 at the instance level. In
their merged dimension table 𝐷 ′. We can find that all the instances
belonging to 𝐻4 also belong to 𝐻24 which is a merged hierarchy
containing all the parameters of 𝐻4, so 𝐻4 should be deleted.

We then discuss the merging of the other elements in the two
cases which is processed by algorithm 6𝑀𝑒𝑟𝑔𝑒𝑆𝑡𝑎𝑟 :
Algorithm 6𝑀𝑒𝑟𝑔𝑒𝑆𝑡𝑎𝑟 (𝑆1, 𝑆2)
Output:A merged multidimensional schema which may be a star schema
𝑆′ or a merged constellation schema𝐶′

1: if (|𝐷𝑆1 | = |𝐷𝑆1 |) ∧ (∀𝐷𝑆1
𝑖
∈ 𝐷𝑆1 ∃𝐷𝑆2

𝑗
∈ 𝐷𝑆2 , 𝑖𝑑𝐷

𝑆1
𝑖 ≃ 𝑖𝑑𝐷

𝑆2
𝑗)

then
2: 𝐷𝑆′ ← 𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑆1, 𝑆2) ;
3: 𝑀𝐹𝑆

′
← 𝑀𝐹𝑆1 ∪𝑀𝐹𝑆2 ; 𝐼𝐹𝑆

′
← 𝐼𝐹

𝑆1 ∪ 𝐼𝐹𝑆2 ;
4: 𝐼𝑆𝑡𝑎𝑟𝐹

𝑆′ ← 𝐼𝑆𝑡𝑎𝑟𝐹
𝑆1 ∪ 𝐼𝑆𝑡𝑎𝑟𝐹𝑆2 ;

5: return 𝑆′

6: else
7: 𝐷𝑆′ ← 𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑆1, 𝑆2) ; 𝐹𝐶

′ ← {𝐹𝑆
′
1 , 𝐹𝑆

′
2 };

8: return 𝐶′

9: end if
For the first case, we merge the two fact tables into one fact table

and get a star schema. The measure set of the merged star schema is
the union of the 2 original measures (𝐿3). The fact instances are the
union of the measure instances of the two input star schemata (𝐿4).
The function associating fact instances to their linked dimension
instances of the merged schema is also the union of the functions
of the original schemata (𝐿4).

Figure 8: Star merging example (schema)

An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada

Figure 9: Star merging example (instance)

Example 4.12. For the two original star schemata in Figure 8,
the dimension merging is discussed above so we mainly focus on
the merging of fact table instances here. The dimensions𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ,
𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆1 have respectively matched root parameters in the
dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆2. They also have the same
number of dimensions. Therefore we get a merged star schema
𝑆 ′, the original fact tables are merged by merging the measures of
𝑆1 and 𝑆2 to get the fact table of 𝑆 ′. At the instance level, in Figure 9,
we have the instances of the fact tables, for the instances of 𝐹𝑆1 and
𝐹𝑆2 , the framed parts are the instances having the common linked
dimension instances, so they are merged into the merged fact table
𝐹𝑆
′
, the other instances are also integrated in 𝐹𝑆

′
but with empty

values in the merged instances, but they will not have big impacts
on the analysis, so they will not be treated particularly.

For the second case, since there are unmatched dimensions, the
merged schema should be a constellation schema. The facts of the
original schemata have no change at both the schema and instance
levels and compose the final constellation. (𝐿8)

Example 4.13. This example is simplified in Figure 10 due to the
space limit. For the original star schemata 𝑆1 and 𝑆2, they have
dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 which have the matched root parameters.
They also have their unique dimensions: 𝑇𝑖𝑚𝑒 of 𝑆1 and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡

of 𝑆2. So the merged schema is a constellation schema generated
by merging the dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and by keeping the other
dimensions and fact tables. At the instance level, we just have a
new merged dimension table of𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , the other dimension and
fact tables remain unchanged.

Figure 10: Star merging example (schema)

5 EXPERIMENTAL ASSESSMENTS
To validate the effectiveness of our approach, we applied our al-
gorithms on benchmark data. Unfortunately, we did not find a
suitable benchmark for our problem. So, we adapted the datasets
of the TPC-H benchmark to generate different DWs. Originally,
the TPC-H benchmark serves for benchmarking decision support
systems by examining the execution of queries on large volumes of
data. Because of space limit, we put the test results in github1.

1https://github.com/Implementation111/Multidimensional-DW-merging

5.1 Technical environment and Datasets
The algorithms were implemented by Python 3.7 and were executed
on a processor of Intel(R) Core(TM) i5-8265U CPU@ 1.60GHzwith a
16G RAM. The data are implemented in R-OLAP format through the
Oracle 11g DBMS. The TPC-H benchmark provides a pre-defined
relational schema2 with 8 tables and a generator of massive data.

First, we generated 100M of data files, there are respectively
600572, 15000, 25, 150000, 20000, 80000, 5, 1000 tuples in the table of
𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑁𝑎𝑡𝑖𝑜𝑛, 𝑂𝑟𝑑𝑒𝑟𝑠 , 𝑃𝑎𝑟𝑡 , 𝑃𝑎𝑟𝑡𝑠𝑢𝑝𝑝 , 𝑅𝑒𝑔𝑖𝑜𝑛 and
𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 . Second, to have more deeper hierarchies, we included the
data of 𝑁𝑎𝑡𝑖𝑜𝑛 and 𝑅𝑒𝑔𝑖𝑜𝑛 into 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 , and those
of 𝑃𝑎𝑟𝑡𝑠𝑢𝑝𝑝 into 𝑃𝑎𝑟𝑡 . Third, we transformed these files to generate
two use cases by creating 2 DWs for each case. To make sure that
there are both common and different instances in different DWs,
for each dimension, instead of selecting all the corresponding data,
we selected randomly 3/4 of them. For the fact table, we selected
the measures related to these dimension data. Since the methods in
the related work do not have exactly the same treated components
or objective as the ours, we do not have comparable baseline in our
experiments.

5.2 Star schema generation

Figure 11: Star schema generation

The objective of this experiment is to merge two star schemata
having the same 4 dimensions with the matched lowest level of
granularity for each dimension.

After executing our algorithms, we obtain one star schema as
shown in Figure 11 which is consistent with the expectations. The
parameters of the hierarchies satisfy the relationships of functional
dependency. The run time is 30.70s. The 3 dimensions 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 ,
𝑃𝑎𝑟𝑡 , 𝐷𝑎𝑡𝑒 of the original DWs are merged. Between the differ-
ent dimensions 𝑆1 .𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 and 𝑆2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , there is a matched
attribute 𝑁𝑎𝑡𝑖𝑜𝑛, so they are also merged such that 𝑆1 .𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 pro-
vides 𝑆2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 with the attribute 𝑅𝑒𝑔𝑖𝑜𝑛. Then the𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 in
the merged DW also has the attribute 𝑅𝑒𝑔𝑖𝑜𝑛. We can also observe
that normally, in the merged schema, there should be the original
hierarchy 𝑂𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒 → 𝑀𝑜𝑛𝑡ℎ → 𝑌𝑒𝑎𝑟 of 𝑆2 .𝐷𝑎𝑡𝑒 but which is
deleted. By looking up in the table, we find that there is no tuple
which belongs to this hierarchy but not to𝑂𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒 → 𝑀𝑜𝑛𝑡ℎ →
𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟 → 𝑦𝑒𝑎𝑟 , that’s why it is removed.

At the instance level, the result is shown in github. Table 1 shows
the number of tuples of the original DWs (𝑁1, 𝑁2), of the merged
DW (𝑁 ′) and the number of the common tuples (𝑁∩) (tuples having
2http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

https://github.com/Implementation111/Multidimensional-DW-merging
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

IDEAS 2021, July 14–16, 2021, Montreal, QC, Canada Yuzhao Yang, Jérôme Darmont, Franck Ravat, and Olivier Teste

Customer Supplier Part Orderdate Lineorder
𝑁1 11250 750 15000 1804 252689
𝑁2 11250 750 15000 1804 252821
𝑁∩ 8439 556 11261 1349 105345
𝑁 ′ 14061 944 18739 2259 400165

Table 1: Number of tuples

Customer.RegionSupplier.RegionOrderdate.Semester
𝑁1 X X 1804
𝑁2 X 750 X
𝑁 ′ 9713 846 2259
𝑁+ 9713 96 455

Table 2: Number of attributes

the same dimension key in the original DWs). For each dimension
or fact table, 𝑁 ′ = 𝑁1 + 𝑁2 − 𝑁∩, we can thus confirm that there
is no addition or loss of data. For each tuple in the original tables,
we verify that the all the values are the same with the values in
the merged table. We also find that there are some empty values
of the attribute 𝑅𝑒𝑔𝑖𝑜𝑛 in the dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟

and the attribute 𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟 of the dimension 𝑂𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒 which are
completed. Table 2 shows the number of these attributes in the
original DWs (𝑁1, 𝑁2) and in the merged DW (𝑁 ′), we can then get
the number of the completed values 𝑁+ for these attributes. They
meet the relationship 𝑁 ′ = 𝑁1 + 𝑁2 + 𝑁+.

5.3 Constellation schema generation
The objective of this experiment is to merge two star schemata
having the same 2 dimensions (𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟) with the same
lowest level of granularity for each dimension, as well as 2 different
dimensions (𝑆1 .𝑃𝑎𝑟𝑡 and 𝑆2.𝐷𝑎𝑡𝑒).

Figure 12: Constellation schema generation

At the schema level, the second test generates a constellation
schema like shown in Figure 12. The run time is 32.13s. As ex-
pected, the 2 dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 of the original DWs
are merged, the other dimension and fact tables are not merged. The
dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 gains a new attribute 𝑅𝑒𝑔𝑖𝑜𝑛 by the merging
between 𝑆1 .𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 and 𝑆2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 . We can see that the hierar-
chy𝐶𝑢𝑠𝑡𝑘𝑒𝑦 → 𝑛𝑎𝑡𝑖𝑜𝑛 of𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 which should be in the merged
schema is deleted because there is no tuple which belongs to this
hierarchy but not to 𝐶𝑢𝑠𝑡𝑘𝑒𝑦 → 𝑛𝑎𝑡𝑖𝑜𝑛 → 𝑅𝑒𝑔𝑖𝑜𝑛. The hierarchy
𝑆𝑢𝑝𝑝𝑘𝑒𝑦 → 𝑛𝑎𝑡𝑖𝑜𝑛 of 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 is removed due to the same reason.

At the instance level, the data of experiment can be found in
github. They also meet 𝑁 ′ = 𝑁1 +𝑁2 −𝑁∩. There are empty values

of the attribute 𝑅𝑒𝑔𝑖𝑜𝑛 in the dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟

which are completed which meet 𝑁 ′ = 𝑁1 + 𝑁2 + 𝑁+.
We got the results conforming to our expectations in the tests,

we can thus conclude that our algorithms work well for the different
cases discussed at both schema and instance levels.

6 CONCLUSION AND FUTUREWORK
In this paper, we define an automatic approach to merge two dif-
ferent star schema-modeled DWs, by merging multidimensional
schema elements including hierarchies, dimensions and facts at
the schema and instance levels. We define the corresponding algo-
rithms, which consider different cases. Our algorithms are imple-
mented and illustrated by various examples.

Since we only discuss the merging of DWs modeled as star
schemata in this paper, which is only one (albeit common) pos-
sible DW design, we plan to extend our approach by adding the
merging of DWs modelled as constellation schemata in the future.
There may also be so-called weak attributes in DW components.
Thus, we will consider them in future work. Our goal is to pro-
vide a complete approach that is integrated in our previous work
concerning the automatic integration of tabular data in DWs.

ACKNOWLEDGMENTS
The research depicted in this paper is funded by the French National
Research Agency (ANR), project ANR-19-CE23-0005 BI4people
(Business Intelligence for the people).

REFERENCES
[1] Sina Ariyan and Leopoldo Bertossi. 2011. Structural Repairs of Multidimensional

Databases. In Inter. Workshop on Foundations of Data Management, Vol. 748.
[2] Marko Banek, Boris Vrdoljak, A. Min Tjoa, and Zoran Skočir. 2007. Automating

the Schema Matching Process for Heterogeneous Data Warehouses. In Data
Warehousing and Knowledge Discovery. 45–54.

[3] S. Bergamaschi, M. Olaru, S. Sorrentino, and M. Vincini. 2011. Semi-automatic
Discovery of Mappings Between Heterogeneous Data Warehouse Dimensions. J.
of Computing and Information Technology (dec 2011), 38–46.

[4] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. 2011. Generic Schema
Matching, Ten Years Later. Proc. VLDB Endow. 4, 11 (aug 2011), 695–701.

[5] Elhaj Elamin, Amer Alzaidi, and Jamel Feki. 2018. A Semantic Resource Based
Approach for Star Schemas Matching. IJDMS 10, 6 (dec 2018).

[6] S. Anitha Elavarasi, J. Akilandeswari, and K. Menaga. 2014. A Survey on Semantic
Similarity Measure. Inter. J. of Research in Advent Technology 2 (mar 2014).

[7] Jamel Feki, Jihen Majdoubi, and Faïez Gargouri. 2005. A Two-Phase Approach
for Multidimensional Schemes Integration. In 17th Inter. Conference on Software
Engineering and Knowledge Engineering. 498–503.

[8] M. Kwakye, I. Kiringa, and H. L. Viktor. 2013. Merging Multidimensional Data
Models: A Practical Approach for Schema and Data Instances. In 5th Inter. Con-
ference on Advances in Databases, Data, and Knowledge Applications.

[9] Salvatore T. March and Alan R. Hevner. 2007. Integrated decision support systems:
A data warehousing perspective. Decis. Support Syst. 43, 3 (apr 2007), 1031 – 1043.

[10] Lingling Meng, Runqing Huang, and Junzhong Gu. 2013. A review of semantic
similarity measures in wordnet. IJHIT 6 (jan 2013).

[11] Marius-Octavian Olaru and Maurizio Vincini. 2012. A Dimension Integration
Method for a Heterogeneous Data Warehouse Environment. In Inter. Conf. on
Data Communication Networking, e-Business and Optical Communication Systems.

[12] Christoph Quix, David Kensche, and Xiang Li. 2007. Generic Schema Merging.
In Advanced Information Systems Engineering. 127–141.

[13] Franck Ravat, Olivier Teste, Ronan Tournier, and Gilles Zurfluh. 2008. Algebraic
and Graphic Languages for OLAP Manipulations. Inter. J. of Data Warehousing
and Mining 4 (jan 2008), 17–46.

[14] Oscar Romero and Alberto Abelló. 2009. A Survey of Multidimensional Modeling
Methodologies. Inter. J. of Data Warehousing and Mining 5, 2 (apr 2009).

[15] Riccardo Torlone. 2008. Two approaches to the integration of heterogeneous
data warehouses. Distributed and Parallel Databases 23 (feb 2008), 69–97.

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 An automatic approach for DW merging
	4.1 Hierarchy merging
	4.2 Dimension merging
	4.3 Star merging

	5 Experimental assessments
	5.1 Technical environment and Datasets
	5.2 Star schema generation
	5.3 Constellation schema generation

	6 Conclusion and future work
	Acknowledgments
	References

