Objectif

Détecter les points aberrants et influents de la régression linéaire multiple.

La validation est une étape clé de la modélisation. S'agissant de la régression linéaire multiple, parmi les multiples évaluations à mettre en place figure l'analyse des résidus, plus particulièrement la détection des points aberrants et influents.

La distinction entre points aberrants et points influents n'est pas toujours comprise. Pour simplifier, nous dirons que les points aberrants correspondent à des observations hors normes, c.-à-d. ne correspondant pas à la population étudiée. Il peut s'agir d'un comportement très particulier, par exemple un senior qui se présente à l'épreuve du bac¹. Ces points peuvent fausser les résultats de la régression.

Les points influents correspondent aux observations qui pèsent significativement, voire exagérément, sur les calculs. Ils déterminent, dans une proportion à évaluer, les résultats de la régression. Il convient de les considérer avec précaution au moins pour interpréter correctement les coefficients obtenus. Dans certains cas, on peut considérer qu'une observation pèse trop sur la régression au point d'altérer les paramètres estimés.

Concernant la détection des points aberrants et influents dans la régression, il existe un très grand nombre de documents en ligne, de qualité assez inégale malheureusement. Pour notre part, nous en conseillerons deux qui, tout en étant simples et accessibles, donnent avec précision les principaux repères à retenir : en français (<u>http://ifr69.vjf.inserm.fr/~webifr/ppt/outilsdiag.ppt</u>, d'Alice Gueguen) et en anglais (<u>http://wwwstat.stanford.edu/~jtaylo/courses/stats203/notes/diagnostics.pdf</u>, de Jonathan Taylor). Il est important de bien comprendre le sens à donner aux indicateurs proposés, et ils sont nombreux, pour interpréter correctement les résultats.

Enfin, pour éviter les confusions autour des définitions des indicateurs (la définition des résidus standardisés, studentisés, internes ou externes, est par exemple assez fluctuante d'un logiciel à l'autre), nous cadrons nos calculs par rapport à deux logiciels reconnus dans le monde scientifique, SAS et le logiciel gratuit R. Nous procèderons de la manière suivante : dans un premier temps, nous affichons les données et les résultats issus de la documentation de SAS, ils nous serviront de référence ; puis nous décrivons la procédure sous TANAGRA ; enfin, nous décrirons la démarche à suivre sous R. Fort heureusement (*ouf ! Je me voyais très mal remettre en question ces logiciels*), les résultats coïncident.

Données

Les données sont issues de la documentation de SAS, disponible en liane (http://v8doc.sas.com/sashtml/stat/chap55/sect33.htm#reqprv). L'objectif est d'expliquer la population US (USPopulation) à partir de l'année (Year) et du carré de l'année (YearSq). Nous mettrons essentiellement l'accent sur la mise en œuvre des calculs et la comparaison de résultats dans ce didacticiel.

Résultats de SAS

Les données et les résultats de SAS sont les suivants :

¹ « Aberrant » est peut être un peu péjoratif d'ailleurs, « atypique » serait plus politiquement correct.

Year	YearSq	Population			т	he REG	Proce	dure		
1790	3204100	3.929		D	nond	Model:	MODE	EL1 Dopula	tion	
1800	3240000	5.308		200	penu	ent van	ubie.	Fopula	LION	
1810	3276100	7.239			Ar	nalysis o	of Var	iance		
1820	3312400	9.638				Sum	n of	Mean		
1830	3348900	12.866	Source		DF	Squa	res	Square	F Valu	e Pr > F
1840	3385600	17.069	Model		2	71	799	35900	4641.7	2 <.0001
1850	3422500	23.191	Error		16	123.74	557	7.73410		
1860	3459600	31.443	Corrected	Total	18	719	923			
1870	3496900	39.818								
1880	3534400	50.155	Root MSE			2.7	78102	R-Squ	are 0.9	983
1890	3572100	62.947	Depe	ender	it Mea	n 69.7	76747	Adj R-	Sq 0.9	981
1900	3610000	75.994	Coef	f Var		3.9	98613			
1910	3648100	91.972								
1920	3686400	105.71			Pa	ramete	r Esti	mates		
1930	3724900	122.775	Variable	DE	Para	meter	Sta	ndard	t Value	De Si tel
1940	3763600	131.669	variable	DF	ESU	imate	_	Error	t value	Pr > [t]
1950	3802500	151.325	Intercept		1 204		843.	47533	24.25	<.0001
1960	3841600	179.323	Year		1 -22.78		0.	.89785	-25.37	<.0001
1970	3880900	203.211	YearSq		0.	.00635	0.000	23877	26.58	<.0001

La procédure de calcul des points influents fournit le tableau suivant :

The REG Procedure Model: MODEL1 Dependent Variable: Population

	Output Statistics										
						τ	FBETAS				
Obs	Residual	RStudent	Hat Diag H	Ratio	DFFITS	Intercept	Year	YearSq			
1	-1.1094	-0.4972	0.3865	1.8834	-0.3946	-0.2842	0.2810	-0.2779			
2	0.2691	0.1082	0.2501	1.6147	0.0625	0.0376	-0.0370	0.0365			
3	0.9305	0.3561	0.1652	1.4176	0.1584	0.0666	-0.0651	0.0636			
4	0.7908	0.2941	0.1184	1.3531	0.1078	0.0182	-0.0172	0.0161			
5	0.2110	0.0774	0.0983	1.3444	0.0256	-0.0030	0.0033	-0.0035			
6	-0.6629	-0.2431	0.0951	1.3255	-0.0788	0.0296	-0.0302	0.0307			
7	-0.8869	-0.3268	0.1009	1.3214	-0.1095	0.0609	-0.0616	0.0621			
8	-0.2501	-0.0923	0.1095	1.3605	-0.0324	0.0216	-0.0217	0.0218			
9	-0.7593	-0.2820	0.1164	1.3519	-0.1023	0.0743	-0.0745	0.0747			
10	-0.5757	-0.2139	0.1190	1.3650	-0.0786	0.0586	-0.0587	0.0587			
11	0.7938	0.2949	0.1164	1.3499	0.1070	-0.0784	0.0783	-0.0781			
12	1.1492	0.4265	0.1095	1.3144	0.1496	-0.1018	0.1014	-0.1009			
13	3.1664	1.2189	0.1009	1.0168	0.4084	-0.2357	0.2338	-0.2318			
14	1.6746	0.6207	0.0951	1.2430	0.2013	-0.0811	0.0798	-0.0784			
15	2.2406	0.8407	0.0983	1.1724	0.2776	-0.0427	0.0404	-0.0380			
16	<mark>-6.6</mark> 335	-3.1845	0.1184	0.2924	-1.1673	-0.1531	0.1636	-0.1747			
17	-6.0147	-2.8433	0.1652	0.3989	-1.2649	-0.4843	0.4958	-0.5076			
18	1.6770	0.6847	0.2501	1.4757	0.3954	0.2240	-0.2274	0.2308			
19	3.9895	1.9947	0.3865	0.9766	1,5831	1.0902	-1.1025	1.1151			

Nous reconnaissons dans l'ordre :

- 1. Le numéro des observations ;
- 2. Les résidus (écart entre valeur observée et valeur prédite) ;
- 3. Les résidus studentisés (résidus studentisés externes dans certains logiciels) ;
- 4. Les leverage (extrait de la hat-matrix H) ;
- 5. Les COVRATIO ;
- 6. Les DFFITS ;
- 7. Et les DFBETAS calculés sur les coefficients, y compris la constante (Intercept).

Détection des points atypiques et influents avec TANAGRA

Création du diagramme et chargement des données

Le fichier USPopulation.CSV est au format CSV, format reconnu par R. TANAGRA ne le prend pas en charge directement. Le plus simple, pour nous, est de charger les données dans le tableur EXCEL².

🖾 м	icroso	ft Exce	l - USPo	pulat	tion.csv 🔫													×
1	<u>Fi</u> chier	<u>E</u> dition	<u>A</u> ffichage	Inse	rtion Forma <u>t</u>	<u>O</u> utils	Donr	nées	Fe <u>n</u> être	21	「anagr	a Sipina					_ 8	×
l Pì	🛩 🗖	6	ð 🥸	# ⊑	a 🙉 🛷 🗖	0 - 0	CH +	۵.	Σf_{s}	8	<u></u> ≜↓ 3	1 1		100%	- [8.18	. -	»
		- <u>-</u> .		Ye	ar					125		85				• .]]	-	
		1	В		С		D		E			F		G		Н		—
1	Year		YearSq		Population													-
2		1790	320	4100	3.92	9												
3		1800	324	0000	5.30	8												
4		1810	327	6100	7.23	9												
5		1820	331	2400	9.63	8												
6		1830	334	8900	12.86	6												
7		1840	338	5600	17.06	9												
8		1850	342	2500	23.19	1												-
9		1860	345	9600	31.44	3												-
10		1870	349	6900	39.81	8							_					-
<u>+</u>		1880	353	4400	50.15	5					_							-
12	-	1890	357	2100	62.94	/					_							-
14		1900	264	9100	75.99	2												-
15	-	1920	368	6400	105.7	1					_							-
16		1930	372	4900	122.77	5							-					
17		1940	376	3600	131.66	9							-					
18		1950	380	2500	151.32	5												
19		1960	384	1600	179.32	3												
20		1970	388	0900	203.21	1												
21																		
22				_														_
<u> </u>		USPO	oulation	/						•							►	1
De <u>s</u>	sin + 🛛	6	Formes au	utomal	iques 🕶 🔨 🗎	•	$ \circ $		4 🙎	<u></u>	- 🚄	• <u>A</u> •	=	====	‡ 🛄	-		
Prêt									Somr	ne=6	7247	645.6		N	IUM			/

Puis nous activons activer le menu TANAGRA/EXECUTE TANAGRA³ après avoir sélectionné les données.

² Lancer EXCEL, puis activer le menu Fichier/Ouvrir. Si vous tentez d'accéder au fichier en double-cliquant dans l'explorateur Windows, le tableur ne reconnaîtra pas le séparateur « ; » utilisé.

M	licrosoft Exce	l - USPopulat	tion.csv						×
	<u>Fi</u> chier <u>E</u> dition	Affichage Inse	ertion Forma <u>t</u> <u>C</u>	utils <u>D</u> onnées	Fe <u>n</u> être <u>?</u> Ta	nagra Sipina		_ 8	×
	🖻 🖪 😂 (à. ∜ % ⊑	à 🛍 💅 🗠) + Ci + 🍓	Σ ƒ* 🕃 💈		🚜 100% 🔹 (2) 🗸 🕭 -	» ▼
-	-	= Ye	ar					-	_
	A	В	С	D	E		G	Н	=
1	Year	YearSq	Population				(1)		-
2	1790	3204100	3.929						
3	1800	3240000	5.308						
4	1810	3276100	7.239						
5	1820	3312400	9.638						
6	1830	3348900	12.866						
7	1840	3385600	17.069						
8	1850	3422500	23.191						
9	1860	3459	ocuto Tanaor						
10	1870	3496	ecute runagi	"					
11	1880	3534							
12	1890	3572	Dataset rang	ge (including the	name of the attri	ibutes first r	ow):		
13	1900	3610	\$A\$1:\$C\$	20			_		
14	1910	3648	,						
15	1920	3686			0	/ I	Capcel		
10	1950	3724	- C2			·	cancor		
18	1940	3763	(4	9 🗧 🚩					
19	1950	3841600	179 323						
20	1970	3880900	203 211						
21	1570	5000500	205.211						
22								i	-
4	▶ N \USPo	pulation /			•			·	_
Des	șin + 🗟 🌀	Formes automa	tiques 🗸 🔪 🔪		4 🙍 🕹 -	<u>⊿</u> - <u>A</u> -		<i>-</i>	
Prêt					Somme=67	247645.6	NUM		

TANAGRA est automatiquement lancé. Nous vérifions que 19 observations et 3 variables sont disponibles.

💯 TANAGRA 1.4.17 - [Da	itaset (tar	iC5.txt)]						
Tile Diagram Component	t Window	Help			- 8 ×			
🗅 📽 🔚 👪								
Analysis			Dataset (t	anC5.txt)				
Dataset (tanC5.txt)			Param	eters				
		Database : C:V	DOCUME~1\Waison\LOCALS~1\Te	mp\tanC5.txt				
			Res	utts				
		Downloa	d information		=			
		Datasara						
		Computation t	rocessing					
			ory 3KB					
		Allocated Melli	ory site					
		Dataset	description					
		3 attribute(s)						
		19 example(s)	-					
			—		~			
			Components					
Data visualization	9	itatistics	Nonparametric statistics	Instance selection				
Feature construction	Featu	ure selection	Regression	Factorial analysis				
PLS	С	lustering	Spv learning	Meta-spv learning				
Spv learning assessment		Scoring	Association					
	23 4 m		t se la la la	1.0 /				

³ Ce menu est disponible avec l'installation de la macro complémentaire TANAGRA.XLA livrée en standard avec le logiciel. Voir les didacticiels sur le site pour une description détaillée de la procédure. Cette macro est disponible depuis la version 1.4.11 de TANAGRA.

Régression linéaire multiple

Il faut définir le problème à traiter. Pour cela, nous insérons le composant DEFINE STATUS dans le diagramme en passant par le raccourci disponible dans la barre d'outils. Nous plaçons en TARGET la variable POPULATION, et en INPUT les variables YEAR et YEARSQ.

Puis nous insérons le composant MULTIPLE LINEAR REGRESSION (onglet REGRESSION). En activant le menu contextuel VIEW, les résultats s'affichent.

🌋 TANAGRA 1.4.17 - [Multi	iple linea	r regression 1]							
Tile Diagram Component	Window He	elp							- 8 ×
D 📽 🔛 🔛									
Analysis					Resuus				~
Dataset (tanC5.txt)		Global re	sults					~	_
🕹 📈 Multiple linear	regress	Endogenous at	tribute		Population			1	
1	-	Examples			19			1.1	
		R²			0.998279			- 1	
		Adjusted-R ²			0.998064			- 1	
		Sigma error			2.781024				
		F-Test (2,16)		4641.72	10 (0.000000)			1	_
		Analysis	of variano	ce				7	
		Source	xSS	d.f.	×MS	F	p-value		
		Regression	71799.0158	2	35899.50	79 4641.7210	0.0000		
		Residual	123.7455	16	7.73	41		1.1	
		Total	71922.7614	18	\$			1 B	
		Coefficie	ents					<u>;</u> ;	~
		<		Ш					>
			Cor	nponents					
Data visualization	Staf	tistics	Nonparametr	ic statistics	Instance	selection	Feature cons	truction	
Feature selection	Regr	ression	Factorial	analysis	F	PLS	Cluster	ing	
Spv learning	Meta-sp	w learning	Spv learning	assessment	Sc	oring	Associat	ion:	
Z Backward Elimination Reg	🖳 Forwar	rd Entry Regress	ion 🚺 Outlier	Detection					
🖾 DfBetas 🛛 🎽	🔀 Multip	le linear regress	ion Regres	sion tree					

Nous retrouvons bien les résultats de SAS, avec un R² de 0.9983. Tous les paramètres concordent.

Détection des points atypiques et influents (1)

Nous insérons maintenant l' outil de diagnostic OUTLIER DETECTION (onglet REGRESSION). Nous activons le menu VIEW. Deux onglets sont disponibles dans la fenêtre de résultats. Le premier (REPORT) récapitule le nombre d'observations suspectes identifiées selon les indicateurs.

TANAGRA 1.4.17 - [0	utlier Detection 1]						
Tile Diagram Componen	nt Window Help						- 8 ×
Analysis	Report	2					
🖃 🏢 Dataset (tanC5.txt)			C	utlier Detec	tion 1		^
🖻 🚰 Define status 1				Paramete	rs		
⊡-∠ Multiple lin	ear regress Parameters		_				
- Vuttier	Sig. Level	0.05	00				
7							_
				Results			
	Outliers	and influ	iantial po	ints det	ection for	regression	
	04-41-41-	1 1 d			<u> </u>	5	
	Statistic	Lower bound		aetected			
	PStandard		0.3150	2			
	Rstudent	-2 0000	2 0000	2	>		
	DEFITS	-0.7947	0.7947	3			
	Cook's D	-	0.2500	3			
	ICOVRATIO	0.5263	1,4737	5	1		
	Computation t	ime : 0 ms.					~
		Co	omponents				
Data visualization	Statistic	Nonparamet	ric statistics	Instan	e selection	Feature construction	
Feature selection	Regression	Factoria	il analysis		PLS	Clustering	
Spv learning	Meta-spv learning	Spv learning	g assessment	S	coring	Association	
🔀 Backward Elimination R	eg 🛛 🕌 Forward Entry Regres	si 💿 🖟 Outli	er Detection	>			
🖾 DfBetas	🔀 Multiple linear regres	sion 🦧 Regre	ession tree				
L							

Le second (VALUES) fournit le détail, en surlignant les valeurs à considérer avec attention.

TANAGRA 1.4.17 - [Outlier Detection 1]											
Tile Diagram Component Window Help – 🗗 🗙											
Analysis	Report Value	es									
Dataset (tanC5.txt)	Statistic	Leverage	RStandard	RStudent	DFFITS	Cook's D	COVRATIO				
Define status 1	Lower Bound	-	-	-2.0000	-0.7947	-	0.5263				
	Upper Bound	0.3158	-	2.0000	0.7947	0.2500	1.4737				
Multiple unear regress	1	0.3864661	-0.5093092	-0.4971832	-0.3945962	0.0544647	1.8834404				
🖳 🚣 Outlier Detection '	2	0.2501253	0.1117436	0.1082375	0.0625118	0.0013883	1.6146570				
	3	0.1652071	0.3662178	0.3560844	0.1584083	0.0088472	1.4175564				
	4	0.1184432	0.3028761	0.2941029	0.1078026	0.0041084	1.3531454				
	5	0.0983341	0.0799205	0.0773982	0.0255599	0.0002322	1.3443745				
	6	0.0951496	-0.2505731	-0.2430938	-0.0788295	0.0022008	1.3255210				
	7	0.1009288	-0.3363375	-0.3268147	-0.1094995	0.0042330	1.3214409				
	8	0.1094796	-0.0952824	-0.0922830	-0.0323568	0.0003720	1.3605133				
	9	0.1163792	-0.2904633	-0.2819843	-0.1023363	0.0037040	1.3518605				
	10	0.1189739	-0.2205512	-0.2138731	-0.0785937	0.0021896	1.3649929				
	11	0.1163792	0.3036422	0.2948510	0.1070058	0.0040477	1.3498664				
	12	0.1094796	0.4378799	0.4265388	0.1495558	0.0078574	1.3144215				
	13	0.1009288	1.2007898	1.2188778	0.4083858	0.0539553	1.0168259				
	14	0.0951496	0.6330077	0.6207291	0.2012877	0.0140452	1.2429821				
	15	0.0983341	0.8484689	0.8406562	0.2776180	0.0261703	1.1723552				
	16	0.1184432	-2.5404584	-3.1845305	-1.1672806	0.2890431	0.2923815				
	17	0.1652071	-2.3671196	-2.8432634	-1.2648591	0.3696317	0.3988777				
	18	0.2501253	0.6963493	0.6846924	0.3954394	0.0539140	1.4757102				
	19	0.3864661	1.8314630	1.9946725	1.5830990	0.7042842	0.9766091				
		Co	omponents								
Data visualization St	tatistics	Nonparame	tric statistics	Instance	selection	Feature c	onstruction				
Feature selection Re	gression	Factori	al analysis	P	LS	Clust	tering				
Spv learning Meta-	spv learning	Spv learnin	ig assessment	See	oring	Asso	ciation				
🔀 Backward Elimination Reg 🛛 🕹 Forw	vard Entry Regres	ssion [Outli	ier Detection								
🖟 DfBetas 🔣 Mult	iple linear regre:	ssion 🖧 Regr	ession tree								

Le choix des valeurs de coupure est un élément important, elles permettent d'identifier les observations marquantes. Nous détaillons dans le tableau ci-dessous les seuils pour chaque indicateur : n étant le nombre d'observations, p le nombre de coefficients estimés (= nombre de variables + 1 si nous effectuons une régression avec constante).

Indicateur	Seuil
Leverage	2*p/n
RStandard	-
RStudent	2
DFFITS	2*SQRT(p/n)
Cook's D	4/(n-p)
COVRATIO-1	3*p/n

Les résultats détaillés peuvent être copiés dans un tableur pour des analyses approfondies (cf. conclusion). Il faut actionner le menu COMPONENT/COPY RESULTS lorsque l'onglet VALUES est actif.

En comparant nos résultats avec ceux de SAS, nous constatons que les formules implémentées sont bien les mêmes. Nous verrons qu'il en sera de même avec le logiciel R.

Détection des points atypiques et influents -- DFBETAS (2)

Ce second outil permet d'évaluer le rôle de chaque observation sur chaque coefficient estimé. L'intérêt de proposer un second composant pour ces calculs est purement ergonomique, il ne paraissait pas souhaitable de multiplier les onglets dans une fenêtre de visualisation, d'autant plus que les résultats sont de nature un peu différente : OUTLIER DETECTION évalue l'influence des observations, globalement ; DFBETAS évalue l'action des observations sur chaque coefficient.

Nous insérons le composant DFBETAS (onglet REGRESSION) à la suite de la régression multiple. Nous actions le menu VIEW.

💯 TANAGRA 1.4.17 - [Df	Betas 1]						
Tile Diagram Component	: Window	Help	- 8 ×				
🗅 🛩 🖬 🎎		Report DR.H.					
		Components					
Data visualization Feature construction PLS Spv learning assessment	S Featu Cl S	Statistics Nonparametric statistics Instance selection ure selection Regression Factorial analysis clustering Spv learning Meta-spv learning Scoring Association ward Entry Regression It outlier Detection					
DfBetas	i∠ Mult	tiple linear regression Ar Regression tree	:				

De nouveau, deux onglets sont disponibles : un récapitulatif dans le premier onglet, les résultats détaillés dans le second.

💇 TANAGRA 1.4.17 - [Df	TANAGRA 1.4.17 - [DfBetas 1]										
🏆 File Diagram Component	🕐 File Diagram Component Window Help 📃 🗗 🗙										
Analuit											
Analysis		Report DiBet	as <mark>-</mark>								
🖃 🧰 Dataset (tanC5.txt)			Intercept	Year	YearSq						
🚊 🔂 Define status 1		1	-0.2841626	0.2810148	-0.2779339						
🖃 📈 Multiple line	ear regress	2	0.0375836	-0.0370272	0.0364868						
 ↓ 1½: Outlier	3	0.0665886	-0.0650528	0.0635757							
	4	4	0.0182289	-0.0171561	0.0161361						
🖉 DTBetas	'	5	-0.0030405	0.0032773	-0.0034991						
		6	0.0295513	-0.0301596	0.0307176						
		7	0.0609386	-0.0615767	0.0621438						
		8	0.0215926	-0.0217215	0.0218297						
		9	0.0742868	-0.0745210	0.0746903						
		10	0.0586297	-0.0586841	0.0586891						
		11	-0.0783587	0.0782622	-0.0780983						
		12	-0.1017689	0.1013811	-0.1008983						
		13	-0.2356621	0.2338457	-0.231/696						
		14	-0.0811349	0.0/984/9	-0.0784361						
		15	-0.0426522	0.0404071	-0.0380049						
		16	-0.1531205	0.1636479	-0.1747212						
		1/	-0.4843196	0.4957595	-0.5076395						
		18	0.2239904	-0.22/3530	0.2308097						
<		19	1.0901980	-1.1025077	1.1150558						
		J.	Component	ts							
Data visualization	S	tatistics	Nonparame	tric statistics	Instance	selection					
Feature construction	Featu	re selection	Regr	ression	Factoria	l analysis					
PLS	С	ustering	Spv li	earning	Meta-spv	/ learning					
Spv learning assessment	9	coring	Asso	ciation							
Reckward Elimination Re	e 🖌 Forw	ard Entry Regres	sion 🚺 Outli	er Detection							
DfBetac	۲۰۵۰ <u>م</u> ران الم. +ان الأ ∕أ	inle linear regres	sion 📥 Bear	ession tree							
A DIDEC92	ist, widtt	ipte unear regres	sion 🖓 Regn	ession tree							

La valeur de coupure est unique ici, elle est égale à **2/SQRT(n)**. Les interférences suspectes sont surlignées.

Ici également, il est possible de copier ces valeurs dans un tableur (COMPONENT / COPY RESULTS).

Détection des points atypiques et influents avec R

Le logiciel R est un logiciel libre. Il dispose d'une excellente réputation auprès des statisticiens, tout à fait justifiée d'ailleurs au regard de ses multiples qualités. Sa bibliothèque de calcul est impressionnante. De plus, R étant ouvert, tout un chacun peut l'enrichir assez facilement en programmant des nouvelles méthodes, il faut néanmoins s'investir un peu pour appréhender correctement son langage de script.

C'est peut-être le seul écueil de ce logiciel. Certes, la ligne de commande associée à un langage cohérent procure d'immenses possibilités, mais elle constitue également une barrière à l'entrée pour les néophytes habitués aux logiciels pilotés par menu ou, à l'extrême limite de complexité, fonctionnant par diagramme. Ce didacticiel est l'occasion de découvrir un peu ce logiciel, surtout pour les « data miner » informaticiens, qui viennent de l'apprentissage automatique et de la reconnaissance de formes, et qui sont plus habitués à des références telles que WEKA ou YALE.

L'autre raison qui nous fait introduire R est que les techniques que nous étudions dans ce didacticiel sont implémentées en standard par les plus grands experts du domaine. Les calculs implémentés dans R servent souvent de référence.

Démarrer R

Le logiciel est disponible sur le site du projet (<u>http://www.r-project.org/</u>). L'installation ne pose pas de problèmes particuliers, il faut suivre la procédure avec un peu d'attention. Nous avons installé la version 2.5.0.

Nous démarrons le logiciel en double-cliquant sur le raccourci du menu DEMARRER. La fenêtre de R apparaît⁴.

Charger les données

Le plus simple est copier les données USPopulation.CSV dans le répertoire de R (C:\Program Files\R\R-2.5.0).

Des commandes spécifiques permettent de charger les données dans un objet « usdata » et de les afficher.

⁴ Je confesse être un véritable néophyte s'agissant de R. Les manipulations décrites dans ce didacticiel sont donc simplifiées à l'extrême. Il se peut, très vraisemblablement, qu'elles ne soient pas optimales. Mon objectif était de produire des résultats comparables à ceux de SAS et TANAGRA pour vérifier l'exactitude de mes calculs.

🥂 RGui - [R Console]	
R Fichier Edition Voir Misc Packages Fenêtres Aide	_ @ ×
	<u>^</u>
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide	
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.	
Tapez 'q()' pour quitter R.	
<pre>> usdata <- read.csv(file="USPopulation.csv",sep=";")</pre>	
> usdata	
Year YearSq Population	
1 1790 3204100 3.929	-
2 1800 3240000 5.308	
3 1810 3276100 7.239	
4 1820 3312400 9.638	
5 1830 3348900 12.866	
7 1050 3422500 23.151 9 1960 3460600 21 443	
9 1870 3496900 31.443	
10 1880 3534400 50 155	
11 1890 3572100 62.947	
12 1900 3610000 75.994	
13 1910 3648100 91.972	
14 1920 3686400 105.710	
15 1930 3724900 122.775	
16 1940 3763600 131.669	
17 1950 3802500 151.325	
18 1960 3841600 179.323	
19 1970 3880900 203.211	
>	~
2	

Régression linéaire multiple

La commande **Im** permet de lancer une régression linéaire multiple. Le modèle est conservé dans un objet nommé « usmodel ».

Ŗ RGui - [R Console]	
R Fichier Edition Voir Misc Packages Fenêtres Aide	_ 8 ×
2 P R R C 🚳 5	
16 1940 3763600 131.669	<u> </u>
17 1950 3802500 151.325	
18 1960 3841600 179.323	
19 1970 3880900 203.211	
> usmodel <- Im(Population ~ rear + rearsq, data - usuata)	
, ballad y (abilitati y	
Call:	
lm(formula = Population ~ Year + YearSq, data = usdata)	
Kesiduals: Min 10 Medien 30 Mey	
-6.6335 -0.7111 0.2691 1.4119 3.9895	
Coefficients:	
Estimate Std. Error t value Pr(> t)	
(Intercept) 2.045e+04 8.435e+02 24.25 4.83e-14 ***	
Year -2.278e+01 8.978e-01 -25.37 2.38e-14 ***	
12a15q 0.5402-05 2.5002-04 20.50 1.152-14 """	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
	=
Residual standard error: 2.781 on 16 degrees of freedom	
Multiple R-Squared: 0.9983, Adjusted R-squared: 0.9981	
r-statistic: 4642 on 2 and 16 pr, p-Value: < 2.2e-16	
>	
-	*
	>

Mesures des points influents

Les points influents sont calculés automatiquement et sont disponibles. Il suffit de les récupérer dans un objet pour les afficher.

R RGui - [R Console]						
R Fichier Edition Voir Misc Packages Fenêtres Aide	_ 8 ×					
	^					
<pre>> save.image("C:\\Program Files\\R\\R-2.5.0\\USPopulation.RData")</pre>						
> diagi <- influence.measures(usmodel)						
Influence measures of						
lm(formula = Ponulation ~ Year + YearSg. data = usdata) :						
dfb.1 dfb.Year dfb.YrSq dffit cov.r cook.d hat inf						
1 -0.28416 0.28102 -0.2779 -0.3946 1.883 0.054465 0.3865 *						
2 0.03758 -0.03703 0.0365 0.0625 1.615 0.001388 0.2501 *						
3 0.06659 -0.06505 0.0636 0.1584 1.418 0.008847 0.1652						
4 0.01823 -0.01716 0.0161 0.1078 1.353 0.004108 0.1184						
5 -0.00304 0.00328 -0.0035 0.0256 1.344 0.000232 0.0983						
6 0.02955 -0.03016 0.0307 -0.0788 1.326 0.002201 0.0951						
7 0.06094 -0.06158 0.0621 -0.1095 1.321 0.004233 0.1009						
8 0.02159 -0.02172 0.0218 -0.0324 1.361 0.000372 0.1095						
9 0.07429 -0.07452 0.0747 -0.1023 1.352 0.003704 0.1164						
10 0.05863 -0.05868 0.0587 -0.0786 1.365 0.002190 0.1190						
11 -0.07836 0.07826 -0.0781 0.1070 1.350 0.004048 0.1164						
12 -0.10177 0.10138 -0.1009 0.1496 1.314 0.007857 0.1095						
13 -0.23566 0.23385 -0.2318 0.4084 1.017 0.053955 0.1009						
14 -0.08113 0.07985 -0.0784 0.2013 1.243 0.014045 0.0951						
15 -0.04265 0.04041 -0.0380 0.2776 1.172 0.026170 0.0983						
16 -0.15312 0.16365 -0.1747 -1.1673 0.292 0.289044 0.1184 *						
17 -0.48432 0.49576 -0.5076 -1.2649 0.399 0.369632 0.1652 *						
18 0.22399 -0.22735 0.2308 0.3954 1.476 0.053914 0.2501						
19 1.09020 -1.10251 1.1151 1.5831 0.977 0.704283 0.3865 *						
>	12-1					
	*					
<u>s</u>	2					

R affiche, de gauche à droite : les DFBETAS (constante, Year, YearSq), les DFFITS, les COVRATIO, les distances de Cook, et le leverage.

RStandard et RStudent

Pour l'affichage des résidus standardisés et studentisés, il faut quelques manipulations supplémentaires.

🧟 RGui - [R Console]	$\mathbf{ imes}$
R Fichier Edition Voir Misc Packages Fenêtres Aide	×
18 0.22399 -0.22735 0.2308 0.3954 1.476 0.053914 0.2501	-
19 1.09020 -1.10251 1.1151 1.5831 0.977 0.704283 0.3865 *	
> r1 <- rstandard(usmodel)	
> r2 <- rstudent(usmodel)	
> diag2 <- data.rrame(ri,r2)	
1 -0.50931083 -0.49718482	
2 0.11174203 0.10823599	
3 0.36621645 0.35608307	
4 0.30287504 0.29410180	
5 0.07991928 0.07739696	
6 -0.25057420 -0.24309487	
9 -0.29046458 -0.28198557	
10 -0.22055173 -0.21387365	
11 0.30364160 0.29485047	
12 0.43787740 0.42653638	
13 1.20078831 1.21887626	
14 0.63300676 0.62072807	
15 0.84846690 0.84065419	
10 -2.30/010109 -3.10/03/20	
18 0.69634825 0.68469135	
19 1.83146126 1.99467009	
	~
<u><</u>	1

Toutes les valeurs obtenues sont en adéquation avec ceux de SAS et TANAGRA.

Conclusion

L'analyse des résidus est une étape clé de la validation de la régression linéaire multiple. Il y a la détection des points aberrants et influents que nous avons initié dans ce didacticiel, mais il ne faut pas non plus oublier les autres vérifications. Ils passent par des graphiques « simples » des résidus (résidu vs. Endogène, résidu vs. Les exogènes, etc.) ; la vérification de la normalité des résidus que nous pouvons mettre en œuvre avec des graphiques intuitifs tels que les QQ-plots (tant que ce n'est pas la praline...) ; les vérifications de l'hétéroscédasticité et de l'auto-corrélation (lorsque les données sont longitudinales)....

Enfin, si nous proposons dans TANAGRA les valeurs seuils les plus souvent référencées dans la littérature, il ne faut pas en faire une vérité irrévocable. A mon sens, il faut en réalité s'inquiéter lorsqu'une observation prend une valeur très différente des autres sur un indicateur. Plutôt que de voir si elle dépasse ou pas une valeur de coupure, le plus simple est de les trier et de voir dans quelle mesure elle s'éloigne des autres en utilisant des concepts simples telles que les intervalles interquartiles (cf. <u>http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm</u>) pour évaluer l'importance de l'écart.

Dans notre exemple ci-dessus, après avoir copié les valeurs dans EXCEL, nous avons trié le tableau selon le RSTUDENT. Nous avons alors calculé les indicateurs simples proposés sur le site de NIST (Lower Outer/Inner Fence ; Upper Inner/Outer Fence). Nous constatons que les observations n°16 et n°17 sont effectivement problématiques, nous découvrons en revanche que l'observation n°19 est aussi à considérer avec beaucoup d'attention. La simple comparaison du RSTUDENT avec la valeur seuil 2 n'aurait pas permis de la détecter, surtout si le nombre d'observations est très élevé.

Statistic	Leverage	RStandard	RStudent	DFFITS	Cook's D	COVRATIO
16	0.11844316	-2.54045844	-3.1845305	-1.16728055	0.2890431	0.29238147
17	0.16520713	-2.36711955	-2.84326339	-1.26485908	0.36963168	0.39887768
1	0.38646615	-0.50930923	-0.49718323	-0.39459622	0.05446466	1.88344038
7	0.1009288	-0.33633751	-0.32681474	-0.10949951	0.00423302	1.32144094
9	0.11637919	-0.2904633	-0.28198433	-0.10233629	0.003704	1.35186052
6	0.09514964	-0.25057307	-0.24309376	-0.07882955	0.00220079	1.32552099
10	0.11897392	-0.22055119	-0.21387313	-0.0785937	0.00218958	1.36499286
8	0.10947959	-0.09528238	-0.09228296	-0.03235684	0.00037204	1.36051333
5	0.09833407	0.07992052	0.07739815	0.02555994	0.0002322	1.34437454
2	0.25012529	0.11174358	0.10823749	0.06251182	0.00138833	1.61465704
4	0.11844316	0.30287614	0.29410288	0.10780257	0.00410836	1.35314536
11	0.11637919	0.30364218	0.29485103	0.10700581	0.00404774	1.34986639
3	0.16520713	0.36621782	0.35608441	0.15840831	0.00884724	1.41755641
12	0.10947959	0.43787986	0.4265388	0.14955577	0.00785738	1.31442153
14	0.09514964	0.63300771	0.62072909	0.20128772	0.01404517	1.24298215
18	0.25012529	0.69634926	0.68469238	0.39543939	0.05391404	1.47571015
15	0.09833407	0.8484689	0.84065622	0.27761799	0.02617032	1.17235518
13	0.1009288	1.20078981	1.21887779	0.40838584	0.05395525	1.01682591
19	0.38646615	1.83146298	1.99467254	1.58309901	0.70428419	0.97660911

Median	0.10823749
Q1	-0.26253905
Q3	0.52363395
IQR	0.78617299
Lower Outer Fence	-2.62105802
Lower Inner Fence	-1.44179853
Upper Inner Fence	1.70289343
Upper Outer Fence	2.88215292