Objectif

Choisir le nombre adéquat de facteurs dans la régression PLS.

Dans ce didacticiel, nous montrons comment mettre en œuvre le composant PLS-SELECTION pour choisir le nombre adéquat de facteurs dans la régression PLS.

Fichier

Un fichier de séquences de protéines regroupées en deux familles. Les descripteurs sont des 3-grammes extraits à partir de la description primaire des séquences de protéines. Le fichier comporte **101 observations**, **7143 descripteurs**, deux variables indiquent la famille d'appartenance (l'une discrète, l'autre codée 0/1).

Sélection des axes dans la régression PLS

Charger les données

Pour importer les données, nous créons un nouveau diagramme (FILE/NEW). Attention, au vu des caractéristiques du fichier à traiter, le nombre de variables est vraiment très élevé, il est plus judicieux d'enregistrer le diagramme au format binaire (BDM). Les temps de traitements seront optimisés.

Définir la régression PLS avec le composant PLS-FACTORIAL

Pour définir la régression PLS, il faut tout d'abord choisir les variables de l'étude. Nous utilisons pour cela le composant DEFINE STATUS. Nous plaçons en TARGET la variable CONTINUOUS_CLASS qui indique l'appartenance aux familles à l'aide des codes 0/1, et en INPUT les variables allant de EHT jusqu'à YGR.

🛣 TANAGRA 1.4.9 - [Data	aset (protein.txt)]					
Tile Diagram Component	t Window Help				_ 8 ×	
	Default title		Dataset (protein.txt)			
🖃 🥅 Dataset (protein.tx1	t)		Parameters			
Cefine status 1		Database :	Database :			
	Define attribute	D-\DataMining\Data	D-\DataMining\Databases for mining\dataset for soft dev and_comparison\pis\protein.txt			
	Define attribute	statuses				
	Parameters					
	Att. 1					
	Attributes :		Target Input Illustra	live		
			EHT HTY			
	C HPN	Т	YG			
		Y	'GE GEV			
	C WCE		EVN NO			
			IQL			
	C QYY	G	DLG GG			
			GV			
	C continuousCLASS		/FV	~		
			Clear selection			
		r			~	
			UK Cancel	Help		
Data visualization	Statistics	Nonparametric statistics	Instance selection	Feature construction		
Feature selection	Regression	Factorial analysis	PLS	Clustering		
Spv learning	Meta-spv learning	Spv learning assessment	Scoring	Association		
Correlation scatterplot	Export dataset	🛃 Scatterplot	🔣 View dataset	🤃 View multiple sca	tterplot	
L						

Puis nous insérons dans le diagramme le composant PLS-FACTORIAL (onglet PLS). Sa particularité par rapport au composant PLS-REGRESSION est qu'il crée de nouvelles variables correspondant aux projections sur les axes factoriels, et non pas la prédiction à l'aide de l'équation de régression.

Dans notre exemple, nous n'avons qu'une seule variable à prédire. Dans le cas général, il est possible de définir plusieurs variables TARGET.

Par défaut, la méthode produit automatiquement 5 facteurs. Nous avons la possibilité de moduler les résultats à afficher, dans le mode par défaut, nous observons principalement les redondances.

Les résultats montrent que les 5 premiers axes expliquent 99,8% des valeurs de Y. Mais au vu des redondances, à partir du 3^{ème} axe, leur pouvoir explicatif ne semble guère significatif. C'est cette intuition que nous devrons confirmer de manière plus rigoureuse avec la procédure de validation croisée.

Sélection du nombre d'axes à retenir

Un nouvel outil (PLS-SELECTION) est dédié à la sélection automatique du nombre d'axes. Nous avons préféré élaborer un module à part pour pouvoir le brancher à la suite des différents composants qui effectuent une régression PLS. Dans notre cas, nous l'insérons à la suite de PLS FACTORIAL 1 dans le diagramme puis nous activons le menu PARAMETER.

Nous disposons de deux onglets dans la boîte de paramétrage.

Didacticiel - Etudes de cas

PLS Selection	PLS Selection
Parameters Ptopping rule	Parameter Stopping rule
# folds for cross-validation : 5	Stopping rule Q2 • PRESS improvement
Seed random generator Random Standard	Q2 cut value : 0.05 PRESS cut value : 20 🔀 %
OK Cancel Help	OK Cancel Help

Le premier onglet PARAMETERS permet de définir les paramètres de calcul. Nous pouvons notamment spécifier le nombre de parties dans la validation croisée (FOLDS). Si l'option UPDATE PLUGGED COMPONENT est cochée, le composant PLS associé sera automatiquement recalculé avec le nombre « optimal » de facteurs mis en avant par la procédure de détection.

Le second onglet STOPPING RULE permet de définir la règle d'arrêt dans l'exploration des solutions. A l'origine, notre idée était de reprendre la procédure fondée sur l'indicateur Q2 décrite dans l'ouvrage de Tenenhaus (La régression PLS, Technip, 1998, p.83), qui prend pour référence le logiciel SIMCA-P¹. Nous retrouvons d'ailleurs le même descriptif dans la documentation du logiciel SIMCA-P. Mais nous n'avons pas pu obtenir les mêmes valeurs. Le mystère est levé par l'article de Chavent et Patouille (Calcul du coefficient de régression et du PRESS en régression PLS1, Revue MODULAD, n° 30) qui, au terme d'un jeu de pistes passionnant, indique la véritable formule utilisée par SIMCA-P. Tout serait pour le mieux si la formule utilisée par SIMCA-P a été modifiée depuis la version 9.0, sans qu'elle ne soit clairement explicitée dans la documentation. Nous n'avons pas retrouvé les résultats de l'ouvrage de Tenenhaus avec la version 11.0 du logiciel.

Dans TANAGRA, nous avons donc introduit deux approches pour la détection de la solution optimale : la première est toujours fondée sur le Q2 conformément (strictement) au descriptif dans l'ouvrage de Tenenhaus² ; la seconde est une variante qui teste si la réduction du PRESS (l'erreur quadratique en validation croisée pour chaque variable TARGET) est supérieure ou non à un seuil choisi par l'utilisateur. Le seuil de 20% permet de définir un comportement *raisonnable* sur les données que nous avons pu étudier. Tout cela est à améiorer bien sûr, l'accès au code source vous permettra de modifier à souhait la procédure.

R.R.

¹ http://www.umetrics.com/default.asp/pagename/software_simcap/c/3

² Curieusement, nous retrouvons à peu près les résultats de la version de démonstration 11.0 de SIMCA-P, surtout lorsque les effectifs sont élevés.

	Paramete	ſ	∀alu	е		
# folds			5			
Rnd			1			
Stopping	g rule		1			
Q2 cut \	alue		0.05	00		
PRESS Re	duction c	ut (%)	20			
Update	olugged co	mponen	it 1			
Component selection results						
CONT	onen	t sei	есп	опте		
com	onen	t sei	ecu	onre		
Vumbe	r of com	ponen	ts = 2	onre		
Numbe	r of com d results	ponen	ts = 2	onre		
Numbe Detaile	r of com d results -	r sei ponen	ts = 2			
Numbe Detaile	r of com d results - 02cum	cont cont	ts = 2 tinuou:			
Numbe Detaile h Q2	r of com d results - Q2cum 1 0.711	con Q2	ts = 2 tinuou: PRESS 7.275	CLASS D(PRESS) 71.1%		
Numbe	r of com d results - Q2cum 1 0.711 5 0.477	con 0.711 -0.805	ts = 2 tinuou: PRESS 7.275 5.481	CLASS D(PRESS) 71.1% 24.7%		
Numbe Detaile h Q2 1 0.71 2 -0.80 3 -6.08	r of com d results - Q2cum 1 0.711 5 0.477 1 -2.701	con 0.711 -0.805	tinuou: PRESS 7.275 5.481 5.274	CLASS D(PRESS) 71.1% 24.7% 3.8%		

Avec les paramètres par défaut, nous obtenons les résultats suivants.

Il semble que deux axes suffisent pour prédire au mieux les valeurs de la variable à prédire. Au terme des calculs, le composant PLS FACTORIAL 1 dans le diagramme est automatiquement mis à jour avec un nombre de facteurs égal à 2. Vous pouvez vous en rendre compte en activant le menu VIEW du composant.

TANAGRA 1.4.9 - [PLS	Factorial 1] t. Window Help					
Default tit	le	BISE actorial 1				
🖃 🥅 Dataset (protein.txt)		Parameters				
Define status 1		PLS parameters Number of axis 2 Standardize				
PLS PLS Sele	Parameters					
0. 12509-0850499	Execute					
		Revela				
		Axis Axis_1 Axis_2 Input(s) 0.036 (0.036) 0.021 (0.056) Target(s) 0.879 (0.879) 0.091 (0.970)				
		Components				
Data visualization	Statistics	Nonparametric statistics	Instance selection	Feature construction		
Feature selection Spy learning	Regression Meta-spy learning	Factorial analysis	PLS Scoring	Clustering Association		
^{PLS} PLS Factorial PLS PLS Regression PLS PLS Selection						

Projection des observations

Puisque nous disposons de deux axes, il est possible de projeter les individus dans le premier plan factoriel, notamment pour visualiser le positionnement des deux classes de protéines.

Pour ce faire, nous ajoutons un composant SCATTERPLOT dans le diagramme, nous sélectionnons le facteur 1 en abscisse, le facteur 2 en ordonnée, et nous illustrons les points à l'aide de la classe d'appartenance.

Le résultat est particulièrement plaisant. Nous distinguons bien les deux familles de protéines sur le premier plan factoriel produit par la régression PLS. Une procédure de classement fondée sur ces deux facteurs sera vraisemblablement très performante.