Objectif

Montrer l'utilisation du composant CANONICAL DISCRIMINANT ANALYSIS, connue en français sous l'appellation « Analyse Factorielle Discriminante » ou encore « Analyse Discriminante Descriptive ».

L'objectif de cette méthode est de produire, à partir d'un ensemble d'individus répartis dans des groupes décrits par plusieurs descripteurs, de nouvelles variables, les axes factoriels, on parle aussi de variables discriminantes, qui séparent au mieux les groupes.

Fichier

Nous travaillerons sur le fichier WINE_QUALITY.XLS¹. Il recense 34 crus du bordelais répartis en 3 groupes « bon », « moyen », « médiocre » ; les descripteurs correspondent à des variables météorologiques (somme des températures journalières, jours d'ensoleillement, jours de chaleur, pluie).

Analyse Factorielle Discriminante

Importer les données

Première étape toujours, créez un nouveau diagramme et importez les données à l'aide du menu FILE / NEW.

¹ Extrait de M. Tenenhaus, « Méthodes Statistiques en Gestion », Edition Dunod, 1996, p. 244 (Tableau 1) – Il s'agit de données annuelles sur la période 1924 – 1957.

Définir l'analyse

A l'aide du composant DEFINE STATUS, placez la variable QUALITY en TARGET, et les autres variables en INPUT; puis insérez le composant CANONICAL DISCRIMINANT ANALYSIS.

💇 TANAGRA 1.3.5 - [[Define status 1]					X		
The Diagram Compor	nent Window Help					a x		
Defa	ault title	Define status 1						
🖃 🧮 Dataset (wine_q	Parameters							
	l Discriminant Analysis 1	Target : 1 Input : 4 Illustrative : 0						
	1		Results	i.				
		Attribute	Target	Input yes yes yes	Illustrative			
	Temperature (°C)	- - -	-					
			Sun (h)		-			
			Heat (days)		-			
		Rain (mm)	-	yes	-			
		Quality	yes	2	-	_		
<u> </u>						×		
	Сотро	nents			-			
Data visualization	Statistics	Nonparametri	c statisi	tics				
Instance selection	Feature construction	Feature se						
Regression	Factorial analysis	PLS						
Clustering	Spolearning	Meta-spv l						
Spv learning assessment	Scoring	Associa						
Canonical Discriminar Multiple Correspond NIPALS Principal Component	nt Analysis ance Analysis Analysis							

Lecture des résultats

Les résultats sont répartis dans 3 tableaux qui indiquent respectivement le pouvoir discriminant des axes factoriels; les coefficients des équations de projections sur les axes factoriels; les corrélations entre les variables et les axes factoriels.

Dans notre cas, nous constatons que deux axes factoriels ont été produits, le premier résume déjà 95,9% de la variance expliquée, le second axe n'est pas significatif, la p-value du test de Bartlett est de 0,28.

Analyse Factorielle Discriminante

				Results										
Roots and Wilks' Lambda														
Root	Eigenvalue	Proporti	on Cano	nical R	Wilks Lambda	CHI-3	2	d.f.		p-value				
1	3.27886	0.95	945 0	.875382	0.205263	3 46.	46.7122		8	0.00000				
2	0.13857	1.00	000 0	.348867	0.878292	2 3.	8284		3	0.28059				
Canonical	Canonical Discriminant Function													
Coefficients	Unst	Unstandardized		Standardized										
Attribute	Root n °1	Roo	tn°2	Root n °1	Root n	°2								
Temperature (°C	:) -0.00	186	0.0000	-0.7509	0.0	0041								
Sun (h)	-0.00	168	0.0053	-0.5476	0.4	4309								
Heat (days)	0.02	71	-0.1278	0,1984	-0.9	9362								
Rain (mm)	0.00	159	-0.0062	0.4456	-0.4	4690								
constant	32.911	35 -2	2, 16759		-									
Factor Str	actor Structure Matrix - Correlations													
Root		Root n °1			Root n °2									
Descriptors	Total	Within	Between	Total	Within	Between								
Temperature (°C) -0.901	-0.724	-0.987	-0.375	-0.584	-0.164								
Sun (h)	-0.897	-0.701	-0.999	0.116	0.176	0.052								
Heat (days)	-0.771	-0.525	-0.956	-0.590	-0.780	-0.292								
Rain (mm)	0.663	0.398	0.977	-0.361	-0.421	-0.212								

Les coefficients non-standardisés (bruts) nous permettent d'effectuer une projection pour une nouvelle observation. Par exemple, sur le premier axe Z1, avec TEMPERATURE = 3000, SUN = 1100, HEAT = 20 et RAIN = 300, nous obtiendrons sa coordonnée sur le premier axe avec : $-0.0086 \times 3000 + -0.0068 \times 1100 + 0.0271 \times 20 + 0.0059 \times 300 + 32.91135 = 1.9435$

Les coefficients standardisés correspondent au produit des coefficients bruts avec l'écart type intra-classes des variables. Ils permettent de comparer l'importance des variables dans la construction des axes factoriels en supprimant les disparités dues à l'utilisation d'échelles différentes pour mesurer les données.

Enfin, dernier tableau, la matrice de structure indique les corrélations totales, intra-classes et inter-classes, entre les variables et les axes factoriels. Tout comme les coefficients standardisés, ils fournissent de bonnes indications pour l'interprétation des axes factoriels.

Représentation graphique

Il est possible de représenter les données dans le plan formé par les 2 axes factoriels. Pour ce faire, ajoutez un composant SCATTERPLOT dans le diagramme.

Analyse Factorielle Discriminante

Sélectionnez les variables adéquates dans les listes déroulantes (CDA_AXIS), le graphique est d'autant plus intéressant que nous pouvons illustrer les points selon leur groupe d'appartenance (QUALITY). Nous constatons que le premier axe factoriel permet de discerner la qualité des vins : plus la valeur est forte, moins bon sera le cru. Pour la nouvelle observation ci-dessus, nous pouvons prédire que ce cru (Z1 = 1.9435) sera vraisemblablement de qualité médiocre.

