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Abstract. We propose a fast and e¢cient sampling strategy to build decision trees

from a very large database, even when there are many numerical attributes which
must be discretized at each step. Successive samples are used, one on each tree node.

Applying the method to a simulated database (virtually in�nite size) con�rms that

when the database is large and contains many numerical attributes, our strategy
of fast sampling on each node (with sample size about n = 300 or 500) speeds up

the mining process while maintaining the accuracy of the classi�er.
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1 Introduction

In this paper we propose a fast and e¢cient sampling strategy to build deci-

sion trees from a very large database, even when there are many numerical

attributes which must be discretized at each step.

Decision trees, and more generally speaking decision graphs, are e¢cient

and simple methods for supervised learning. Their �step by step� character-

istic allows us to propose a strategy using successive samples, one on each

tree node. In that way, one of the decision tree method most limiting aspects

is overcome (analyzed data set reduction as the algorithm goes forward, suc-

cessively dividing the set of training cases).

Working on samples is especially useful in order to analyze very large

databases, in particular when these include a number of numerical attributes

which must be discretized at each step. Since each discretization requires to

sort the data set, this is very time consuming. Section 2 outlines the general

decision tree method, the numerical attributes discretization problem and

our new sampling strategy at each step.

In section 3, we apply the whole method to a simulated database (virtually

in�nite size). The results con�rm that when the database is large and contains

many numerical attributes, our strategy of fast sampling on each node (with

sample size about n = 300 or 500) reduces drastically learning time while

maintaining the accuracy in generalization.
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2 Decision trees and induction graphs

2.1 Induction with graphs

Decision trees (Breiman et al, 1984), and more generally speaking decision

graphs (Zighed and Rakotomalala, 2000), are e¢cient, step by step, and

simple methods for supervised classi�cation. Supervised classi�cation means

that a classi�cation pre-exists and is known for each record in the (training)

database we are working on: the patient has been cured, or not; the client

has accepted a certain o¤er, or not; the machine breaks down, or not. Those

situations have two values; sometimes there are three or more. The �nal ob-

jective is to learn how to assign a new record to its true class, knowing the

available attributes (age, sex, examination results, etc.).

Fig. 1. A decision tree built on Fischer�s Iris dataset. Iris classi�cation learning,

using petale, and sepale, length and width.

The wide utilization of decision tree method is based on its simplicity and

ease of use. One is looking for a dataset partition represented by a lattice

graph (Figure 1). This partition must minimize a certain criterion. Generic

algorithms (Breiman et al., 1984) (Quinlan, 1986) make local optimization.

In spite of their simplicity, decision trees have a very good predictive power

compared with more complex method such as Neural Network (Quinlan,

1993). Nowadays, as Knowledge Discovery in Databases (KDD) is growing

fast (Fayyad et al., 1996), one can note a growing number of studies on

decision trees and induction graphs, as well as broad software di¤usion.

2.2 Using continuous attributes in decision trees

Most training-by-examples symbolic induction methods (Cohen, 1995) have

been designed for categorical attributes, with �nite value sets. For instance
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�sex� has two values: male or female. However, when we want to use contin-

uous attributes (income, age, blood pressure, etc.), we must divide the value

set in intervals so as to convert the continuous variable into a discrete one.

This process is named �discretization�. The importance of this research area

has recently become apparent.

Ever-growing data, due to the extensive use of computers, the ease of data

collection with them and the advance in computer technology, drive datamin-

ers into handling databases comprising varied type and non pre-processed

attributes.

The �rst methods for discretization were relatively simple, and few papers

have been published to evaluate their e¤ects on machine learning results.

From the beginning of the �90s much theoretical research has been done

on this issue. The general problem has been clearly formulated (Lechevallier,

1990) and several discretization methods are now in use (Zighed et al., 1998).

Initial algorithms processed discretization during the pre-processing stage:

each continuous attribute was converted to a discrete one; after which, a

regular symbolic learning method was used.

Within the particular framework of the decision graphs, it is possible

to simplify the discretization of a continuous attribute by carrying out a

binary local cutting. The process is as follows: on each node of the tree,

each continuous variable is �rst of all sorted, then all the possible cutting

points are tested so as to �nd the binary cut which optimizes a criterion such

as information gain or mutual information measure (Shannon and Weaver,

1949).

This strategy thus makes it possible to compare the predictive capacity

of all the attributes, whether continuous or not. In spite of this simplicity, we

are facing here one of the principal bottlenecks in the development of graphs.

Cross tabulation, on which the criteria of the partitions are calculated, is a

relatively inexpensive phase: it is of O(n). On the other hand the processing of

the continuous variables requires initially a sorting of the values in ascending

order which, in the best case, is of O(n logn). This is why we propose to use

sampling by reducing the number n of records to which these calculations

apply.

2.3 Using successive samples, one on each tree node

To each node of the graph corresponds a subpopulation; it can be described

by the conjunction of the attribute values located on the outgoing path from

the root to the considered node. Thus, to split a node, the following general

framework reduces dramatically the computing time :

1. draw a sample from the subpopulation corresponding to the node (see

Figure 2);

2. use this sample to discretize continuous attributes and to determine the

best splitting attribute.
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Fig. 2. Sampling and re-sampling on each node to build a decision tree.

Sampling should save time during data processing, but the sampling op-
eration itself should not be time consuming. One can use very fast sampling
methods (Vitter, 1987).

In order to determine the sample size, elements of statistical theory (using
statistical test power function and non central chi-squared distribution) are
presented in (Chauchat and Rakotomalala, 1999). Samples of a few hundred
are usually enough to determine interesting predictive attributes.

3 Implementation on simulated databases

Wewill now apply the whole method (with sampling and binary discretization
on each node of the tree) to a well known arti�cial problem: the �Breiman�s
waves� (Breiman et al., 1984). In § 2.6 of his book, Breiman poses this prob-
lem, now traditional: each of three classes is characterized by a speci�c weight-
ing combination of 21 pseudo-random standardized normal variables.

We generated 100 times two �les, one of 500;000 records for the training,
the other of 50;000 records for the validation. Binary discretization was pre-
processed on each node for each attribute. Sample size drawn from the �le
on each node varies from n = 100 to n = 500. ID3 method has been used
because it is fast; it uses pre-pruning with the Â

2- test.
The learning time is quasi null for n = 100 because the tree stops very

quickly, even immediately: the pruning Â

2-test has a low power (if n is too
small, the observed-Â

2 is small too, even if an attribute is useful). From
n = 200, the run time increases a little quicker than linearly with n, in
accordance with theory (nlog(n)).

Figure 3 shows how the error in generalization decreases as the sample
size n increases. Even for this problem considered as a di¢cult one, the
marginal pro�t becomes weak starting from sample sizes of n = 300 records;
one approaches then 19%; the minimum of error in generalization obtained
with trees using the entire database, (with its N = 500;000 records).
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Fig. 3. Average ERROR RATE according to the sample size drawn on each node

(Breiman�s Waves Dataset; Optimal discretization of 21 continuous attributes at
each step).

These results have been con�rmed by several empirical studies on real

databases. From a sample of approximately 300 records on each node, we

obtain trees error rate close to that obtained using the whole database.

4 Conclusions

Decision trees, and more generally speaking decision graphs, are e¢cient, step

by step, and simple methods for supervised classi�cation. However, mining on

very large databases, in particular when these include a number of numerical

attributes which must be discretized at each step, is very time consuming. In

these cases, working on samples is especially useful. The decision tree �step by

step� characteristic allows us to propose a strategy using successive samples,

one on each tree node. Empirical evidences show that our strategy of fast

sampling on each node (with samples size about n = 300 or 500) reduces

considerably learning time while preserving the accuracy. Sampling in data

mining is not a new approach. (Toivonen, 1996) for instance is looking for

the minimum sample size to get all the useful association rules. Our goal

is di¤erent : we are not looking for the same decision tree as that built on

the whole databases, what is impossible using a sample, but one which have

roughly the same error rate.

This work raises some open questions. Optimal sampling methods (strati-

�ed random sampling, selection with unequal probabilities, etc.) may be used.

However, those methods were developed for surveys on economic or sociolog-

ical �elds, when the cost of the information collected is high compared to

calculation time. They must be adapted for data mining: in our situation

the information is already known, it is in the database. We have to check if

the gain in accuracy obtained by these methods, the sample size being �xed,

may not be supplied by sample size enlargement, for the same learning time.

An interesting way may be the balanced sampling strategy on each node

(Chauchat et al., 1998).
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An other question is the implementation of sampling in the core of the

queries in databases.
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