Objectif

Dans ce didacticiel, nous montrons l'utilisation du composant FRIEDMAN'S ANOVA BY RANKS qui implémente un test de comparaison de populations sur des échantillons appariés. Nous comparons les résultats avec le test ANOVA standard pour échantillons indépendants, nous verrons que les conclusions peuvent être totalement opposées.

Fichier

Nous travaillons sur le fichier HOWELL_P_742_K_RELATED_SAMPLES.XLS¹. Il décrit 17 conférenciers qui ont été notés par un jury dans 3 circonstances différentes : une présentation orale sans supports visuels (None) ; une présentation avec quelques supports (Some) ; une présentation avec profusion de supports (Many). Notre ensemble de données contient donc 17 lignes (conférenciers) et 3 variables, correspondant à la note obtenue dans chaque cas.

None	Some	Many
50	58	54
32	37	25
60	70	63
58	60	55
41	66	59
36	40	28
26	25	20
49	60	50
72	73	75
49	54	42
52	57	47
36	42	29
37	34	31
58	50	56
39	48	44
25	29	18
51	63	68

Tableau 1 -- Note des conférenciers selon le type de support utilisé

Notre objectif est de vérifier, au niveau de signification de 1%, l'influence du type de support utilisé sur la qualité de la présentation. Il est très important de souligner que nos 3 échantillons ne sont pas indépendants, nous devons en tenir compte lors de nos tests en éliminant les disparités dues aux conférenciers. C'est précisément le propos du test de Friedman, il agit comme une analyse de variance à deux facteurs : le premier facteur est le « type de support », le second étant le facteur « conférencier » ; il permet de tester que les 3 échantillons proviennent d'une même et seule population.

¹ Extrait de l'édition française de l'ouvrage de D. Howell, « Statistical Methods for Psychology », Duxbury, 1997, p. 742.

ANOVA sur échantillons appariés

Importer les données

Pour créer un nouveau diagramme et importer les données, nous activons le menu FILE / NEW. Nous sélectionnons le fichier ci-dessus.

Test de Friedman

Insérez le composant DEFINE STATUS dans le diagramme et placez les 3 variables en INPUT ; ajoutez le composant FRIEDMAN'S ANOVA BY RANKS.

💇 TANAGRA 1.3.5 - [Defi	ne status 1]						
Tile Diagram Component	Window Help					_	6 X
D 📽 🖪 🎎							
	Default title			RC	suus		~
🖃 🏢 Dataset (howell p 7	Att	ribute	Target	Input	Illustrative	_	
Define status 1				-	yes	5	
Friedman's Al	NOVA by Ranks 1	Sorr	e	-	yes	-	=
		Mar	iy	- 1	yes	-	
							×
l.	Comp	mente					
Data visualization	Statistics	Statistics Nonparametric statistics					
Instance selection	Feature construction	Feature selection					
Regression	Factorial analysis	PLS					
Clustering	Spv learning	Meta-spv learning					
Spv learning assessment	Scoring	Association					
🖪 Contingency Chi-Square	Kendall's tau	📥 Moo	d Runs	s Test		<u>⊪ii</u> ⊾ Wa	ld-Wol
📴 Friedman's ANOVA by Rar	nks 👖 Kruskal-Wallis 1-way	ANOVA 📑 Sign	Test			∷ ∷ ₩il	coxon
Hu Kendall's Concordance w	💳 🔟 Mann-Whitney Com	parison 🛛 🕍 Spea	arman's	s rho			
<							>

Friedman Two-Way ANOVA by ranks

Les résultats montrent que le type de support utilisé influe significativement sur les performances du présentateur.

Friedman's ANOVA by Ranks 1								
		Parame	ters					
		Resu	tts					
Results								
	RANKS Friedman Statistic							
Att.	Sum(Ranks)	Mean(Ranks)	Stat.	Value				
None	30.0	1.7647	Frideman Fr	10.94118				
Some	45.0	2.6471	d.f.	2				
Many	27.0	1.5882	p-value	0.00421				

La méthode calcule le rang obtenu par le type de support pour chaque conférencier, TANAGRA affiche la somme et la moyenne de ces rangs. Nous constatons sur cet exemple que les performances des conférenciers diffèrent significativement selon le support utilisé : la p-value de la statistique de Friedman, qui suit asymptotiquement une loi du CHI-2, est inférieure au niveau de signification de 1% que l'on s'est choisi, il est souligné en rouge dans ce cas.

Un rapide coup d'œil sur les résultats permet de voir qu'une utilisation raisonnable de supports visuels (SOME) permet aux conférenciers d'être plus performants. Le test de Friedman qui tire parti du contexte de « mesures répétées » permet de le mettre en évidence en évacuant les disparités entre les conférenciers. Si nous omettons cette information, un conférencier particulièrement mauvais quel que soit le contexte peut biaiser les résultats : il améliore certes sa présentation en utilisant quelques supports visuels, mais sa note la plus élevée est plus basse que les notes des autres conférenciers sans supports visuels. C'est le cas par exemple du conférencier n°16 (avant-dernier dans notre tableau de données -- Tableau 1).

Dans ce qui suit, nous allons réitérer notre test de comparaison en ignorant le contexte d'appariement : nous considérons que nous disposons de 3 échantillons indépendants.

ANOVA sur échantillons indépendants

Fichier de données

Fermez le diagramme précédent en activant le menu FILE / CLOSE.

Activez de nouveau le menu FILE / NEW pour créer un nouveau diagramme et importer le fichier HOWELL_P_742_INDEPENDANT_SAMPLES.XLS. Attention, dans ce contexte, le fichier se présente différemment, il recense 51 mesures, une variable indicatrice permet de connaître le type de support associé : nous avons donc un tableau de 51 lignes et 2 colonnes.

Point	Slides
50	None
32	None
60	None
58	None
37	None
58	None
39	None
25	None
51	None
58	Some
37	Some

Tableau 2 -- Format du tableau de données dans le contexte d'échantillons indépendants

Analyse de variance

Pour réaliser une ANOVA, insérez le composant DEFINE STATUS dans le diagramme, la variable POINTS est la variable TARGET, SLIDES est INPUT. Ajoutez alors le composant ONE WAY ANOVA.

💯 TANAGRA 1.3.5 - [Define	e status 1]							
File Diagram Component	Window Help						_ 8 ×	
D 📽 🖪 👫								
Di	efault title		Target 1		Turu	meters	^	
Dataset (howell_p_74	2_independant_samples.xls))	Input: 1					
One-way ANO	VA 1			1000				
					Re	sults		
			Attribute	Target	Input	Illustrative		
			Point	yes	-	-	_	
			Slides	-	yes	-		
			F				<u> </u>	
		mponents						
Data visualization	Statistics	Nonparan	netric statis	tics	Ins	stance selection		
Feature construction	i edure selection	er Ke	legression Factorial analysis				2	
PLS	PLS Clustering S			pv learning Meta-spv learning				
Spv learning assessment	Scoring	Ass	sociation					
🕁 Bartlett's test	🚺 Group caracterization	n LKKAN	Nore Univari	ate con	it stat	🔄 🛃 One-way MAI	NOVA	
🚰 Brown - Forsythe's test	🛱 Levene's test	<u>A</u> N	lormality Te:	st		‡ Paired T-Test	to i	
🚠 Fisher's test	🖄 Linear correlation	C III C)ne-way AN(AVC		🛄, T-Test		
<							>	

Et là, à notre grande surprise – pas tant que ça en réalité ! – nous constatons que la différence induite par les différents types de supports visuels est totalement masquée : avec ce test qui n'exploite pas toute l'information disponible, l'appariement en l'occurrence, nous aboutissons à une conclusion erronée.

One-way ANOVA 1											
Parameters											
Parameters											
Sort results no											
Results											
Attribute_Y	Attribute_X	oute_X Description Statistical test									
Point	Slides	Value	Examples	Average	Std-dev	Variance decomposition					
		None	17	45.3529	12.8449	Source	Sum of square	d.f.			
		Some	17	50.9412	14,4199	BSS	381.9216	2			
		Many	17	44.9412	17.2933	WSS	10751.7647	48			
		AU	51	47.0784	14.9223	TSS	11133.6863	50			
						Significance level					
						Statistics	Value	Proba			
						Fisher's F	0.852522	0.432692			

Friedman Two-Way ANOVA by ranks

En utilisant un test non-paramétrique similaire, celui de Kruskal-Wallis, nous obtenons la même conclusion erronée.

