1. Supports

[REF 1] Rakotomalala R., « Analyse discriminante linéaire » ; http://eric.univ-lyon2.fr/~ricco/cours/slides/analyse_discriminante.pdf

[REF 2] Wikipédia, « Analyse discriminante linéaire » ;

https://fr.wikipedia.org/wiki/Analyse_discriminante_linéaire

[REF 3] Chavent M., « Analyse discriminante linéaire et quadratique », 2015 (en particulier les sections 3 et 5) ;

http://www.math.u-bordeaux.fr/~machaven/wordpress/wp-content/uploads/2013/10/Analyse discrim.pdf

2. Outils – Excel + Tanagra

1. Chargez et installer le logiciel Tanagra sur votre ordinateur

http://chirouble.univ-lyon2.fr/~ricco/tanagra/fr/tanagra.html

2. Intégrez Tanagra dans Excel en tant que macro complémentaire

http://tutoriels-data-mining.blogspot.fr/2010/08/ladd-in-tanagra-pour-excel-2007-et-2010.html

3. Données

Nous utilisons les données « **breast_train_test.xlsx** » en provenance du serveur UCI (<u>Breast Cancer</u> <u>Wisconsin</u>). Il s'agit de prédire le caractère malin ou non d'une cellule (variable CLASSE) à partir de ses propriétés (CLUMP ... MITOSES).

- a. Le classeur Excel dispose de 2 feuilles : « Apprentissage » contient l'échantillon d'apprentissage ; « Test » correspond à l'échantillon test.
- b. On considère que « begnin » de CLASSE est la modalité positive. Ce commentaire est important lorsqu'il s'agira de calculer les ratios d'évaluation (sensibilité, précision) à partir de la matrice de confusion.

4. Modélisation, prédiction, évaluation

Appuyez-vous sur le tutoriel suivant pour l'élaboration du modèle prédictif sous Tanagra : <u>http://tutoriels-data-mining.blogspot.fr/2008/04/analyse-discriminante-linaire.html</u>. Nous ne procédons pas à la sélection de variables dans cette première étape.

<u>A rendre :</u> un fichier Excel avec des commentaires et le détail des calculs sur la feuille TEST du classeur.

 Ouvrez le fichier « breast_train_test.xlsx » dans Excel. Enumérez les variables disponibles et leurs types (quantitative ou qualitative). De combien d'observations disposons-nous dans l'échantillon d'apprentissage ? Dans l'échantillon test ? En suivant le tutoriel : importez les données d'apprentissage dans Tanagra, définissez les variables INPUT et TARGET de l'étude, puis lancer la modélisation avec le composant LINEAR DISCRIMINANT ANALYSIS. Vous devriez obtenir le résultat suivant :

Data description													
Target attribute	e classe (2 value	es)											
# descriptors	9												
MANOVA													
Stat	Value	p-value											
Wilks' Lambda	0.1677	-											
Bartlett C(9)	702.6140	0.0000											
Rao F(9, 390)	215.0572	0.0000											
LDA Sumn	narv												
LDA Sumn	n ary Classificatio	n functions		Statistical E	valuation								
LDA Sumn	Classificatio	n functions malignant	Wilks L.	Statistical E Partial L.	Evaluation F(1,390)	p-value							
Attribute	Classificatio Degnin 0.754582	n functions malignant 1.713715	Wilks L. 0.191282	Statistical E Partial L. 0.876741	valuation F(1,390) 54.82902	p-value 0.00000							
Attribute clump ucellsize	Classificatio Degnin 0.754582 -0.199456	n functions malignant 1.713715 0.467517	Wilks L. 0.191282 0.171002	Statistical F Partial L. 0.876741 0.980717	F(1,390) 54.82902 7.66830	p-value 0.000000 0.00588							
Attribute clump ucellsize ucellshape	Classificatio begnin 0.754582 -0.199456 -0.031990	n functions malignant 1.713715 0.467517 0.459733	Wilks L. 0.191282 0.171002 0.169424	Statistical R Partial L. 0.876741 0.980717 0.989852	F(1,390) 54.82902 7.66830 3.99836	p-value 0.00000 0.00588 0.04623							
Attribute clump ucellsize ucellshape mgadhesion	Classificatio begnin 0.754582 -0.199456 -0.031990 -0.031578	n functions malignant 1.713715 0.467517 0.459733 -0.091141	Wilks L. 0.191282 0.171002 0.169424 0.167778	Statistical R Partial L. 0.876741 0.980717 0.989852 0.999562	Evaluation F(1,390) 54.82902 7.66830 3.99836 0.17104	p-value 0.00000 0.00588 0.04623 0.679413							
Attribute clump ucellsize ucellshape mgadhesion sepics	Classificatio begnin 0.754582 -0.199456 -0.031990 -0.031578 0.812397	n functions malignant 1.713715 0.467517 0.459733 -0.091141 1.383152	Wilks L. 0.191282 0.171002 0.169424 0.167778 0.171620	Statistical R Partial L. 0.876741 0.980717 0.989852 0.999562 0.977187	Evaluation F(1,390) 54.82902 7.66830 3.99836 0.17104 9.10491	p-value 0.00000 0.00588 0.04623 0.67941 0.00271							
Attribute clump ucellsize ucellshape mgadhesion sepics bnuclei	Classificatio begnin 0.754582 -0.199456 -0.031990 -0.031578 0.812397 0.255668	n functions malignant 1.713715 0.467517 0.459733 -0.091141 1.383152 1.430277	Wilks L. 0.191282 0.171002 0.169424 0.167778 0.171620 0.215831	Statistical R Partial L. 0.876741 0.980717 0.989852 0.999562 0.977187 0.777020	F(1,390) 54.82902 7.66830 3.99836 0.17104 9.10491 111.91780	p-value 0.00000 0.00588 0.04623 0.67941 0.00271 0.00271							
Attribute clump ucellsize ucellshape mgadhesion sepics bnuclei bchromatin	Classificatio begnin 0.754582 -0.199456 -0.031578 0.812397 0.255668 0.694874	n functions malignant 1.713715 0.467517 0.459733 -0.091141 1.383152 1.430277 1.223167	Wilks L. 0.191282 0.171002 0.169424 0.169778 0.171620 0.215831 0.171575	Statistical R Partial L. 0.876741 0.980717 0.989852 0.999562 0.977187 0.777020 0.977445	F(1,390) 54.82902 7.66830 3.99836 0.17104 9.10491 111.91780 8.99955	p-value 0.000000 0.00588 0.046238 0.679413 0.002710 0.000000 0.00287-							
Attribute clump ucellsize ucellshape mgadhesion sepics bnuclei bchromatin normnucl	Classificatio begnin 0.754582 -0.199456 -0.031990 -0.031578 0.812397 0.255668 0.694874 -0.084429	n functions malignant 1.713715 0.467517 0.459733 -0.091141 1.383152 1.430277 1.223167 0.232631	Wilks L. 0.191282 0.171002 0.169424 0.169778 0.171620 0.215831 0.171575 0.170015	Statistical I Partial L. 0.876741 0.980717 0.989852 0.999562 0.9977187 0.777020 0.977445 0.986410	F(1,390) 54.82902 7.66830 3.99836 0.17104 9.10491 111.91780 8.99955 5.37306	p-value 0.000000 0.005888 0.046238 0.679413 0.002716 0.000000 0.002874 0.0020965							
Attribute clump ucellsize ucellshape mgadhesion sepics bnuclei bchromatin normnucl mitoses	Classificatio begnin 0.754582 -0.199456 -0.031990 -0.031578 0.812397 0.255668 0.694874 -0.084429 0.230869	n functions malignant 1.713715 0.467517 0.459733 -0.091141 1.383152 1.430277 1.223167 0.232631 0.214804	Wilks L. 0.191282 0.171002 0.169424 0.167778 0.171620 0.215831 0.171575 0.170015 0.167708	Statistical I Partial L. 0.876741 0.980717 0.989852 0.999562 0.977187 0.777020 0.977445 0.986410 0.999981	F(1,390) 54.82902 7.66830 3.99836 0.17104 9.10491 111.91780 8.99955 5.37306 0.00746	p-value 0.000000 0.005888 0.046238 0.679413 0.002716 0.000000 0.00287 0.0020967 0.931211							

- A l'aide du menu COMPONENT / COPY RESULTS de Tanagra, copiez les sorties de l'analyse discriminante <u>dans la feuille TEST</u> du classeur Excel. Conservez uniquement le tableau contenant les coefficients des fonctions de classement « Classifications functions ».
- Calculez, pour chaque individu de l'échantillon test, les scores « begnin » et « malignant », puis en déduire la prédiction du modèle (qui correspond au max. des deux scores) [<u>REF 1</u>, page 6]. Les premières lignes de votre feuille de calcul TEST devrait se présenter comme suit :

clump	ucellsiz	ucellsh ma	jadh s	epics I	bnucle	bchron	normn	mitose	classe	d(begnin)	d(malignant)	prediction	LDA Sum	mary					
1	1	3	1	2	1	1	1	1	begnin	0.018561	-13.98821	begnin							
3	1	1	1	2	1	1	1	1	begnin	1.591705	-11.480246	begnin		Classification	n functions		Statistic al	Evaluation	
5	1	4	1	2	1	3	2	1	begnin	4.310218	-3.994652	begnin	Attribute	begnin	malignant	Wilks L.	Partial L.	F(1,390)	p-value
6	2	3	1	2	1	1	1	1	begnin	3.592015	-4.952118	begnin	clump	0.754582	1.713715	0.191282	0.876741	54.82902	0
5	1	3	1	2	1	1	1	1	begnin	3.036889	-7.13335	begnin	ucellsize	-0.199456	0.467517	0.171002	0.980717	7.6683	0.005888
4	1	1	1	2	1	3	2	1	begnin	3.651606	-7.087566	begnin	ucellshape	-0.03199	0.459733	0.169424	0.989852	3.99836	0.046238
8	6	5	4	3	10	6	1	1	malignant	10.73242	21.362903	malignant	mgadhesion	-0.031578	-0.091141	0.167778	0.999562	0.17104	0.679413
1	1	3	1	2	4	2	1	1	begnin	1.480439	-8.474212	begnin	sepics	0.812397	1.383152	0.17162	0.977187	9.10491	0.002716
1	1	3	1	1	1	2	1	1	begnin	-0.098962	-14.148195	begnin	bnuclei	0.255668	1.430277	0.215831	0.77702	111.9178	0
5	1	1	1	2	1	3	1	1	begnin	4.490617	-5.606482	begnin	bchromatin	0.694874	1.223167	0.171575	0.977445	8.99955	0.002874
1	1	1	2	1	3	1	1	7	begnin	1.135116	-12.232591	begnin	normnucl	-0.084429	0.232631	0.170015	0.98641	5.37306	0.020967
6	1	1	1	2	1	3	1	1	begnin	5.245199	-3.892767	begnin	mitoses	0.230869	0.214804	0.167708	0.999981	0.00746	0.931211
7	5	6	10	4	10	5	3	1	malignant	9.904501	19.719805	malignant	constant	-3.130793	-23.324683				

- A partir des colonnes CLASSE et PREDICTION, construisez la matrice de confusion et calculez les ratios de performance : taux d'erreur, sensibilité (rappel), précision [INTRO APPRENTISSAGE, page 10], en considérant que « classe = begnin » est la modalité positive de l'étude.
- 6. La qualité du modèle est-elle satisfaisante ?

5. LDA sous R

Nous réitérons l'analyse sous R en utilisant la procédure Ida() du package MASS. Inspirez-vous de <u>http://tutoriels-data-mining.blogspot.fr/2012/07/analyse-discriminante-lineaire.html</u>, à partir de la page 19.

<u>A rendre :</u> un rapport .docx issu d'un projet R Markdown sous RStudio

- Importez la première feuille « Apprentissage » de « breast_train_test.xlsx » dans un premier data frame que vous nommerez DFApp.
- Construire le modèle prédictif, « classe » est la cible, les autres variables sont les explicatives. Utilisez la procédure lda() du package MASS qu'il faut charger au préalable. MASS est installé par défaut, il n'est pas nécessaire de l'importer à partir du web.
- 3. Affichez les coefficients du modèle. Ne vous attardez pas dessus, la présentation de lda() est différente des autres logiciels.
- 4. Importez la seconde feuille « Test » du classeur dans DFTest.
- 5. Réalisez la prédiction sur l'échantillon test (predict).
- 6. Pour construire la matrice de confusion, croisez les valeurs observées de la cible (classe) avec celles prédites par le modèle (table).
- Calculez alors les différents indicateurs de performance des modèles (taux d'erreur, sensibilité, précision). Vous devez obtenir exactement les mêmes résultats que sous Excel + Tanagra.

6. LDA sous Python

Nous réitérons l'analyse sous Python avec la classe LinearDiscriminantAnalysis de « scikit-learn » (http://scikit-learn.org/stable/modules/generated/sklearn.discriminant analysis.LinearDiscriminantAnalysis.html). Inspirez-vous du tutoriel : <u>http://tutoriels-data-mining.blogspot.com/2015/09/python-machine-learning-avec-scikit.html</u>

A rendre : un fichier PDF imprimé à partir d'un notebook JUPYTER

<u>Remarque</u>: La séquence des traitements est exactement identique à celle sous R, avec des commandes différentes bien sûr. Petite différence par rapport à R quand même, à l'issue de l'apprentissage, les coefficients et la constante fournies par l'outil sont comparables avec ceux fournis par les autres logiciels. Faites le rapprochement avec les sorties de TANAGRA par exemple. Que constatez-vous ?