1 Objectif

Analyse discriminante linéaire - Comparaison des logiciels Tanagra, SAS, SPSS et R.

L'analyse discriminante linéaire est une technique prédictive très populaire auprès des statisticiens et des data scientists. En effet, elle cumule des qualités intéressantes : elle est relativement rapide sur des grandes bases ; elle sait traiter directement les problèmes multiclasses (les variables cibles à plus de 2 modalités) ; elle génère un classifieur linéaire, facile à interpréter ; elle est robuste et plutôt stable, même appliquée sur des petites bases ; elle dispose d'un mécanisme intégré de sélection de variables. Pour ma part, je l'apprécie énormément car elle se prête à de multiples interprétations (probabilistes, géométriques), éclairant ainsi différentes facettes de l'apprentissage supervisé.

L'analyse discriminante est à la fois une méthode prédictive et descriptive. Dans le premiers cas, on se réfère souvent à l'analyse discriminante linéaire. On cherche à produire un système de classement qui permet d'affecter un groupe à un individu selon ses caractéristiques (les valeurs prises par les variables indépendantes). Dans le second cas, on parle d'analyse factorielle discriminante. L'objectif est de produire un système de représentation synthétique où l'on distinguerait au mieux les groupes, en fournissant les éléments d'interprétation permettant de comprendre ce qui les réunit ou les différencie. Les finalités ne sont donc pas intrinsèquement identiques même si, en creusant en peu, on se rend compte que les deux approches se rejoignent. Certaines références bibliographiques entretiennent d'ailleurs la confusion en les présentant dans un cadre unique.

Tanagra opère clairement la distinction en proposant les deux méthodes dans des composants différents : LINEAR DISCRIMINANT ANALYSIS (onglet SPV LEARNING) pour la prédiction, CANONICAL DISCRIMINANT ANALYSIS (onglet FACTORIAL ANALYSIS) pour la description. Il en est de même pour SAS avec respectivement les procédures DISCRIM et CANDISC. D'autres en revanche les associent. C'est le cas des logiciels SPSS et R, mélangeant des résultats de teneur différente. Pour les spécialistes qui savent distinguer les éléments importants selon le contexte, cet amalgame n'est pas un problème. Pour les néophytes, c'est un peu plus problématique. On peut être perturbé par des informations qui ne semblent pas en rapport direct avec les finalités de l'étude.

Dans ce tutoriel, nous détaillons¹ dans un premier temps les sorties de Tanagra concernant l'analyse discriminante linéaire. Dans un second temps, nous les mettrons en parallèle avec les

¹ Voir Références (section 8) pour les supports de cours associés.

résultats fournis par les logiciels R, SAS et SPSS. L'objectif est de discerner les informations importantes pour l'analyse prédictive c.-à-d. obtenir un système simple d'affectation des individus aux classes, avoir des indications sur le rôle (interprétation) et la pertinence (significativité) des variables, et disposer d'un mécanisme de sélection de variables.

2 Données

Nous traitons le fichier « <u>alcohol.xls</u> ». Nous souhaitons prédire le type (kirsch, mirabelle, poire ; 3 modalités) d'un liquide alcoolisé contenu dans un verre selon sa composition (butanol, méthanol, etc. ; 6 variables). Nous disposons de 77 observations.

3 Analyse discriminante avec Tanagra

3.1 Importation des données

Après avoir démarré Tanagra, nous créons un nouveau diagramme en actionnant le menu FILE / NEW. Nous sélectionnons le fichier '**alcohol.xls'**.

TANAGRA 1.4.45			P country				
File Diagram Winde Cho	ose your dataset and start do	wnload					
New	Diagram title : Default title Data mining diagram file m D:\TemplExe\default.tdm Dataset (*.txt.*.arff.*.xls) : Jev_and_comparison\disc	ame : riminant_an	alysis\tanagra sas	s spss/alcohol.xls (X
	Checking Missing Value	s	Regarder dans :	🎳 tanagra sas sps	s	- 0 🕫 🖻	·
			Emplacements récents Bureau	텔 alcohol with sor 텔 alcohol.xls	ne calculations.xls)
			<u></u>				
Data visualization	Statistics	Nonpara	Bibliothèques				
Feature selection	Regression	Fact					
Spv learning	Meta-spv learning	Spv lean					
Correlation scatterplot	Scatterplot with label		Ordinateur				
Scatterplot	View multiple scatter	olot			K		
	<u>,</u> ,			Nom du tichier : Types de fichiers ·	alcohol xls	• •	Annuler
<u> </u>				.,,	2000 File (07 0 2000, Ma)		
						within a shall	al al al deministration of the

Nous validons. Tanagra indique le nombre d'observations (77 individus) et de variables (7, en comptant la variable cible TYPE) chargées.

TANAGRA 1.4.45 - [Dataset	t (alcohol.xls)]						• X
Tile Diagram Compor	ent Window	Help					_ 8 ×
D 📽 🖪 🔛							
Default title		7 attribut	e(s)				*
Dataset (alcohol.xls)		77 examp	ole(s)				
		Attribut	e Category	Informations	٦ .		
		TYPE	Discrete	3 values			
		MEOH	Continue				
		ACET	Continue	-	L		
		BU1	Continue	-	Г		
		MEPR	Continue				E
		ACAL	Continue	-			
		LNPRO1	Continue		J		-
		•					4
		(Components	3			
Data visualization	Statist	ics	Nonparar	netric statisti	cs	Instance selection	
Feature construction	Feature se	lection	Re	gression		Factorial analysis	
PLS	Cluster	ing	Sp	/ learning		Meta-spv learning	
Spv learning assessment	Scori	ng	As	sociation			
Correlation scatterplot	Scatterpl	ot	👯 Vie	w dataset			
Export dataset	🖉 Scatterpl	ot with label	Vie	w multiple sc	atterplot		

3.2 Analyse discriminante linéaire

Nous utilisons le composant DEFINE STATUS pour indiquer le rôle des variables : TYPE est la cible (TARGET), les autres (MEOH ... LNPRO1) sont les prédictives (INPUT).

Nous plaçons le composant LINEAR DISCRIMINANT ANALYSIS (onglet SPV LEARNING). Il n'y a pas de paramétrage à effectuer. Nous cliquons sur VIEW pour accéder aux résultats.

3.2.1 Matrice de confusion et erreur en resubstitution

En appliquant le modèle sur les données d'apprentissage, nous obtenons la matrice de confusion en resubstitution et le taux d'erreur associé : 19.48% c.-à-d. (9 + 6) = 15 individus mal classés sur 77.

Clas	Classifier performances								
	Error r	ate	0.1948						
Val	Values prediction		Confusion matrix						
Value	Recall	1-Precision		KIRSCH	MIRAB	POIRE	Sum		
KIRSCH	1.0000	0.0000	KIRSCH	18	0	0	18		
MIRAB	0.7931	0.2813	MIRAB	0	23	6	29		
POIRE	0.7000	0.2222	POIRE	0	9	21	30		
			Sum	18	32	27	77		

L'échantillon d'apprentissage étant juge et partie dans ce processus, on sait que ce taux est souvent trop optimiste.

3.2.2 Evaluation globale du modèle

Le lambda de Wilks est l'indicateur privilégié pour l'évaluation statistique du modèle. Il indique dans quelle mesure les centres de classes sont distincts les uns des autres dans l'espace de représentation. Il varie entre 0 et 1 : vers 0, le modèle sera bon parce que les nuages sont bien

distincts ; vers 1, les nuages sont confondus, il est difficile de discerner les individus appartenant à des classes différentes. Il s'agit en réalité d'un test d'analyse de variance multivariée, on parle de MANOVA².

MANOVA

Stat	Value	p-value
Wilks' Lambda	0.1567	-
Bartlett C(12)	132.5414	0
Rao F(12, 138)	17.5556	0

Dans notre cas, $\Lambda = 0.1567$, c'est plutôt bon signe. L'indicateur n'étant pas tabulé, nous nous tournons vers les transformations de Bartlett (C = 132.5414, avec ddl = 12; loi du χ^2) ou de Rao (F = 17.5556, avec ddl 1 = 12 et ddl 2 = 138; loi de Fisher) pour statuer sur la significativité des écarts. Tous deux aboutissent à la même conclusion : à 5%, on rejette l'hypothèse selon laquelle les centres de classes sont confondus.

En couplant la lecture du test avec celle de la matrice de confusion, nous comprenons que la bonne tenue du modèle tient surtout à la situation de KIRSCH qui se distingue parfaitement des autres modalités de la variable cible. L'analyse descriptive nous le confirmera.

3.2.3 Fonctions de classement

Le tableau suivant décrit les fonctions de classement (partie bleue). Elles servent à affecter les groupes (KIRSCH, POIRE ou MIRAB) aux individus à classer.

	Clas	sification funct	ions
Attribute	KIRSCH	MIRAB	POIRE
MEOH	0.000659	0.015208	0.016407
ACET	0.000445	0.004944	-0.00377
BU1	-0.039342	0.556654	0.553048
MEPR	0.186892	0.035901	0.102271
ACAL	0.039174	-0.160881	-0.127328
LNPRO1	6.378935	4.86937	5.34143
constant	-24.686164	-25.141755	-29.631644

Mettons que nous avons un nouvel individu $\boldsymbol{\omega}$ avec la description suivante :

MEOH	ACET	BU1	MEPR	ACAL	LNPRO1	
707.0	131.0	15.0	28.0	9.0	4.89	

Nous calculons le score de chaque classe. Par exemple, pour KIRSH, nous avons :

² « Comparaison de populations – Tests paramétriques », septembre 2009, chapitre 7.

S(ω, **KIRSCH**) = 0.000659 x 707 + 0.000445 x 131 - 0.039342 x 15 + 0.186892 x 28 + 0.039174 x 9 + 6.378935 x 4.89 - 24.68616 = **12.0264**

Nous faisons de même pour les autres modalités, nous obtenons finalement :

	KIRSCH	MIRAB	POIRE
S(.)	12.0264	17.9763	17.6072

La modalité MIRAB présente le score le plus élevé [S(MIRAB) = 17.9763]. La meilleure prédiction pour cet individu sera donc « TYPE = MIRAB ».

Ce processus de classement est une des principales finalités du data mining prédictif.

3.2.4 Evaluation individuelle des variables prédictives

Les variables ne contribuent pas de manière identique. Il se peut même que certaines aient une faible influence la prédiction. L'analyse discriminante nous propose des outils d'évaluation de la contribution des variables dans la partie « Statistical Evaluation » du tableau (couleur verte).

	Class	ification funct	ions				
Attribute	KIRSCH	MIRAB	POIRE	Wilks L.	Partial L.	F(2,69)	p-value
MEOH	0.000659	0.015208	0.016407	0.205214	0.763359	10.69497	0.00009
ACET	0.000445	0.004944	-0.00377	0.176705	0.88652	4.41622	0.015677
BU1	-0.039342	0.556654	0.553048	0.213115	0.73506	12.43496	0.000024
MEPR	0.186892	0.035901	0.102271	0.192667	0.813074	7.93155	0.000793
ACAL	0.039174	-0.160881	-0.127328	0.161541	0.969735	1.07671	0.346369
LNPRO1	6.378935	4.86937	5.34143	0.171693	0.912399	3.31241	0.042303
constant	-24.686164	-25.141755	-29.631644		-		

Rappelons que le Λ du modèle dans sa globalité est de 0.1567 (Section 3.2.2).

- La première colonne « Wilks L. » indique le Λ du modèle que l'on obtiendrait si l'on retirait la variable. Par exemple, si on décide de reconstruire le modèle après avoir retiré MEOH (et donc en conservant toutes les autres), nous obtiendrons Λ_{-MEOH} = 0.205214. Plus élevé est le différentiel avec le lambda initial, plus la variable est importante puisque son retrait entraîne une forte dégradation (rappelons que plus le lambda est élevé, plus mauvais est le modèle prédictif).
- « Partial L. » indique le rapport entre les lambdas. Ainsi, Partial L.{-MEOH} = 0.1567 / 0.205214 = 0.763.
- Les deux dernières colonnes servent à tester la contribution des variables. Le test est toujours basé sur la confrontation des lambdas. La statistique suit une loi de Fisher. Les probabilités critiques (p-value) permettent de statuer. Dans notre exemple, seule ACAL ne semble pas contribuer significativement à 5% (p-value_{-ACAL} = 0.346369 > 5%).

3.3 Sélection de variables

Nous ne pouvons pas laisser le modèle en l'état. Il faut mettre en œuvre un processus de sélection de manière à intégrer uniquement les variables pertinentes.

La tentation est grande de retirer en bloc l'ensemble des variables non significatives. Cette attitude est à bannir. En effet, elles ne sont pas indépendantes. Il se peut qu'une variable, du fait de sa forte liaison avec une autre, devienne significative lorsque l'on retire cette dernière.

Sélection des variables. Pour contourner cet écueil, on s'appuie sur les procédures pas à pas pour sélectionner les bonnes variables. Soit en adoptant une approche descendante (backward) : on commence avec le modèle complet, on retranche unes à unes les variables – en retirant la moins contributive à chaque étape – jusqu'à ce que les restantes soient toutes significatives. Soit à l'aide d'une approche ascendante (forward) : on part du modèle trivial réduit à la constante, on rajoute unes à unes les variables – en choisissant la plus contributive à chaque étape – tant qu'elles sont significatives.

Le composant STEPDISC (onglet FEATURE SELECTION) se charge de cette opération. Nous le plaçons à la suite du "DEFINE STATUS 1" où les variables candidates ont été placées en INPUT. Nous actionnons le menu PARAMETERS. Nous choisissons une stratégie ascendante. Le processus d'ajout est stoppé lorsqu'à une étape donnée, la meilleure variable présente une p-value supérieure à 1% (<u>Note :</u> Il n'y a pas de règle établie concernant le choix du seuil. On sait seulement que plus on la diminue, c.-à-d. nous sommes plus exigeants quant aux contributions

des variables, moins nous en obtiendront à la sortie. Et inversement). Nous validons et nous cliquons sur le menu VIEW, 3 variables sont sélectionnées : BU1, MEPR, MEOH.

Tanagra décrit en détail les étapes. Nous y reviendrons lors de la présentation des sorties de SAS.

Modélisation à partir des variables sélectionnées. Il ne nous reste plus qu'à placer de nouveau le composant LINEAR DISCRIMINANT ANALYSIS à la suite de STEPDISC, Tanagra réalise l'analyse discriminante à partir des 3 variables sélectionnées.

Le taux d'erreur en resubstitution est de 25.97%. Le modèle simplifié semble moins bon que le précédent. Mais n'oublions pas que **ce taux calculé sur l'échantillon d'apprentissage** n'est pas crédible. Il **avantage toujours les modèles plus complexes, comportant un nombre plus élevé de variables prédictives**. Il faudrait approfondir l'évaluation en utilisant un échantillon à

part (schéma « holdout ») ou les techniques de ré-échantillonnage (ex. validation croisée ou bootstrap) pour pouvoir réellement statuer.

	Classification functions			Statistical Evaluation					
Attribute	KIRSCH	MIRAB	POIRE	Wilks L.	Partial L.	F(2,72)	p-value		
BU1	-0.19402	0.432081	0.43508	0.303303	0.66354	18.25443	0		
MEPR	0.158883	0.016375	0.080243	0.251168	0.801272	8.92855	0.000344		
меон	0.007296	0.018626	0.019405	0.248931	0.808472	8.52844	0.000474		
constant	-5.235679	-13.841347	-16.982045		-				

Voici les coefficients des nouvelles fonctions de classement.

Figure 2 - Fonctions de classement après sélection

Déployées sur l'individu (Section 3.2.3, les variables inutilisées sont grisées) :

MEOH	ACET	BU1	MEPR	ACAL	LNPRO1
707.0	131.0	15.0	28.0	9.0	4.89

Nous obtenons les scores :

	KIRSCH	MIRAB	POIRE
S(.)	1.4610	6.2670	5.5103

Ici aussi, la classe MIRAB est attribuée à l'individu ω .

3.4 Analyse factorielle discriminante

L'analyse discriminante descriptive n'est pas le sujet principal de ce tutoriel. Nous nous y attarderons quand même pour mieux situer les résultats fournis automatiquement par les autres logiciels. Nous plaçons le composant CANONICAL DISCRIMINANT ANALYSIS (onglet FACTORIAL ANALYSIS) dans le diagramme. Nous actionnons le menu VIEW.

TANAGRA 1.4.45 - [Cano	nical Discriminant Analysis 1]				- 1	~			Pat		x
👷 File Diagram Comp	onent window Help										r 🗙
	Default title				Ca	nonical Discrim	inant Analysis	1			*
🖃 🥅 Dataset (alcohol.xl	ls)		Parameters							-	
🖶 🙀 Define status 1	English Supervised Learning 1 (Linear discriminant applicit)										-
Supervised	Supervised Learning 1 (Linear discriminant analysis)					Resu	Its				
Stepdisc 1	ed Learning 2 (Linear discrim	inant analysis)	Roots a	nd Wilks'	Lambda						
	Parameters		Root	Eigenvalue	Proportion	Canonical R	Wilks Lambda	CHI-2	d.f.	p-value	
	Execute		1	3.75959	0.91680	0.888762	0.156652	132.5414	12	0.000000	
•	View	•	2	0.34120	1.00000	0.504381	0.745600	20.9900	5	0.000814	-
				Components							
Data visualization	Statistics	Nonparametric	statistics	Instance se	lection	Feature con	struction	Feature	selection		
Regression	Factorial analysis	PLS		Cluster	ng	Spv lea	rning	Meta-spv	learning		
Spv learning assessment	Scoring	Associat	tion								
Bootstrap Eigenvalues	Corresponde	nce Analysis	🔀 Multi	ple Correspond	ence Analysis	📐 Parallel A	nalysis				
Canonical Discriminant Analysis \bigoplus Factor rotation \bigotimes NIPALS \bigotimes Principal Component Analysis											
								n aanaanadidhad	walat sawat da	ulanni ana a	1.4

3.4.1 Tableau des valeurs propres

Le tableau des valeurs propres et des proportions de variance expliquées associées à chaque axe factoriel est accompagné des tests de significativité.

Roots and Wilks' Lambda

Root	Eigenvalue	Proportion	Canonical R	Wilks Lambda	CHI-2	d.f.	p-value
1	3.75959	0.9168	0.888762	0.156652	132.5414	12	0
2	0.3412	1	0.504381	0.7456	20.99	5	0.000814

3.4.2 Fonctions canoniques – Coordonnées factorielles

Les coefficients des fonctions de projection, applicables sur les variables originelles ou standardisées, permettent de calculer les coordonnées factorielles des individus.

Coefficients	Unstandardized		Standardized	
Attribute	Root n1	Root n2	Root n1	Root n2
MEOH	-0.0033821	-0.000571	-0.6811478	-0.1150081
ACET	0.0000465	0.0066574	0.0051822	0.7420478
BU1	-0.1322048	0.0162599	-0.6469978	0.0795743
MEPR	0.0256226	-0.053361	0.3454686	-0.7194653
ACAL	0.0404876	-0.0297884	0.2160076	-0.1589256
LNPRO1	0.2791911	-0.3894401	0.2753705	-0.3841107
constant	1.89673943	3.17877051	-	

Canonical Discriminant Function

Figure 3 - Fonctions canoniques

Pour l'individu ω avec les caractéristiques suivantes :

MEOH	ACET	BU1	MEPR	ACAL	LNPRO1
707.0	131.0	15.0	28.0	9.0	4.89

Nous aurions pour coordonnées sur le premier axe :

Axe 1 = -0.0033821 x 707 + 0.0000465 x 131 - 0.1322048 x 15 + 0.0256226 x 28 + 0.0404876 x 9 + 0.2791911 x 4.89 + 1.89673943 = -0.0243 Et sur le second, Axe 2 = -0.000571 x 707 + ... -0.3894401 x 4.89 + 3.17877051 = 0.2245

En appliquant ces fonctions sur les observations de l'échantillon d'apprentissage, nous obtenons une représentation des points dans le premier plan factoriel. Elle est d'autant plus intéressante que nous pouvons distinguer les individus selon leur classe d'appartenance.

Le groupe KIRSCH est bien discriminé, essentiellement sur le 1^{er} axe. MIRAB et POIRE sont plus mélangés, ils se différencient sur le 2nd facteur. Ces conclusions rejoignent celles de la matrice de confusion où nous constations déjà que le groupe KIRSH était prédit sans erreur (en rappel et en précision), contrairement à MIRAB et POIRE (Section 3.2.1).

3.4.3 Structure canonique

La structure canonique indique les corrélations des variables avec les facteurs. Différents types de corrélations peuvent être calculées : globalement, sans tenir compte de l'appartenance aux groupes (TOTAL) ; intra-classe, annihilant l'appartenance aux groupes (WITHIN) ; interclasse, exacerbant les structures de groupe (BETWEEN).

Root	Root n1			Root n2		
Descriptors	Total	Within	Between	Total	Within	Between
меон	-0.890038	-0.676771	-0.991413	-0.206864	-0.296316	-0.130768
ACET	0.044423	0.021247	0.138243	0.560792	0.505278	0.990398
BU1	-0.939650	-0.787683	-0.997447	-0.118534	-0.187184	-0.071407
MEPR	-0.171747	-0.086008	-0.378992	-0.738951	-0.697111	-0.925400
ACAL	-0.159216	-0.073841	-0.929377	-0.111430	-0.097353	-0.369131
LNPRO1	0.521401	0.272151	0.968743	-0.235265	-0.231331	-0.248066

Factor Structure Matrix - Correlations

Un rapide coup d'œil sur ce tableau montre que :

- La distinction entre KIRSCH et les autres, sur le premier axe factoriel, est essentiellement imputable aux variables MEOH et BU1. KIRSCH présente, en moyenne, des valeurs plus faibles sur ces deux variables.
- La distinction entre MIRAB et POIRE sur le second facteur est essentiellement basée sur l'opposition entre ACET et MEPR. MIRAB a tendance à prendre des valeurs plus élevées que POIRE pour ACET, inversement pour MEPR.

Ces résultats rejoignent celles de l'analyse prédictive. En effet, les variables sélectionnées par STEPDISC à 1% étaient BU1, MEPR et MEOH. Elles caractérisent bien l'appartenance aux groupes.

3.4.4 Centres de classes sur les facteurs

Enfin, Tanagra fournit les coordonnées des centres de classes sur les variables canoniques.

ΤΥΡΕ	Root n1	Root n2
KIRSCH	3.439733	-0.031885
MIRAB	-0.981483	0.674773
POIRE	-1.115073	-0.63315
Sq Canonical corr.	0.789898	0.2544

Group centroids on the canonical variables

Elles sont surtout intéressantes représentées dans le nuage de points.

On se rend compte – visuellement, mais nous pouvons le constater par le calcul – que le barycentre de MIRAB est le plus proche de notre point additionnel de coordonnées (-0.0243, 0.2245). Ce qui expliquerait son affectation à ce groupe dans l'analyse prédictive ? Nous détaillons les calculs dans la section suivante.

3.4.5 Règle d'affectation aux groupes – Méthode 1

A quel groupe peut-on affecter l'individu de coordonnées (-0.0243, 0.2245) ? Visuellement, il est situé dans une région où MIRAB et POIRE sont majoritaires ; de surcroît, il semble plus proche du barycentre de la classe MIRAB. Il faudrait donc lui attribuer cette dernière étiquette ?

Ce ne sont que des « impressions ». Pour pouvoir y répondre de manière calculatoire, et obtenir un résultat équivalent à l'analyse discriminante prédictive, deux informations supplémentaires sont nécessaires : (1) la proportion des groupes dans l'échantillon de données, (2) la position de leurs barycentres dans le repère factoriel. Voyons dans le détail la procédure. Nous disposons des barycentres conditionnels depuis la section précédente (Section 3.4.4, « Group centroids ») ; nous donnons ici la proportion des classes.

TYPE	Proportion
KIRSCH	0.233766
MIRAB	0.376623
POIRE	0.389610

Pour le point ω à classer, nous devons calculer le carré de la distance généralisée aux centres de groupes dont voici l'expression générique :

$$D^{2}(\omega, c) = \sum_{k=1}^{K} [f_{k}(\omega) - \mu_{kc}]^{2} - 2 \times \ln \pi_{c}$$

Où *c* est une des modalités de la variable cible, K est le nombre de facteurs, $f_k(\omega)$ est la coordonnée de l'individu sur l'axe k, μ_{kc} est la moyenne de la modalité *c* sur le facteur k, π_c est la prévalence de la classe *c*.

Ainsi, respectivement pour les classes KIRSCH, MIRAB et POIRE :

 $D^{2}(\omega, \text{KIRSCH}) = (-0.0243 - 3.439733)^{2} + (0.2245 + 0.031885)^{2} - 2 \ln(0.233766) = 14.9723$ $D^{2}(\omega, \text{MIRAB}) = (-0.0243 + 0.981483)^{2} + (0.2245 - 0.376623)^{2} - 2 \ln(0.376623) = 3.0719$ $D^{2}(\omega, \text{POIRE}) = (-0.0243 + 1.115073)^{2} + (0.2245 + 0.63315)^{2} - 2 \ln(0.389610) = 3.8106$

On affecte l'individu ω à la classe qui lui est le plus proche au sens de cette distance, en l'occurrence MIRAB puisque D²(ω , MIRAB) présente la valeur minimale.

A partir de ces éléments, on peut obtenir les probabilités conditionnelles d'appartenance aux classes.

$$P(Y = y/X) = \frac{\exp[-0.5 \times D^2(y)]}{\sum_u \exp[-0.5 \times D^2(u)]}$$

Nous reprenons le calcul pour chacune des modalités de la variable cible :

$$P(Y(\omega) = KIRSCH / X) = 0.00056 / 0.36459 = 0.00154$$
$$P(Y(\omega) = MIRAB / X) = 0.21525 / 0.36459 = 0.59039$$
$$P(Y(\omega) = POIRE / X) = 0.14878 / 0.36459 = 0.40807$$

La probabilité conditionnelle est en réalité un score, mais avec les propriétés – très intéressantes – d'une probabilité (ex. possibilité de couplage avec les coûts de mauvaise affectation). On attribue la modalité qui présente la valeur la plus élevée, en l'occurrence la classe MIRAB pour ce qui est de l'individu ω.

3.4.6 Règle d'affectation aux groupes – Méthode 2

En développant la distance généralisée, en la multipliant par -0.5, et en supprimant tous les éléments qui ne dépendent pas des classes, on peut produire des fonctions de classement linéaires – à maximiser – basées sur les coordonnées factorielles³. Elles sont équivalentes aux fonctions fournies par l'analyse discriminante prédictive c.-à-d. elles classent exactement de manière identique, les valeurs sont différentes à une constante près (qui ne dépend pas des classes).

Nous avons :

$$S'(\omega, c) = \sum_{k=1}^{K} f_k(\omega) \times \mu_{kc} - \frac{1}{2} \sum_{k=1}^{K} \mu_{kc}^2 + \ln \pi_c$$

Pour notre individu ω à classer :

S'(\omega, KIRSCH) = -0.0243 x 3.439733 + 0.2245 x (-0.031885) - (3.439733² + (-0.031885)²)/2 + ln(0.233766) = **-7.4606 S'(\omega, MIRAB**) = -0.0243 x (-0.981483) + 0.2245 x 0.674773 - ((-0.981483)² + 0.674773²)/2 + ln(0.376623) = **-1.5105 S'(\omega, POIRE**) = -0.0243 x (-1.115073) + 0.2245 x (-0.63315) - ((-1.115073)² + (-0.63315) ²)/2 + ln(0.389610) = **-1.8798**

Nous lui affectons la modalité MIRAB. La démarche est forcément cohérente avec les précédentes (Sections 3.2.3 et 3.4.5).

3.4.7 Fonctions scores – Retour sur les variables originelles (Méthode 3)

En développant l'expression précédente, nous trouvons une fonction linéaire définie sur les facteurs. Nous avons respectivement :

Score function 1	KIRSCH	MIRAB	POIRE
f1	3.439733	-0.981483	-1.115073
f2	-0.031885	0.674773	-0.633150
Const	-7.369825	-1.685824	-1.764742

Pour KIRSH par exemple : S'(KIRSH) = 3.439733 x f1 -0.031885 x f2 - 7.369825

Les facteurs **F1** et **F2** étant eux-mêmes des combinaisons linéaires des variables originelles (Figure 3), il est facile de déduire une fonction définie sur ces variables. Nous obtenons ainsi une autre version de la fonction score S'.

³ W. Venables, B. Ripley, « Modern Applied Statistics with S », Springer, 2002 ; page 334.

Tutoriel Tanagra

Score function 2	KIRSCH	MIRAB	POIRE
MEOH	-0.011615	0.002934	0.004133
ACET	-0.000052	0.004447	-0.004267
BU1	-0.455268	0.140729	0.137123
MEPR	0.089836	-0.061155	0.005214
ACAL	0.140216	-0.059838	-0.026286
LNPRO1	0.972760	-0.536805	-0.064744
constant	-0.946902	-1.402493	-5.892384

Que l'on peut rapprocher avec les fonctions fournies par l'analyse discriminante prédictive (Figure 1).

Ce que je n'ai pas manqué de faire bien évidemment. J'ai constaté que les coefficients de S() et S'() étaient différents, mais que les écarts entre les modalités étaient les mêmes pour chaque variable.

S() - Analyse prédictive					
Attribute	KIRSCH	MIRAB	POIRE		
MEOH	0.000659	0.015208	0.016407		
ACET	0.000445	0.004944	-0.003770		
BU1	-0.039342	0.556654	0.553048		
MEPR	0.186892	0.035901	0.102271		
ACAL	0.039174	-0.160881	-0.127328		
LNPRO1	6.378935	4.869370	5.341430		
constant	-24.686164	-25.141755	-29.631644		

S'() - Déduite de l'analyse descriptive						
KIRSCH	MIRAB	POIRE				
-0.011615	0.002934	0.004133				
-0.000052	0.004447	-0.004267				
-0.455268	0.140729	0.137123				
0.089836	-0.061155	0.005214				
0.140216	-0.059838	-0.026286				
0.972760	-0.536805	-0.064744				
-0.946902	-1.402493	-5.892384				

Ecarts entre coefficients					
KIRSCH	MIRAB	POIRE			
0.0123	0.0123	0.0123			
0.0005	0.0005	0.0005			
0.4159	0.4159	0.4159			
0.0971	0.0971	0.0971			
-0.1010	-0.1010	-0.1010			
5.4062	5.4062	5.4062			
-23.7393	-23.7393	-23.7393			

C'est la raison pour laquelle nous n'avions pas les mêmes valeurs de score pour l'individu à classer ω

 $S(\omega, KIRSCH) \neq S'(\omega, KIRSCH)$; $S(\omega, MIRAB) \neq S'(\omega, MIRAB)$; $S(\omega, POIRE) \neq S'(\omega, POIRE)$

En revanche, l'écart entre S() et S'() dépend de l'individu et non pas des modalités de la variable cible

 $[S(\omega, KIRSCH) - S'(\omega, KIRSCH)] = [S(\omega, MIRAB) - S'(\omega, MIRAB)] = [S(\omega, POIRE) - S'(\omega, POIRE)]$

Au final, les individus sont classés de manière identique par les deux procédés. C'est ce qui importe.

4 Analyse discriminante avec SAS

4.1 Proc DISCRIM

Voyons maintenant ce que nous dit SAS 9.3 pour la même analyse. L'importation des données dans une banque a déjà été décrite dans un précédent document (voir « <u>La Proc Logistic de SAS</u> <u>9.3</u> », avril 2012). Nous soumettons les commandes suivantes pour lancer l'analyse discriminante prédictive.

```
proc discrim data = alcohol;
    class type;
    var MEOH ACET BU1 MEPR ACAL LNPRO1;
    priors proportional;
run;
```

Nous faisons appel à la procédure DISCRIM en spécifiant la base à traiter (DATA), la variable cible (CLASS) et les variables prédictives (VAR). Avec l'option PRIORS, SAS utilise les fréquences des classes calculées sur l'échantillon d'apprentissage.

Deux options par défaut sont importantes : METHOD = NORMAL, on fait l'hypothèse d'une distribution gaussienne des variables conditionnellement aux classes ; POOL = YES, on utilise la matrice de variance covariance intra-classes. A la sortie, nous obtenons bien un classifieur linéaire.

Informations générales. SAS fournit une indication globale sur l'analyse que nous menons. Nous disposons entres autres des observations par classe. KIRSCH est la modalité la plus rare.

Distances entres centres de classes. Dans la deuxième partie, nous avons tout d'abord le carré de la distance généralisée – de Mahalanobis – entre les centres de classes.

Generalized Squared Distance to TYPE					
From TYPE	KIRSCH	MIRAB	POIRE		
KIRSCH	2.90687	21.99954	22.99300		
MIRAB	22.95339	1.95302	3.61372		
POIRE	24.01465	3.68153	1.88522		

Deux éléments interpellent dans ce tableau : la distance d'un centre de classe avec lui-même n'est pas nulle, et la matrice n'est pas symétrique. Clairement, il y a autre chose dans la formule. Nous avons la réponse en farfouillant dans la documentation de SAS. La prévalence des classes est introduite dans les calculs (<u>http://www.math.wpi.edu/saspdf/stat/chap25.pdf</u>).

En se basant sur les centres de classes sur les facteurs (Section 3.4.4), la distance de KIRSCH avec elle-même devient⁴ :

 $D^{2}(KIRSCH, KIRSCH) = (3.439733 - 3.439733)^{2} + (-0.031885 + 0.031885)^{2} - 2 \times \ln(0.233766) = 2.90687$

La « distance » de KIRSCH avec MIRAB (dans un sens puis dans l'autre) :

 $D^{2}(KIRSCH, MIRAB) = (3.439733 + 0.981483)^{2} + (-0.031885 - 0.674773)^{2} - 2 \times \ln(0.233766) = 22.95339$ $D^{2}(MIRAB, KIRSCH) = (-0.981483 - 3.439733)^{2} + (0.674773 + 0.031885)^{2} - 2 \times \ln(0.376623) = 21.99954$

Fonctions de classement. SAS fournit ensuite les fonctions de classement. Elles sont strictement identiques à celles de Tanagra. Les règles d'affectation sont exactement les mêmes.

Lin	Linear Discriminant Function for TYPE								
Variable	Label	KIRSCH	MIRAB	POIRE					
Constant		-24.68616	-25.14175	-29.63164					
MEOH	MEOH	0.0006591	0.01521	0.01641					
ACET	ACET	0.0004450	0.00494	-0.00377					
BU1	BU1	-0.03934	0.55665	0.55305					
MEPR	MEPR	0.18689	0.03590	0.10227					
ACAL	ACAL	0.03917	-0.16088	-0.12733					
LNPRO1	LNPRO1	6.37894	4.86937	5.34143					

Curieusement, SAS ne donne aucune indication sur la pertinence des variables.

Matrice de confusion et taux d'erreur. Enfin, SAS produit la matrice de confusion et le taux d'erreur par classe (il s'agit plutôt de « 1 – sensibilité »).

⁴ La distance euclidienne dans le repère factoriel équivaut à la distance de Mahalanobis dans le repère originel.

Classif Resul	icat bstit	ion Sum ution Su	The DISC mary for mmary u	CRIM Pro Calibrat sing Line	ocec ion ear	lure Data Disci	: W rimi	ORK	.AL(Fui	COHOI action
	Nu	Number of Observations and Percent Classified into TYPE							ied	
	From TYPE		KIRSCH	I MIRA	в	POI	RE	То	tal	
	KIF	RSCH	18	3	0		0		18	
	MIRAB		100.00	0.0	0	0.	00	100	.00	
			MIRAB 0 23			6		29		
			0.00	0.00 79.31 20.69		69	100	.00		
	PO	IRE	0)	9		21		30	
			0.00	30.0	0	70.	00	100	.00	
	Tot	tal	18	3 3	2		27		77	
			23.38	3 41.5	6	35.	06	100	.00	
	Pri	ors	0.23377	0.3766	2	0.389	61			
		F		F _4 ¹ 4		- TV	DE		1	
		CII	or Count	Esumate	25 10	<u>и і т</u>	PC			
			KIRSCH	MIRAB	PC	DIRE	Т	otal		
	Rate		0.0000	0.2069	0.3	3000	0.1	1948		
		Priors	0.2338	0.3766	0.3	3896				

4.2 Sélection de variables avec STEPDISC

SAS propose la procédure STEPDISC pour une sélection de variables en adéquation avec l'analyse discriminante. Je m'en suis inspiré pour programmer le composant du même nom dans Tanagra.

Nous soumettons les commandes suivantes pour un processus de sélection METHOD = FORWARD contrôlée par un risque de SLENTRY = 1% :

Nous comparerons les sorties avec celles de Tanagra (Figure 4).

N°	d.f	Best	Sol.1	Sol.2	Sol.3	Sol.4	Sol.5
1	(2, 74)	BU1 L:0.299 F:86.75 p:0.0000	BU1 L:0.299 F:86.75 p:0.0000	MEOH L:0.363 F:64.82 p:0.0000	LNPRO1 L:0.771 F:10.98 p:0.0001	MEPR L:0.838 F:7.16 p:0.0014	ACET L:0.918 F:3.29 p:0.0429
2	(2, 73)	MEPR L:0.249 F:7.34 p:0.0012	MEPR L:0.249 F:7.34 p:0.0012	MEOH L:0.251 F:6.95 p:0.0017	ACET L:0.275 F:3.17 p:0.0478	LNPRO1 L:0.276 F:3.05 p:0.0535	ACAL L:0.298 F:0.18 p:0.8353
3	(2, 72)	MEOH L:0.201 F:8.53 p:0.0005	MEOH L:0.201 F:8.53 p:0.0005	ACET L:0.228 F:3.26 p:0.0443	LNPRO1 L:0.232 F:2.68 p:0.0751	ACAL L:0.249 F:0.05 p:0.9543	-
4	(2, 71)		ACET L:0.181 F:4.02 p:0.0222	LNPRO1 L:0.182 F:3.71 p:0.0294	ACAL L:0.191 F:1.95 p:0.1504	-	-

Detailed results

Figure 4 - Détail des étapes - Stepdisc à 1% de Tanagra

Etape 1 : SAS sélectionne BU1 après avoir listé les contributions des variables candidates.

		Forward Selection: Step 1									
		Statistics for Entry, DF = 2, 74									
	Variable	Label	R-Square	F Value	Pr > F	Tolerance					
	MEOH	MEOH	0.6366	64.82	<.0001	1.0000					
AS	ACET	ACET	0.0816	3.29	0.0429	1.0000					
	BU1	BU1	0.7010	86.75	<.0001	1.0000					
ר	MEPR	MEPR	0.1622	7.16	0.0014	1.0000					
	ACAL	ACAL	0.0232	0.88	0.4199	1.0000					
	LNPRO1	LNPRO1	0.2288	10.98	<.0001	1.0000					
		Va	riable BU1 w	vill be enter	ed.						
	BU1	BU1	MEOH	LNPRO	1 MEPR	ACET					
ç.	1 (2, 74) L:0	.299 L:0	.299 L:0.3	63 L:0.7 82 F:10.9	71 L:0. 98 F:7.	.838 L:0.9					

SAS fournit R-Square = $1 - \Lambda$. Pour MEOH par exemple, R-Square(MEOH) = 1 - 0.363 = 0.6366. La statistique F est équivalente à celle de Tanagra, elle permet d'évaluer la significativité de la variable F(MEOH) = 64.82, avec la p-value(MEOH) = 0.0001. La tolérance indique la redondance avec les variables déjà intégrées dans le modèle. A la première étape, l'ensemble initial est vide. Il n'y a pas de redondance possible, elle est donc égale à 1 pour toutes les variables.

La variable BU1 présente le « F Value » le plus élevé et elle est significative (p-value(BU1) < 1%). Elle est incorporée dans le modèle. Sa présence ne sera plus remise en cause. SAS enchaîne avec l'évaluation du modèle courant.

Multivariate Statistics								
Statistic	Value	F Value	Num DF	Den DF	Pr > F			
Wilks' Lambda	0.298992	86.75	2	74	<.0001			
Pillai's Trace	0.701008	86.75	2	74	<.0001			
Average Squared Canonical Correlation	0.350504							

Le modèle ne comportant qu'une variable, il n'y a pas d'éléments réellement nouveaux ici. La trace du Pillai est une variante du test d'écartement significatif entres les barycentres conditionnels⁵, et « Average Squared Canonical Correlation » est égal à la statistique du Pillai divisé par le « nombre de groupes – 1 » (dixit la <u>documentation de Stepdisc</u>).

Etape 2 : SAS évalue les variables restantes. Le « Partial R-Square » confronte les Λ des modèles incluant ou non la variable candidate. Pour MEOH par exemple, Partial R-Square(MEOH) = 1 – 0.251 / 0.299 \approx 0.160. MEPR présente la valeur la plus élevée et elle est significative. Elle est validée.

Notons également, même si cela n'est pas pris en compte pour la sélection, que MEPR est faiblement corrélée avec la variable déjà introduite puisque sa tolérance est de 0.9046. Cela veut dire que le carré de la corrélation entre BU1 et MEPR est égal $r^2 = 1 - 0.9046 = 0.0954$.

Pour l'évaluation du modèle à deux variables, nous avons :

⁵ Voir <u>http://eric.univ-lyon2.fr/~ricco/cours/cours/Comp_Pop_Tests_Parametriques.pdf</u>, section 7.1.4.

Va That E	Variable(s) That Have Been Entered				
BU1	MEPR				
Multivar	iate Statist	tics			
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.248931	36.66	4	146	<.0001
Pillai's Trace	0.851978	27.46	4	148	<.0001
Average Squared Canonical Correlation	0.425989				

SAS continue ainsi jusqu'à ce qu'il ne soit plus possible d'introduire de variables. Il édite alors un tableau récapitulant le processus (Figure 5).

					SAS							TANA	GRA
											N	°d.f	Best
				Forwa	rd Select	ion Sum	mary				1	(2, 74)	BU1 L:0.299
									Average				p: 0.0000
Step	Number In	Entered	Label	Partial R-Square	F Value	Pr > F	Wilks' Lambda	Pr < Lambda	Canonical Correlation	Pr > ASCC	2	(2, 73)	MEPR L:0.249 E:7.34
1	1	BU1	BU1	0.7010	86.75	<.0001	0.29899190	<.0001	0.35050405	<.0001			p: 0.0012
2	2	MEPR	MEPR	0.1674	7.34	0.0012	0.24893122	<.0001	0.42598921	<.0001			MEOH
3	3	MEOH	MEOH	0.1915	8.53	0.0005	0.20125392	<.0001	0.45385985	<.0001	3	(2, 72)	F: 8.53 p: 0.0005

Figure 5 - Récapitulatif de la sélection - Stepdisc forward à 1%

Nous obtenons un sous ensemble de 3 variables : BU1, MEPR et MEOH.

5 Analyse discriminante avec R – Procédure Ida() [MASS]

Nous utilisons la procédure **Ida()** du package « MASS » pour réaliser l'analyse discriminante. Ce package est automatiquement installé avec R, il n'est pas nécessaire de le charger à partir du web.

5.1 Chargement des données

La commande **read.xlsx()** du package « <u>xlsx</u> » permet d'importer directement un fichier au format Excel (XLS et XLSX). Nous effectuons une vérification en affichant un résumé statistique.

```
library(xlsx)
#sheetIndex : numéro de la feuille à lire
#header : la première ligne correspond aux noms des variables
alcohol.data <- read.xlsx(file="alcohol.xls",sheetIndex=1,header=T)
print(summary(alcohol.data))</pre>
```

Nous obtenons une description succincte de chaque variable.

```
R Console
                                                              > print(summary(alcohol.data))
    TYPE
                MEOH
                                ACET
                                               BU1
                                                             MEPR
                                               : 0.20
                                                              : 9.00
 KIRSCH:18
           Min. : 3.0 Min. : 13.0 Min.
                                                        Min.
 MIRAB :29
           1st Qu.: 620.0
                           1st Qu.:127.0
                                          1st Qu.: 9.30
                                                        1st Qu.:26.00
                           Median :181.0 Median :17.00
          Median : 910.0
 POTRE :30
                                                        Median :33.00
            Mean : 845.6
                           Mean :211.7
                                         Mean :14.74
                                                        Mean
                                                              :35.76
            3rd Qu.:1087.0
                           3rd Qu.:287.0
                                          3rd Qu.:20.00
                                                         3rd Qu.:46.00
           Max.
                  :1548.0
                           Max.
                                 :495.0
                                         Max.
                                                :30.00
                                                        Max.
                                                               :72.00
     ACAL
                   LNPRO1
      : 2.00
               Min.
 Min.
                     :3.300
 1st Qu.: 8.60
               1st Qu.:4.280
 Median :11.00 Median :5.260
      :12.51
 Mean
               Mean
                     :5.301
 3rd Qu.:15.00
               3rd Qu.:6.220
Max.
      :28.00 Max.
                     :8.010
> |
....
```

TYPE est la seule variable catégorielle, c'est celle que l'on cherche à prédire.

5.2 Modélisation – Propriétés de l'objet

Après avoir chargé le package MASS⁶, nous lançons l'apprentissage avec la méthode **Ida()**. Nous affichons l'objet résultat.

```
#linear discriminant analysis
library(MASS)
alcohol.lda <- lda(TYPE ~ ., data = alcohol.data)
print(alcohol.lda)</pre>
```

Nous obtenons : les proportions des classes ; les moyennes des variables conditionnellement aux classes ; les coefficients non standardisés de la fonction canonique (Section 3.4.2), sans la constante néanmoins ; les proportions de variance expliquées par les facteurs.

<u>Remarque :</u> A priori, Ida() semble taillée pour l'analyse discriminante descriptive. Mais nous avions vu plus haut que le chemin du descriptif au prédictif est finalement très court (Section 3.4.5). La fonction **predict()** appliquée à l'objet 'Ida' permet ainsi de réaliser des prédictions identiques à celles de Tanagra et SAS c.-à-d. les individus en généralisation sont affectés aux mêmes classes.

⁶ http://cran.r-project.org/web/packages/MASS/index.html

```
R R Console
                                                     - • •
Call:
lda(TYPE ~ ., data = alcohol.data)
Prior probabilities of groups:
  KIRSCH MIRAB
                      POIRE
0.2337662 0.3766234 0.3896104
Group means:
           MEOH
                    ACET
                              BU1
                                      MEPR
                                               ACAL LNPRO1
KIRSCH 378.6944 218.0167 1.511111 32.06667 11.16667 6.231111
MIRAB 939.1379 247.3448 17.906897 30.55172 12.54138 4.883103
POIRE 1035.4000 173.3667 19.620000 43.00000 13.27333 5.145667
Coefficients of linear discriminants:
                T.D1
                              T.D2
       3.382089e-03 0.0005710473
MEOH
      -4.649248e-05 -0.0066573606
ACET
       1.322048e-01 -0.0162598664
BU1
      -2.562255e-02 0.0533609640
MEPR
      -4.048757e-02 0.0297883525
ACAL
LNPRO1 -2.791911e-01 0.3894400487
Proportion of trace:
                                                                =
  LD1
         LD2
0.9168 0.0832
```

5.3 Prédiction

Nous utilisons la commande predict() pour réaliser la prédiction sur l'échantillon d'apprentissage.

```
#prediction on the training set
pred.lda <- predict(alcohol.lda,newdata=alcohol.data)
print(attributes(pred.lda))</pre>
```

L'objet qui en est issu propose 3 propriétés : 'class', 'posterior' et 'x' :

 - 'class' est un vecteur de n = 77 lignes, il correspond aux classes prédites pour chaque observation. Voici les prédictions pour les 6 premières observations

- 'posterior' est une matrice de 77 lignes et 3 colonnes (parce la variable cible possède 3 modalités). Elle fournit les probabilités conditionnelles d'appartenance aux classes pour chaque observation. Pour les 6 premières observations, nous avons

 - 'x' correspond enfin aux coordonnées factorielles, il s'agit d'une matrice de 77 lignes et 2 colonnes (parce que 2 facteurs). Pour les 6 premiers individus,

<u>R</u> R Console	
	A
> head (pred	.lda\$x)
LD1	LD2
1 -4.091901	-0.2497072
2 -3.887575	-0.1277995
3 -3.503543	-1.1199342
4 -3.475565	0.7129591
5 -3.107675	-0.7864612
6 -3.602823	-0.9710812
>	
	-
	►

5.4 Matrice de confusion

Pour calculer la matrice de confusion, nous croisons les classes observées et prédites par le modèle.

Nous retrouvons la matrice proposée par Tanagra (Section 3.2.1) et SAS.

R Console					x
> #confus	ion ma	trix			1
> mc.lda	<- tab	le(alco	ohol.da	ta\$TYPE.pred.lda\$class)	
> print(m	c.lda)				
1	KIRSCH	MIRAB	POIRE		
KIRSCH	18	0	0		
MIRAB	0	23	6		
POIRE	0	9	21		L
•					
∢ [

Nous en déduisons le taux d'erreur

```
#error rate
print(1-sum(diag(mc.lda))/sum(mc.lda))
```

Soit,

R Console	×	
<pre>> #error rate > print(1-sum(diag(mc.lda))/sum(mc.lda))</pre>		•
[1] 0.1948052 >		•
	Þ.	

5.5 Sélection de variables

Nous utilisons la procédure greedy.wilks() du package « klaR » pour la sélection de variables.

```
#variable selection
library(klaR)
alcohol.forward <- greedy.wilks(TYPE ~ .,data=alcohol.data, niveau = 0.01)
print(alcohol.forward)</pre>
```

Pour chaque étape, R fournit les statistiques de test pour le choix des variables (F.statistics.diff),

et pour le modèle courant incorporant les variables sélectionnées (F.statistics.overall).

```
R Console
                                                                            > library(klaR)
> alcohol.forward <- greedy.wilks(TYPE ~ ., data = alcohol.data, niveau = 0.01)</pre>
> print(alcohol.forward)
Formula containing included variables:
TYPE ~ BU1 + MEPR + MEOH
<environment: 0x00000000773d558>
Values calculated in each step of the selection procedure:
  vars Wilks.lambda F.statistics.overall p.value.overall F.statistics.diff p.value.diff
                                        3.975561e-20 86.749173 3.975561e-20
1 BU1 0.2989919
                             86.74917
                                                                                      ш
2 MEPR
         0.2489312
                              36.65654
                                        3.402765e-21
                                                               7.340239 1.235768e-03
3 MEOH
         0.2012539
                              29.49819
                                         7.226240e-23
                                                               8.528444 4.692630e-04
                                                                                      ÷
                                                                                    b.
```

Les valeurs présentées rejoignent en tous points celles proposées par Tanagra et SAS (Figure 5). La démarche et les formules utilisées sont exactement les mêmes.

Nous lançons la modélisation sur les variables sélectionnées par **greedy.wilks(**). Cette dernière fournit directement la formule réduite. C'est très appréciable si nous avons à traiter une grande base. Il ne sera pas nécessaire de recopier manuellement la liste des variables.

```
#2nd model after variable selection
alcohol.lda.fwd <- lda(alcohol.forward$formula, data = alcohol.data)
print(alcohol.lda.fwd)</pre>
```

Voici la nouvelle version du modèle.

```
R Console
Call:
lda(alcohol.forward$formula, data = alcohol.data)
Prior probabilities of groups:
  KIRSCH
            MIRAB
                      POIRE
0.2337662 0.3766234 0.3896104
Group means:
            BU1
                  MEPR
                             MEOH
KIRSCH 1.511111 32.06667 378.6944
MIRAB 17.906897 30.55172 939.1379
POIRE 19.620000 43.00000 1035.4000
Coefficients of linear discriminants:
             LD1
                          LD2
BU1
     0.149874251 -0.0313069489
MEPR -0.025447467 0.0759388778
MEOH 0.002809521 0.0002065334
Proportion of trace:
  LD1
         LD2
0.9516 0.0484
```

Nous le réappliquons sur l'échantillon d'apprentissage pour obtenir la matrice de confusion et le taux d'erreur en resubstitution.

Nous avons :

Encore une fois, le taux d'erreur étant calculé sur l'échantillon d'apprentissage, nous ne savons pas vraiment si ce second modèle est réellement moins bon que celui intégrant toutes les prédictives.

6 Analyse discriminante avec SPSS

Nous utilisons la version française de **SPSS 12.0.1**. Nous importons le fichier « alcohol.xls » après avoir recodé la variable TYPE en numérique (KIRSCH = 1, MIRAB = 2, POIRE = 3).

💼 alcoh	ol.sav - E	diteur de do	onnées SPSS						
Fichier Ed	dition Affi	chage Donné	es Transform	er Analyse i	Graphes Outil	s Fenêtre A	Aide		
	26 5 6 6 1 1 1 1 1 1 1 1 1 1								
1 : TYPE	1 : TYPE 1								
	TYPE	MEOH	ACET	BU1	MEPR	ACAL	LNPR01	V8 📥	
1	1	3.0	15.0	.2	9.0	9.0	5.86		
2	1	23.0	13.0	.8	9.0	2.0	6.67		
3	1	65.0	96.0	.4	9.0	4.0	5.31		
4	1	279.0	66.0	.9	36.0	4.8	5.45		
5	1	292.0	210.0	1.1	34.0	8.0	4.08		
6	1	371.0	414.0	1.2	39.0	9.0	6.22		
7	1	393.0	287.0	1.8	41.0	9.7	6.47		
8	1	394.0	217.0	1.0	31.0	8.6	6.31		
9	1	418.0	62.0	.8	24.0	7.0	5.83		
10	1	426.0	204.0	1.3	37.0	8.6	6.07		
11	1	465.0	267.0	1.5	39.0	17.0	8.01		
12	1	469.0	226.0	1.6	35.0	8.0	6.21		
13	1	475.0	172.0	1.9	33.0	14.0	6.30		
14	1	498.0	343.0	2.3	42.0	21.0	6.59		
15	1	507.0	397.0	3.3	30.0	21.0	5.98		
16	1	523.0	367.0	2.6	45.0	25.0	6.67		
17	2	546.0	119.0	12.0	28.0	7.4	3.30	-	
Af	fichage d	es données ,	Affichage d	es variab 🔳					
				5	5PSS processeu	ir est prêt			

6.1 Construction du modèle complet

Nous actionnons le menu **ANALYSE / CLASSIFICATION / ANALYSE DISCRIMINANTE**. La boîte de paramétrage apparaît.

🔲 Analyse discriminante		
	Critère de regroupement :	OK
		Coller
		Restaurer
	Variables explicatives :	Annuler
•		Aide
	Entrer les variables simultanément	
	C Utiliser la méthode pas à pas	
	Variable de hitrage : Filtre	
Statistiques	Méthode	

Nous plaçons TYPE en « **Critère de regroupement** », l'intervalle est de MIN = 1 à MAX = 3. Toutes les autres sont en « **Variables explicatives** ». Pour l'instant, nous faisons « **Entrer les variables simultanément** » c.-à-d. nous n'opérons pas de sélection de variables.

Analyse discriminante: Statistiques 🛛 🔀					
Caractéristiques Moyennes ANOVA à 1 facteur Test de Box Coefficients de la fonction Fisher Non standardisés	Matrices Corrélations intra-classe Covariance intra-classe Covariance de chaque classe Covariance totale				

Nous cliquons ensuite sur le bouton « **Statistiques** » pour demander l'affichage des fonctions de classement « Coefficients de la fonction = Fisher ».

De retour dans la boîte de paramétrage, nous cliquons sur « **Classements** ». Nous souhaitons que les distributions des classes soient estimées à partir des effectifs du fichier d'apprentissage, et que la matrice de variance covariance intra-classe soit utilisée.

Analyse discriminante : Classement		×
Probabilités a priori Egales pour toutes les classes A calculer selon les effectifs	Utiliser la matrice d'inertie Intra-classe De chaque classe Diagrammes	Poursuivre Annuler Aide
Résultats par observation Limiter les observations aux premières : Récapitulatif Classification par élimination Remplacer les valeurs manquantes par la moyenne	Toutes classes combinées Classe par classe Catte des régions d'affectation	

Nous validons nos choix. Un rapport est édité dans une nouvelle fenêtre à l'issue des calculs.

SPSS mélange les sorties des analyses canoniques et prédictives. Ce n'est pas choquant. En effet, les deux approches se rejoignent comme nous l'avions précisé précédemment. Il faut le savoir simplement et discerner les informations adéquates dans les sorties.

A. En premier lieu, nous avons les résultats relatifs à l'analyse canonique. Ainsi, nous disposons des valeurs propres liées aux facteurs et les tests de significativité associés.

Puis, nous avons successivement : (1) les fonctions canoniques de projection, (2) les corrélations intra-classes (within) des variables avec les facteurs, (3) les barycentres conditionnels.

Coefficients des fonctions discriminantes canoniques standardisées								
		onctio	n					
	1		2					
MEOH	.68114	78 .	115008	31				
ACET	00518	22	742047	8	(4)			
BU1	.64699	78	079574	13	(1)			
MEPR	34546	36 .	719465	53				
ACAL	21600	76 .	158925	56				
LNPR01	27537	05 .	384110	07				
M	Matrice de structure							
	1	oncao	2					
BU1	.7876	83*	.18718	34				
MEOH	.6767	71*	.29631	6	(2)			
LNPR01	- 2721	51*	23133	31	(4)			
MEPR	.0860	08	.69711	1*				
ACET	0212	47	50527	8*				
ACAL	.0738	41	.09735	53*				
Les corrélations intra-groupes combinés entre variables discriminantes et les variables des fonctions discriminantes canoniques standardisées sont ordonnées par tailles absolues des corrélations à l'intérieur de la fonction. *. Plus grande corrélation absolue entre chaque variable et une fonction discriminante quelconque.								
Fonction	Fonctions aux barycentres des groupes							
	F ON	cuon						
1 ITPE	1	03	1005		(3)			
	1 115072	60.	3150		(-)			
3	981483	- 67	4773					
Fonctions discriminantes canoniques non standardisées évaluées aux moyennes des groupes								

B. En second lieu, nous avons les résultats relatifs à la prédiction avec, entres autres, les fonctions de classement appelées « Fonctions discriminantes linéaires de Fisher » dans SPSS.

	TYPE				
	1	2	3		
MEOH	.001	.016	.015		
ACET	.000	004	.005		
BU1	039	.553	.557		
MEPR	.187	.102	.036		
ACAL	.039	127	161		
LNPR01	6.379	5.341	4.869		
(Constante)	-24.686	-29.632	-25.142		

Coefficients des fonctions de classement

Fonctions discriminantes linéaires de Fisher

6.2 Sélection de variables

Pour effectuer une sélection de variable, il faut lancer une nouvelle analyse en précisant le mode de traitement des prédictives. Nous choisissons « Utiliser la méthode pas à pas ». Puis nous cliquons sur le bouton « Méthode » qui est maintenant activé.

Analyse discriminante	×
Critère de regroupement :	ОК
	Coller
	Restaurer
Variables explicatives :	Annuler
ACET	Aide
C Entrer les variables simultanément	
Utiliser la méthode pas à pas	
Variable de filtrage :	
Statistiques Méthode Classement Enregistrer	

Seule la méthode STEPWISE est disponible. A chaque ajout, SPSS se donne la possibilité de retirer une variable introduite aux étapes précédentes. Deux niveaux de signification permettent de piloter le processus, pour l'entrée (0.01) et pour le retrait (0.05). Comme pour les autres logiciels, le calcul est basé sur la comparaison des lambdas de Wilks (SPSS peut s'appuyer sur d'autres critères).

V de Rao V à introduire : 0

Plusieurs tableaux viennent décrire le processus de sélection.

Le premier décrit la pertinence des modèles successifs : à 1 explicative, à 2 explicatives, etc. Le tableau n'est pas sans rappeler le récapitulatif de **greedy.wilks()** de R.

					Lambda	a de Wilks			
						F exact			
Pas	Introduite	Statistique	ddl1	ddl2	ddl3	Statistique	ddl1	ddl2	Signification
1	BU1	.299	1	2	74.000	86.749	2	74.000	.000
2	MEPR	.249	2	2	74.000	36.657	4	146.000	.000
3	MEOH	.201	3	2	74.000	29.498	6	144.000	.000

Variables introduites/éliminéesª,b,c,d

Ensuite, nous avons une description plus détaillée des différents modèles. La tolérance permet de situer la redondance entre les variables explicatives. Elles le sont faiblement en ce qui nous concerne (tolérance = 1 veut dire que la variable est orthogonale aux autres ; tolérance = 0 veut dire que la variable peut être déduite d'une combinaison linéaire des autres).

Pas		Tolérance	Signification du F pour éliminer	Lambda de Wilks
1	BU1	1.000	.000	
2	BU1	.899	.000	.838
	MEPR	.899	.001	.299
3	BU1	.811	.000	.303
	MEPR	.830	.000	.251
	MEOH	.781	.000	.249

Variables de l'analyse

En dernière colonne, nous observons le lambda de Wilks lorsqu'une variable déjà sélectionnée venait à être retirée. Par exemple, dans le modèle à 3 variables (BU1, MEPR et MEOH), BU1 semble avoir l'impact le plus fort, MEPR et MEOH en revanche sont d'égales importances. Ces valeurs sont les mêmes que le « Wilks L. » qui accompagnent les fonctions de classement fournies par Tanagra après sélection de variables (Figure 2).

Enfin, un dernier tableau détaille tous les calculs pour chaque étape. Nous pouvons le rapprocher avec celui de Tanagra (Figure 4).

			Tolérance	Signification du F pour	Lambda
Pas		Tolérance	minimale	introduire	de Wilks
0	MEOH	1.000	1.000	.000	.363
	ACET	1.000	1.000	.043	.918
	BU1	1.000	1.000	.000	.299
	MEPR	1.000	1.000	.001	.838
	ACAL	1.000	1.000	.420	.977
	LNPR01	1.000	1.000	.000	.771
1	MEOH	.846	.846	.002	.251
	ACET	1.000	1.000	.048	.275
	MEPR	.899	.899	.001	.249
	ACAL	.975	.975	.835	.298
	LNPR01	.996	.996	.053	.276
2	MEOH	.781	.781	.000	.201
	ACET	.995	.895	.044	.228
	ACAL	.966	.886	.954	.249
	LNPR01	.996	.896	.075	.232
3	ACET	.940	.738	.022	.181
	ACAL	.801	.647	.150	.191
	LNPR01	.966	.758	.029	.182

Variables absentes de l'analyse

7 Conclusion

L'analyse discriminante prédictive est séduisante à bien des égards. Elle est proposée dans quasiment tous les logiciels de statistique. Dans ce tutoriel, nous avons essayé de situer les points communs et les différences entre les sorties des logiciels Tanagra, R, SAS et SPSS. La très bonne nouvelle est qu'en définitive, nous avons exactement les mêmes résultats.

8 Références

Cours Data Science, http://eric.univ-lyon2.fr/~ricco/cours/supports_data_mining.html

- « Analyse discriminante prédictive ».
- « Analyse factorielle discriminante ».