1 Objectif

Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.

Tout le monde l'aura compris, je passe énormément de temps à analyser les logiciels de statistique et de data mining gratuits découverts ici ou là sur le web. Je suis toujours enthousiasmé à l'idée de découvrir les dispositifs imaginés par les uns et les autres pour proposer aux utilisateurs, nous, des solutions de traitement de données. Au fil des années, j'en suis arrivé à la conclusion qu'il n'existe pas de mauvais logiciels. Il y a simplement des outils plus ou moins adaptés à des contextes d'utilisation qu'il nous appartient de cerner, en tenant compte de nos objectifs, des caractéristiques de nos données, de notre mode opératoire, de nos affinités, etc. On ne gagnera jamais le Paris-Dakar avec une Formule Un ; Sébastien Loeb, aussi fort soit-il, ne peut pas gagner un rallye avec une semi-remorque (j'imagine hein, avec lui on ne sait jamais). C'est l'une des raisons pour lesquelles je parle énormément des autres logiciels, autres que ceux que je développe moi-même. Plus nous en verrons, plus nous saurons nous détacher de l'outil pour nous concentrer sur les finalités, les techniques, l'exploitation des résultats. C'est ce qui importe en définitive.

Dans ce tutoriel, nous décrivons le logiciel PSPP. Ses promoteurs la positionnent comme une alternative à SPSS (« *PSPP is a program for statistical analysis of sampled data. It is a free replacement for the proprietary program SPSS, and appears very similar to it with a few exceptions.* »^{1,2}). Plutôt que de procéder à une analyse exhaustive de ses fonctionnalités, ce qui est déjà très bien fait par ailleurs³, avec en particulier le document en français de Julie Séguéla (« <u>Introduction au logiciel PSPP – Version 0.4.0</u> », 2006 ; 119 pages⁴), nous préférons décrire quelques procédures statistiques en mettant en miroir les résultats fournis par **Tanagra, R 2.13.2** et **OpenStat (build 24/02/2012)**. C'est une manière de les valider mutuellement. Plus que les plantages, les erreurs de calculs sont la hantise des informaticiens. Obtenir des résultats identiques pour les mêmes traitements avec plusieurs logiciels n'est pas un gage d'exactitude. En revanche, en cas de disparités, il y a clairement un problème. L'affaire devient diablement compliquée lorsque ces disparités ne surviennent que dans des situations que l'on a du mal à identifier.

2 Données

Nous utilisons une variante du fichier « Automobile Dataset » du serveur UCI⁵. Il répertorie les caractéristiques de 205 véhicules : marque, poids, puissance, consommation, etc.

¹ http://www.gnu.org/software/pspp/pspp.html

² Pourquoi pas après tout ? Si on n'est pas ambitieux pour soi-même, qui le sera à notre place ? Le logiciel R a du commencer tout petit un jour. En voyant ce qu'il est devenu aujourd'hui, on ne peut que s'en réjouir.

³ <u>http://www.gnu.org/software/pspp/documentation.html</u>

⁴ Ce document est d'autant plus intéressant qu'il décrit de manière détaillée les procédures de manipulation de données (ajout - suppression de variables, transformations, sélection des observations) avec le langage de commande de PSPP. Ces tâches, très répétitives et fastidieuses, sont primordiales dans l'utilisation quotidienne du logiciel. Pouvoir les programmer dans un fichier script est un atout essentiel.

⁵ <u>http://archive.ics.uci.edu/ml/datasets/Automobile</u>

Selon les techniques que nous présenterons, nous utiliserons telle ou telle variable de la base. Qu'importe l'analyse des résultats dans ce tutoriel. L'important pour nous est de décrire la mise en œuvre des différentes méthodes statistiques sous PSPP pour que tout un chacun puisse reproduire la démarche sur son propre fichier.

3 Le logiciel PSPP

3.1 Charger et installer le logiciel

Le logiciel PSPP est accessible sur son site web (<u>http://www.gnu.org/software/pspp/</u>).

	oftware/prop/	0 - 90		- 8 - 8		
G	et PSPP	FAQ	GIND PSPP	Documenta	tion	
DCPP	Contrib	ute G	uick Tour			
PSPP is a program for statistical a appears very similar to it with a fer	analysis of sampled data w exceptions.	a. It is a Free replace	ement for the propr	ietary program (SPSS, and	USEFUL LINKS
	The most important of PSPP will not "expire artificial limits on the additional packages t PSPP currently supp PSPP can perform de Its backend is design the input data. You co	f these exceptions a " or deliberately stop number of cases or o purchase in order orts is in the core pa escriptive statistics, ed to perform its ana nuse PSPP with it	are, that there are n o working in the futt variables which you to get "advanced" tockage. T-tests, linear regre alyses as fast as po s orcabical interfact	o "time bombs", ure. Neither are u can use. Then functions; all fur ession and non- possible, regardle e or the more tr	your copy of there any e are no inctionality that parametric tests. ess of the size of aditional syntax	Latest News User Mailing ListAsk general questions here Developer Website Developer Mailing List(not for help requests) Unofficial Resources: User Wiki Developer Wiki Biog: en, pt. BR
commands.	the input data. Tou o		s graphical internac	e of the more th	autional syntax	Other Stats Software: R
A brief list of some of the features Supports over 1 billion cases. Supports over 1 billion variab Syntax and data files are con Choice of terminal or graphic Choice of text, postscript or h Inter-operates with <u>Gnumeric</u>	of PSPP follows: les. npatible with SPSS. al user interface. tml output formats. . <u>OpenOffice.org</u> and of	her free software.				Grett Octave miscellaneous Other GNU Software
Easy data import nonspread Fast statistical procedures, en No license fees. No expiration period. No unethical "end user license <u>Fully indexed</u> user manual. <u>Free Software</u> ; licensed unde Cross platform; Runs on man	ven on very large data s e agreements". er <u>GPLv3</u> or later. ny different computers an	nd many different op	perating systems.			
PSPP is particularly aimed at stati	isticians, social scientist	s and students requ	iring fast convenier	nt analysis of sa	mpled data.	
Please send FSF & C Please send broken Copyright 6 1996, 12 USA - Verbatim copy preserved. Updated: \$Date: 201	SNU inquiries to gnu@gnu.o links and other corrections (197, 1998, 1999, 2000, 2001 ring and distribution of this e 0/05/21 08:56:04 \$ \$Author:	rg. There are also othe or suggestions) to bug- , 2002, 2003, 2004, 200 ntire article are permitte jmd \$	r ways to contact the F jnu-pspp@gnu.org. D5, 2006, 2007 Free S ed worldwide, without r	SF. oftware Foundation oyalty, in any med	n, Inc., 51 Franklin St - St ium, provided this notice,	uite 330, Boston, MA 02110, and the copyright notice, are
	_					

Nous avons récupéré la version **0.7.8**, datée du **11 novembre 2011**. PSPP a besoin de l'environnement MINGW pour fonctionner⁶. Son installation est transparente pour nous. Nous n'avons pas à configurer manuellement des bibliothèques additionnelles. C'est appréciable. Les utilisateurs sont souvent rebutés par la nécessité d'effectuer une série de manipulations systèmes avant de pouvoir lancer un logiciel.

Le processus d'installation sous Windows n'amène pas de commentaires particuliers. Le logiciel est accessible via le menu DEMARRER de Windows. Il est également possible d'intégrer des raccourcis sur le bureau ou dans la barre de lancement rapide de Windows.

⁶ <u>http://www.mingw.org/</u>

3.2 Fonctionnement en ligne de commande

PSPP peut travailler en ligne de commande. Nous décrivons les instructions dans un fichier script à l'aide d'un éditeur de texte, puis nous le transmettons à l'exécutable. Les résultats peuvent être affichées dans la console ou collectées dans un fichier texte.

Le langage est compatible avec celui de SPSS. Sa syntaxe est exhaustivement décrite sur le site web de l'éditeur (<u>http://www.gnu.org/software/pspp/manual/pspp.html#Language</u>). En apprenant à programmer avec PSPP, nous saurons le faire avec SPSS. Voilà un autre atout très intéressant.

A titre d'exemple, nous avons souhaité comparer la puissance (horsepower) des véhicules selon le type de carburant utilisé (fuel_type). Nous avons rédigé les instructions ci-dessous à l'aide d'un éditeur de texte. Puis nous l'avons sauvegardé dans le fichier « **test.syn** ».

```
GET FILE="D:\dataset\pspp\autos.sav".
T-TEST /VARIABLES= horsepower
    /GROUPS=fuel_type("gas","diesel") /MISSING=ANALYSIS
    /CRITERIA=CIN(0.95).
```

Les résultats sont affichés dans la console MSDOS de Windows lorsque nous le transmettons à l'exécutable PSPP.EXE.

C:\Windows	s\system32\c	md.ex	e			_	_			• <u>x</u>		
D:\DataMinin)\pspp\bin\p Group Statis	g\Database spp" test. tics	es_fo .syn	r_mini	ing\1	ogiciels	s_data	set\	pspp>"c:\\	program fil	es (x86 🕯		
#============ # #	fuel_type	N	Moyenr	ne St	d. Devi	ation	S.E.	Mean#				
# #horsepower #	gas	185	106.	39		40.18		2.95# #				
# # #	diesel	20	84.4	15	:	25.96		# 5.80#				
" Independent	Samples Te	est										
## # # # #	# # # # #	# Levene's t-test for Equality of Means # Test for # Equality # of # Variances										
* # # # # # # # # # # #	* # # # # # # # # # #	F	Sig.	t	df	Sig (2- taile	d)	Mean ifference	Std. Error Difference			
# #horsepowerE # v # a # E # V # n	iqual # variances# ssumed # iqual # variances# ot #	1.92	#====#	2.39	203.00	#===== .(.(==#= 02 00	21.94 21.94	#6.51 6.51	# E		
#========	=====#:		#====#	; ;=====	" #======;	" #=====	==#=		! #========	# +		

PSPP compare tout d'abord les variances conditionnelles à l'aide du test de Levene. Puis il effectue la comparaison des moyennes avec et sans l'hypothèse d'homoscédasticité.

PSPP peut aussi fonctionner en mode interactif. Après avoir lancé PSPP.EXE, un terminal de commandes s'affiche. Nous pouvons saisir les instructions et visualiser directement les résultats. Dans la copie d'écran ci-dessous, après avoir chargé le fichier « autos.sav », nous faisons afficher le dictionnaire des données.

C:\Windows\system	32\cmd.exe - "c:\program f	les (x86)\pspp	\bin\pspp"	
PSPP> GET FILE='aut PSPP> DISPLAY DICT	tos.sav'.	+	+	*
Variable	Description	Position	+	
normalized_losses	Format : F3.0 Mesure : Echelle Display Alignment: Droite Affiche la largeur :	8	# 	
Imake	Format : A13 Mesure : Nominale Display Alignment: Gauche Affiche la largeur : 13	2		E
[fuel_type	Format : A6 Mesure : Nominale Display Alignment: Gauche Affiche la largeur :	6	+ 	
[fuel_type_gas	Format : F1.0 Mesure : Echelle Display Alignment: Droite Affiche la largeur :	8		Ŧ

3.4 Fonctionnement en mode graphique

Nous devons faire l'apprentissage du langage PSPP pour exploiter les deux modes opératoires cidessus. Nous n'en avons pas toujours le temps ni l'envie. Pour les personnes peu enclines à programmer, PSPP propose le pilotage interactif par menu. Sans nul doute que la grande majorité des utilisateurs travaillerons sous ce mode.

C'est l'approche que nous privilégierons dans ce tutoriel. Au démarrage du logiciel via le raccourci Windows, nous obtenons la fenêtre suivante. Elle n'est pas sans rappeler celle de SPSS. Les commandes sont accessibles dans des menus regroupés pas thèmes⁷ dont les principaux sont : « **données** » pour la manipulation des observations ; « **transformation** » pour la manipulation des variables ; « **analyse** » pour les traitements statistiques.

⁷ Curieusement, certains menus sont en français, d'autres en anglais. Je ne sais pas si c'est du à ma configuration machine (Windows en français), alors que je n'ai demandé à aucun moment de disposer de la version française durant l'installation, ou si nous avons les mêmes menus sur les autres systèmes.

🐞 *autos.sav [[DataSet1] — P	IRE Data Lor	➡			-		l	- 0	- S	x
<u>Fichier</u> Editio	n <u>V</u> ue <u>D</u> onnée	es <u>T</u> ransformation	<u>A</u> nalyse	<u>U</u> tilities	<u>W</u> indows	<u>A</u> ide					
Dpen E	Enregistrer Go	i 🂫 🎂 🛃 To Case Variables.	<u>S</u> tati: Com	Statistiques Descriptives							»
	-		Bivariate <u>C</u> orrelation								_
		1	K-Means Cluster								_
	normalized_losses	make	Facto	or <u>A</u> nalysis				aspiration	n_turbo	nun	â
1	106	nissan	Re <u>l</u> ia Linea	ibility ar <u>R</u> egressi	on				0	four	
2	74	toyota	Stati: ROC	stiques <u>N</u> o Curve	n-parametri	+		0	four	-	
3	168	nissan	ga	as _		1	std	1	0	two	
4	103	volvo	ga	as		1	turbo		1	four	_
5	93	mercedes-benz	di	diesel 0 tr		turbo		1	four	_	
6	145	dodge	ga	as		1	turbo		1	two	
7	106	nissan	ga	as		1	std		0	four	
8	192	hmw		2 6		1	etd		0	two	-
<	III									•	
Data View Var	iable View										
					Fi	ilter off	Wei	ghts off	No	o Split	

4 Importation des données

Première étape, nous devons importer les données contenues dans « autos_pspp.txt ». Il s'agit d'un fichier texte avec le caractère tabulation comme séparateur de colonnes, format reconnu par la quasi-totalité des logiciels de statistique et de data mining.

Nous actionnons le menu FICHIER / IMPORT DELIMITED TEXT DATA dans PSPP. Nous sélectionnons notre fichier dans la boîte de dialogue.

En cliquant sur le bouton OUVRIR, un guide (wizard) apparaît. Il nous aide à paramétrer l'importation. En résumé, il nous faut : (1) importer toutes les observations ; (2) la première ligne correspond au nom des variables ; (3) le caractère TAB est le séparateur de colonnes ; (4) pour notre fichier, les variables sont soit « numériques » (variables quantitatives) soit chaînes (variables qualitatives). Après cette dernière étape, il ne nous reste plus qu'à cliquer sur le bouton APPLIQUER.

Ajus	ter le	e format	des varial	Vérifiez le forr et régler le s'il d'autres propr tard.	nat des données affic est incorrect. Vous p riétés de variables ma	hé au-dessous ouvez fixer intenant ou plus			
Variable	•	Nom	Туре	L	Decimals	Etiquette	Values	Manquant	Col 🔺
	1	normalized_los	s Numérique	3	0		None	None	8
	2	make	Chaîne	13	0		None	None	13
	3	fuel_type	Chaîne	6	0		None	None	6
•	4	1							
Prévisua	alisation	des données							
Ligne	norm	alized_losses	make	fuel_typ	pe fuel_type_gas	aspiration	aspiration_turbo	num_of_doors	body 🗠
2	106		nissan	gas	1	std	Θ	four	hat
3	74		toyota	gas	1	std	Θ	four	hat
4	168		nissan	gas	1	std	Θ	two	har
-	200		1				•		

Les données sont chargées. Nous nous empressons de le sauvegarder dans le format natif de PSPP.

*[DataSet1] — PSPPIRE Data Editor													
<u>Fichier</u> <u>E</u> dition <u>V</u> ue <u>D</u> onnées <u>T</u> ran	nsformation <u>A</u> nalyse <u>U</u> tilities <u>W</u> indows <u>A</u> ide												
🗋 <u>N</u> ouveau	Ctrl+N • 🔍 📲 🏥												
🖹 Open	Ctrl+O Find Insert Cases Inserer une variable Split File												
Import Delimited Text Data	* Import Delimited Text Data												
Enregistrer Ctrl+S fuel_type fuel_type_gas aspiration aspiration_turbo nun													
Save As													
Rename Dataset gas 1 std 0 four													
Display Data File Information R Enregistrer													
Données_récemment utilisées	· · · · · · · · · · · · · · · · · · ·												
<u>Fichiers récemment utilisés</u>	Nom : autos.sav												
🐔 Quitter	Enregistrer dans le <u>d</u> ossier : 📄 pspp 💌												
93 merced	# Parcourir d'autres dossiers												
6 145 dodge													
7 106 nissan	Ichier Systeme												
8 100 1	 Fichier portable 												
	Annuler Enregistrer												
Data View Variable View													
	Filter off Weights off No Split												

Nous nommons le fichier « autos.sav ». Ce format est reconnu par le logiciel SPSS.

5 Quelques techniques statistiques avec PSPP

Dans cette section, nous décrivons le paramétrage et la lecture des résultats fournis par quelques techniques disponibles dans PSPP. Lorsque la comparaison est possible, soit parce qu'elles sont

présentes dans les deux logiciels, soit parce que notre fichier de données se prête à l'analyse, nous mettons en miroir les sorties de Tanagra. Les méthodes étant basées sur des algorithmes exacts, les valeurs obtenues sont identiques. Seule la présentation peut différer parfois.

5.1 Statistiques descriptives – Variables quantitatives

Pour calculer les statistiques descriptives des variables « horsepower » (puissance) et « city_mpg » (consommation en ville⁸). Nous actionnons le menu ANALYSE / STATISTIQUES DESCRIPTIVES / DESCRIPTIVES. Dans la boîte de paramétrage, nous sélectionnons les deux variables et nous spécifions les indicateurs à calculer.

🌾 *autos.sav [l	DataSet1] –	– PSPPIRE Da	ta Editor				_	-	_		_ 0 _ X
<u>Fichier</u> Edition	on <u>V</u> ue I	<u>D</u> onnées <u>T</u> r	ansformation	<u>A</u> nalyse <u>U</u> t	tilities	<u>W</u> indows <u>A</u> ide					
Dpen	Enregistrer	Go To Cas	e Variables.	<u>S</u> tatistiqu Compar	ues De aison (escriptives des Moyennes	1		requencies escriptives	72 11	S Cases »
1: price		8949		K-Means	: <u>C</u> orre : Clust	ter			xpiore Crosstabs		
	ngine_typum_of_cylinde engine_siz				Factor <u>A</u> nalysis pg highway_mpg						
1	hc f	four	1	Re <u>l</u> iabilit Linear <u>R</u>	¥ ₿ □	escriptives		-		-	×
2	hc f	four		Statistiq		fuel_type_gas	•	<u>V</u> ai	riables:		Valider
3	hc t	four	9	7	/	aspiration_turbo			horsepower city_mpg	÷	
4	hc t	four	13	0		wheel_base length		• S <u>t</u> a	tistics:		
5	hc f	five	18	3	/	width			Standard dev	/iz	Coller
6	hc f	four	15	6		height curb_weight	E		Minimum	E	
7	hc f	four	12	0	//	engine_size			Plage		Annuler
8	hc :	six	16	4		peak_rpm highway_mpg			Somme		
9	hc f	four	12	2	//	price			Variance	+	
10	hc i	four	9	0	Opt	symboling tions :	~		<		<u>E</u> ffacer
11	hc f	four	14	1		Exclude entire case	e if any	selected	variable is missin	g	
12	hc :	six	20	9		Save Z-scores of s	ing data	a in analy	sis as new variabler		Aide
						Save 2-scoles of s	creeteu	variables			
Data View Va	riable View										
								Filter o	tt Weight	s off	No Split

Les résultats sont affichés dans une fenêtre de sortie distincte.

🔞 Output — PSPPIR	RE Output Vie	wer			-					- 0	x
<u>Fichier</u> <u>E</u> dition <u>V</u>	<u>V</u> indows <u>A</u> io	de									
	DESCRIPTIVE DESCRIPTIVE /VARIABLE /STATISTIC	S S S= CS=	horsepow DEFAULT	er city_n KURTOS	npg IS SKEW	NESS.					
	Variable	N	Moyenne	Std Dev	Kurtosis	S.E. Kurt	Skewness	S.E. Skew	Minimum	Maximum	
	horsepower city_mpg	205 205	104.25 25.22	39.52 5.54	2.68 .58	.34 .34	1.40 .66	.17 .17	48.00 13.00	288.00 49.00	

Le composant MORE UNIVARIATE CONST STAT de **Tanagra** fournit les valeurs suivantes. Les valeurs, pour celles qui sont présentées en tous les cas, concordent en tous points.

⁸ L'unité est MPG, miles parcourus avec un gallon de carburant. Une valeur élevée indique un véhicule sobre.

5.2 Statistiques descriptives conditionnelles

Nous souhaitons maintenant calculer les statistiques descriptives de « horsepower » en fonction des valeurs prises par « fuel_type » (type de carburant utilisé, « gas » [essence] ou « diesel » [gazole]). Nous actionnons le menu ANALYSE / STATISTIQUES DESCRIPTIVES / EXPLORE. Nous plaçons « horsepower » en DEPENDENT LIST, « fuel_type » en FACTOR LIST. Via le bouton STATISTIQUES, nous demandons les statistiques descriptives. Il ne reste plus qu'à valider.

Nous nous intéressons à quelques valeurs du tableau de comparaison : la moyenne de horsepower est de 84.45 (resp. 106.39) chez les « gas » (resp. chez les « diesel ») ; les écarts-type sont respectivement de 25.96 et 40.18 ; etc. Notons que les sorties sont très complètes.

Le composant GROUP CHARACTERIZATION de **Tanagra** effectue des calculs similaires, sans toutefois prétendre à une telle exhaustivité. Il affiche essentiellement les moyennes et les écarts-type.

5.3 Tableaux de contingence

Nous croisons les variables « fuel-type » (type de carburant) et « aspiration » (turbo ou standard) dans un tableau de contingence. Nous actionnons le menu ANALYSE / STATISTIQUES DESCRIPTIVES / CROSSTABS. Nous plaçons la première variable en ligne, la seconde en colonne. L'outil est très riche, nous pouvons sélectionner un grand nombre d'indicateurs avec l'option STATISTICS (D de Sommers, Coefficient d'incertitude de Theil, Lambda et Tau de Goodman-Kruskal, Kappa de Cohen, etc.⁹).

	fuel_type *	aspiratio	on [Con	npter,	ligne %, colonne %, total %].
		aspirat	tion		
	fuel_type	std	turbo	Total	
	diesel	7.0	13.0	20.	D S S S S S S S S S S S S S S S S S S S
Tableaux Croisés.		35.0%	55.0%1	100.09	6
		4.2%	35.1%	9.8%	6
normalized_losses		3.4%	0.5%	9.87	0
a make	gas	161.0	24.0	185.	2
/ fuel_type_gas		25.8%	54.9%	20.29	o 4
/ aspiration_turbo	1 1	78.5%	11.7%	90.29	6
a num_of_doors	Total	168.0	37.0	205.	5
		82.0%	18.0%	100.09	6
<u>Format</u> <u>Statistics</u> <u>Cells</u> <u>Aide</u>		100.0% 10	00.0%1	100.09	6
		82.0%	18.0%1	100.09	<u>6</u>
	Tests du C	hi-Deux			
	Statistiqu	е	Va	leur	lf Asymp. Sig. (2-tailed)
	Pearson C	hi-Squar	re 3	33.03	1 .00
	Likelihood	d Ratio	2	24.90	1 .00
	Continuit	y Correcti	ion 2	9.61	1 .00
	N observa	itions vali	Ides	205	

⁹ Voir R. Rakotomalala, « <u>Etude des dépendances – Variables qualitatives</u>. Tableau de contingence et mesures d'association », Version 2.0, Mars 2011.

Nous disposons des différents profils (pourcentages). PSPP propose, entres autres, le KHI-2 de Pearson, le test du rapport de vraisemblance, le KHI-2 avec la correction de continuité.

Les mêmes outils existent dans **Tanagra**. Mais l'organisation est différente. Tanagra fournit dans la foulée le Lambda et le Tau de Goodman et Kruskal, ainsi que le coefficient d'incertitude de Theil.

5.4 Comparaison de 2 moyennes – Echantillons indépendants

Au-delà des statistiques descriptives conditionnelles, nous souhaitons comparer les moyennes conditionnelles de « horsepower » selon « fuel-type ». Dans le menu ANALYSE / COMPARAISON DES MOYENNES / INDEPENDENT SAMPLES T TEST, nous plaçons « horsepower » en TEST VARIABLE et « fuel-type » en DEFINE GROUPS (gas vs. diesel).

🚯 Independent-Samples T Test		-			×	J					
normalized_losses	horsepo	ble(s): wer			<u>V</u> alider C <u>o</u> ller						
fuel_type_gas		<i>c c</i>			A <u>n</u> nuler						
<pre>/ aspiration_turbo</pre>	fuel_type	Define Groups Effacer fuel type Effacer									
a num_of_doors	Define Groups	Options.			Aid <u>e</u>						
Group Statistics fuel_type N Moyenne Std. Deviation S.E. Mean horsepower gas 185 106.39 40.18 2.95 diesel 20 34.45 25.96 5.80											
	Levene's Test	for Equality of				t-test fo	or Equality of Mea	ins			
	Varia F	nces Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	95% Confidenc Diffe <i>Le plus bas</i>	e Interval of the rence <i>Le plus haut</i>		
horsepowerEqual variances assumed Equal variances not assumed	1.92	.17	2.39 3.37	203.00 29.91	.02	21.94	5.51	9.10 3.64	34.79 35.25		

PSPP effectue un test de comparaison de variances au préalable (test de Levene). Nous constatons qu'elles ne sont pas significativement différentes à 5 % (p-value = 0.17). Néanmoins, il propose le résultat du test de comparaison de moyennes avec et sans l'hypothèse d'homoscédasticité. Dans les deux cas, nous constatons que la puissance diffère selon le type de carburant utilisé.

Trois composants sont nécessaires dans **Tanagra** pour ces mêmes résultats. En revanche, ils partagent la même définition du rôle des variables c.-à-d. ils sont situés en aval du même DEFINE STATUS. Il n'y a pas de manipulations répétitives.

Bien évidemment, les résultats sont strictement identiques à ceux de PSPP.

5.5 Comparaison de 2 moyennes – Echantillons appariés

Nous comparons la consommation en ville (city_mpg) et sur autoroute (highway_mpg). A priori, à voiture égale, on consomme plus en ville (c.-à-d. *la valeur de MPG est plus faible*). Est-ce que nos données confirment cette hypothèse ?

Via le menu ANALYSE / COMPARAISON DES MOYENNES / PAIRED SAMPLES T TEST, nous plaçons les paires de variables « city_mpg » et « highway_mpg ». PSPP affiche les moyennes (25.2 pour cuty_mpg, 30.75 pour highway_mpg) et écarts-type de chaque variable, leur corrélation (0.97, les deux variables sont fortement liées), et le tableau décrivant les résultats du test. Manifestement, on consomme plus en ville que sur autoroute (on parcourt moins de miles avec le même gallon de carburant).

🚯 Pair	ed Samples T Test	2.00		1.00	1				22				
🗸 tue	l_type_gas			Test <u>P</u> a	r(s):			Valider					
🖌 🖊 asp	piration_turbo			► Var1		Var2		<u>-</u> under					
🖊 🖊 wh	eel_base			city_	mpg	highw	ay_mpg				_ /		
🖉 🦯 len	gth					-		Coller					
🛛 🖊 wie	ith							Conci					
🖊 / hei	ght												
/ cu	h weight							A		2			
🖊 en	Paired Sample Statist	ics											
/ hc		Movenne	N Std. De	viation S.E. N	ean								
🖊 ре	Pair Ocity, mpg	25.22.2	05	6.54	46								
/ hi	highway_mpg	30.75 2	05	6.89	.48								
/ pr	Paired Samples Corre	alations											
🖊 sy		lations	N Con	relation Sia									
نكا	Pair 0 city mpg & bi	ighway mp	a 205	97 00									
	i un oferty_mpg et m	igning _ inp	9 205	100									
	Paired Samples Test												
						Paired [Difference	S					
							95% Con	fidence Inte	erval of the Di	ference	.		
			Moyenne	Std. Deviatio	n Std	i. Error Mean	Lepi	lus bas	Le plus h	aut	t	d† Si	g. (2-tailed)
	Pair 0city_mpg - hig	hway_mpg	-5.53	1.6	4	.11		-5.76		-5.31	-48.19	204	.00

Le composant PAIRED T-TEST de Tanagra indique exactement la même chose.

5.6 Comparaison de K moyennes – Analyse de variance (ANOVA)

L'analyse de variance est la généralisation de la comparaison de moyennes à K groupes. Dans notre fichier, nous souhaitons comparer les moyennes de « horsepower » selon le style des véhicules. Avec le menu ANALYSE / COMPARAISON DES MOYENNES / ONE WAY ANOVA, nous plaçons « horsepower » en VARIABLE DEPENDANTE et « body_style » en FACTEUR.

PSPP vérifie l'hypothèse d'homoscédasticité à l'aide du test de Levene. A 5%, on ne peut pas rejeter l'hypothèse nulle ici (p-value = 0.15). Puis il effectue le test de comparaison de moyennes. Le F de Fisher est de 2.95 avec un p-value de 0.02. Au risque 5%, l'hypothèse d'égalité des moyennes dans les groupes est rejetée. Nous pouvons obtenir les moyennes et écarts-type conditionnels si nous le souhaitons.

	Attribute_Y	Attribute_X		Descrij	ption				Statistic			
			Value	Example	s Av	verage	Std-de	ev	Те			
			hatchback		70 101.		42.	3728	Levene's W	1.690393		
			hardtop		8 1	142.2500	50.	6127	df	4/200		
TARGET : (horsepower)	horsepower	body_style	sedan		96 1	103.1042	37.	1641	p-value	0.153627		
INPUT : (body_style)			wagon		25	98.0000	27.	9672				
			convertible		6 1	131.6667	42.	5566				
			IIA	:	205 104.2537		39.	5192				
🖶 🚰 Define status 6	A ALL THE LAB AND	A A A A A A A A A A A A A A A A A A A		Description					Chattan			
Levene's test 2	Attribute_Y	Attribute_X		bescription					Statistical test			
			Value	Examples	Average	e Sto	l-dev		Variance d	on		
Une-way ANOVA 1			hatchback	70	0 101.3714		42.3728		e Sum o	Sum of square		
			hardtop	8	142.2	500	50.6127	BSS		17744.6752	4	
	borsepower	body style	sedan	96	103.1	042	37.1641	WSS	3	00856 . 1345	200	
	norsepower	oody_style	wagon	25	98.0	000	27.9672	TSS	3	18600.8098	204	
			convertible	6	131.6	667	42.5566		Signific	ance level		
			All	205	104.2	104.2537		Statisti	cs V	alue	Proba	
								Fisher's	; F	2.949030	0.021317	

Tanagra nous annonce la même chose, les tests sont dissociés dans deux composants.

5.7 Régression linéaire

Nous cherchons à expliquer la consommation en ville (city_mpg) à l'aide du type de carburant utilisé (l'indicatrice de « fuel_type = gas »), du mode d'aspiration (indicatrice de « aspiration = turbo »), du poids du véhicule (curb_weight) et de sa puissance (horsepower). Nous indiquons les paramètres idoines dans la boîte de paramétrage accessible via le menu ANALYSE / LINEAR REGRESSION.

PSPP fournit le coefficient de corrélation multiple R = 0.89, le coefficient de détermination R² = 0.79, le tableau d'analyse de variance, et le tableau des coefficients. Le modèle est globalement significatif (F = 189.22, p-value = 0.00). Nous constatons que tous les coefficients sont significatifs au risque 5%. Toutes les variables incluses dans le modèle influent sur la consommation, le poids et le type de carburant ayant l'impact le plus élevé.

Avec le composant MULTIPLE LINEAR REGRESSION, Tanagra fournit exactement les mêmes résultats.

Global res	sults								
Endogenous attr	ibute		city_mpg	TARG	TARGET : (city_mpg) INPUT : (fuel_type_gas, aspiration_turbo, curb_weight, horsepower)				
Examples			205	INPU					
R ²			0.790990	curb					
Adjusted-R ²			0.786810	curb_					
Sigma error			3.020670						
F-Test (4,200)		189.223	33 (0.000000)	📄 🔁 Defir	🖻 🚼 Define status 7				
					Multiple linear regression 1				
Analysis o	f varian	ce							
Source	xSS	d.f.	xMS	F	p-value				
Regression	6906.2327	4	1726.5582	189.2233	0.0000				
Residual 1824.8892		200	9.1244						
Total	8731.1220	204							
Coefficier	nts								
Attrib	ute	Coef.	std	t(200)	p-value				
Intercept		57.640300	1.681678	34.275470	0.000000				
fuel_type_gas		-8.597166	0.929372	-9.250509	0.000000				
aspiration_turbo)	-1.641124	0.636844	-2.576963	0.010687				
curb_weight		-0.007887	0.000722	-10.917917	0.000000				
horsepower		-0.040383	0.009654	-4.183196	0.000043				

5.8 Courbe ROC

Les compagnies d'assurance indexent les véhicules selon leur niveau de risque, au-delà de leur valeur vénale (\approx le prix). Si la valeur de « symboling » est positive, cela veut dire que la voiture est plus risquée à assurer que ce qu'indique son prix. Nous avons déduit la variable « **risky** » prenant les valeurs « yes » si « symboling > 0 » et « no » si « symboling \leq 0 ».

Dans le même temps, elles calculent la perte moyenne pour chaque véhicule (« **normalized_losses** »). La valeur est normalisée selon une classification interne¹⁰.

Nous posons la question suivante : l'indicateur « normalized_losses » permet-il de distinguer les véhicules risqués de ceux qui ne le sont pas ? Nous utilisons la courbe ROC pour y répondre. Via le menu ANALYSE / ROC CURVE, nous paramétrons le logiciel de la manière suivante.

Les individus « positifs » correspondent à ceux portant la modalité « yes » de la variable « risky ». La précision est importante. PSPP calcule directement l'aire sous la courbe (AUC). Nous obtenons :

¹⁰ http://archive.ics.uci.edu/ml/datasets/Automobile

Il y a 113 positifs (« risky = yes ») dans le fichier. En les ordonnant les observations selon « normalized_losses », pour deux véhicules pris au hasard, il y a AUC = 74% de chances qu'un véhicule risqué soit placé devant un véhicule non risqué. « Normalized_losses » est plutôt un bon indicateur pour distinguer les véhicules qui seront classés risqués.

Pour une fois, **Tanagra** semble réagir différemment. En réalité, il n'en est rien. Il calcule le graphique en découpant la plage des valeurs en 20 intervalles de fréquences égales (cf. tableau des valeurs). *Ce qui produit une sorte de lissage* et évite le « creux » intempestif du graphique de PSPP. Mais fondamentalement, le résultat est le même, comme l'indique le critère AUC = 74.6%.

6 Traitements sous d'autres logiciels

Bien évidemment, les traitements réalisés dans PSPP peuvent l'être avec d'autres logiciels. Le choix nous appartient et c'est très bien ainsi. Pour illustrer cela, nous montrons ce que l'on peut faire avec les logiciels Tanagra, R 2.13.2 et OpenStat (version du 24/02/2012) qui est très similaire à PSPP.

6.1 Traitements sous Tanagra

Certaines techniques présentes dans PSPP ne le sont pas dans Tanagra, et inversement. Pour celles que nous avons abordées dans ce document, voici le diagramme de traitements.

6.2 Traitements sous R

Mis à part la courbe ROC, nous reproduisons ici les commandes associées et les résultats obtenus avec le <u>logiciel R¹¹</u>. Dans certains cas, nous utilisons des packages spécifiques, repérés par leur chargement préalable à l'aide de la commande **library(.)**.

```
> #loading the dataset
> setwd("D:/DataMining/Databases_for_mining/logiciels_dataset/pspp")
> autos <- read.table(file="autos_pspp.txt",header=T,sep="\t",dec=".")
> 
> #descriptive statistics
> print(summary(data.frame(autos$horsepower,autos$city_mpg)))
autos.horsepower autos.city_mpg
Min. : 48.0 Min. :13.00
```

¹¹ Les commandes sont en bleu, les commentaires en vert, les résultats en noir.

```
1st Qu.: 70.01st Qu.:19.00Median : 95.0Median :24.00Mean :104.3Mean :25.223rd Qu.:116.03rd Qu.:30.00Max. :288.0Max. :49.00
> #conditionnal descriptive statistics
>
print(tapply(autos$horsepower,autos$fuel type,FUN=function(x){c(m=mean(x),s
=sd(x))}))
$diesel
    m
84.45000 25.95842
$gas
             S
     m
106.39459 40.18342
> #crosstabs and test of independance
> library(qmodels)
>
print(CrossTable(autos$fuel type,autos$aspiration,prop.r=F,prop.c=F,prop.t=
F, chisq=T))
  Cell Contents
|-----|
ΝI
| Chi-square contribution |
|-----|
Total Observations in Table: 205
            | autos$aspiration
autos$fuel type | std | turbo | Row Total |
diesel | 7 | 13 | 20 |
| 5.380 | 24.427 |
  -----|----|-----|
                           24 |
                  161 |
                                     185 |
         gas |
                         2.641 |
                0.582 |
            168 |
                             37 |
 Column Total |
                                      205 I
  -----|-----|-----|
Statistics for All Table Factors
Pearson's Chi-squared test
_____
                     ------
                            p = 9.076896e-09
Chi^2 = 33.02955
                d.f. = 1
Pearson's Chi-squared test with Yates' continuity correction
_____
Chi^2 = 29.60576
                d.f. = 1 p = 5.294738e-08
$t
     У
      std turbo
Х
diesel 7 13
      161
            24
 gas
$prop.row
```

```
У
х
               std
                      turbo
 diesel 0.3500000 0.6500000
       0.8702703 0.1297297
  gas
$prop.col
       V
                std
                        turbo
х
 diesel 0.04166667 0.35135135
       0.95833333 0.64864865
 gas
$prop.tbl
        У
                std
                        turbo
х
 diesel 0.03414634 0.06341463
       0.78536585 0.11707317
 gas
$chisq
        Pearson's Chi-squared test
data:
      t.
X-squared = 33.0295, df = 1, p-value = 9.077e-09
$chisq.corr
        Pearson's Chi-squared test with Yates' continuity correction
data: t
X-squared = 29.6058, df = 1, p-value = 5.295e-08
> #Levene test for variance homogeneity
> library(lawstat)
> print(levene.test(autos$horsepower,autos$fuel type,location="mean"))
        classical Levene's test based on the absolute deviations from the
mean ( none not applied
       because the location is not set to median )
data: autos$horsepower
Test Statistic = 1.9242, p-value = 0.1669
> #t-test for independent samples
> print(t.test(autos$horsepower ~ autos$fuel type, var.equal=T))
        Two Sample t-test
data: autos$horsepower by autos$fuel type
t = -2.3861, df = 203, p-value = 0.01795
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-40.078454 -3.810736
sample estimates:
mean in group diesel
                      mean in group gas
                                106.3946
             84.4500
> #Welch t-test for independent samples
> print(t.test(autos$horsepower ~ autos$fuel type, var.equal=F))
        Welch Two Sample t-test
```

```
data: autos$horsepower by autos$fuel type
t = -3.3693, df = 29.912, p-value = 0.00209
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -35.247706 -8.641483
sample estimates:
mean in group diesel
                      mean in group gas
             84.4500
                                 106.3946
> #t-test for paired samples
> print(t.test(autos$city mpg,autos$highway mpg, paired=T))
        Paired t-test
data: autos$city mpg and autos$highway mpg
t = -48.1901, df = 204, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.758033 -5.305382
sample estimates:
mean of the differences
              -5.531707
> #Levene test for variance homogeneity
> print(levene.test(autos$horsepower,autos$body style,location="mean"))
        classical Levene's test based on the absolute deviations from the
mean ( none not applied
       because the location is not set to median )
data: autos$horsepower
Test Statistic = 1.6904, p-value = 0.1536
> #analysis of variance
> print(aov(horsepower ~ body style, data = autos))
Call:
   aov(formula = horsepower ~ body style, data = autos)
Terms:
                body style Residuals
                17744.68 300856.13
Sum of Squares
Deg. of Freedom
                         4
                                 200
Residual standard error: 38.78506
Estimated effects may be unbalanced
> #linear regression
>
                         print(summary(lm(city mpg
fuel type gas+aspiration turbo+curb weight+horsepower, data=autos)))
Call:
lm(formula = city mpg ~ fuel type gas + aspiration turbo + curb weight +
    horsepower, data = autos)
Residuals:
    Min
            10 Median
                             30
                                    Max
-9.1931 -1.4955 -0.1292 0.8772 15.8097
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
```

```
57.6402999 1.6816779 34.275 < 2e-16 ***
(Intercept)
fuel_type gas
                -8.5971662
                           0.9293722
                                     -9.251 < 2e-16 ***
aspiration turbo -1.6411239
                           0.6368442
                                      -2.577
                                              0.0107 *
                           0.0007224 -10.918
                                             < 2e-16 ***
curb weight
               -0.0078871
                -0.0403830 0.0096536 -4.183 4.3e-05 ***
horsepower
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 3.021 on 200 degrees of freedom
Multiple R-squared: 0.791,
                              Adjusted R-squared: 0.7868
F-statistic: 189.2 on 4 and 200 DF, p-value: < 2.2e-16
```

L'écueil toujours dans R est d'identifier la commande adéquate pour les traitements. Mais ce n'est pas si pénalisant, on peut toujours trouver en ligne (*merci Google*) des indications plus ou moins pertinentes. Le site « <u>Quick-R</u> » par exemple est d'une très grande aide. Enfin, si avoir à saisir manuellement des instructions vous rebute vraiment, vous pouvez toujours passer par une surcouche qui permet de piloter R en passant par des menus. <u>R-Commander</u> semble très bien pour cela. Nous retrouvons dans ce document une grande partie des techniques décrites dans ce didacticiel.

6.3 Traitements sous OpenStat

<u>OpenStat</u> se positionne également comme une alternative à SPSS. Après avoir été payant pendant une certaine (très courte) période, il est de nouveau gratuit aujourd'hui. Il est beaucoup plus complet que PSPP. Nous l'avons déjà décrit dans un précédent tutoriel, ou plutôt son cousin LazStats¹². Il s'agissait alors de réaliser une régression linéaire multiple, avec et sans sélection de variables. Nous aurons encore l'occasion de revenir plusieurs fois sur ce logiciel tant il est riche.

Tout comme PSPP, il faut tout d'abord importer les données au format texte (FILES / IMPORT TAB FILE). La première correspond au nom des variables. Nous obtenons la grille des données.

1	🚹 OpenStat Feb 24, 2012 📃 🗆 🖾									
	FILES VARIABLES EDIT ANALYSES SIMULATION UTILITIES OPTIONS HELP									
	ROW	COL.	Cell E	dit (Return to	finish) N C4	SES No. V	AR.S ASCII	STATUS	6:	
	1 22 34 205 25 Press F1 for help whe									
1	UNITS	normalized_r	make	fuel_type	fuel_type_gfu	aspiration	aspiration_as	num_of_dooi	body_styl 🔺	
l	CASE 1	106	nissan	gas	1	std	0	four	hatchbac	
	CASE 2	74	toyota	gas	1	std	0	four	hatchbac	
	CASE 3	168	nissan	gas	1	std	0	two	hardtop	
	CASE 4	103	volvo	gas	1	turbo	1	four	sedan	
	CASE 5	93	mercedes-be	diesel	0	turbo	1	four	sedan	
	CASE 6	145	dodge	gas	1	turbo	1	two	hatchbac	
	CASE 7	106	nissan	gas	1	std	0	four	sedan 🖕	
	Add Variable FILE: D:\DataMining\Databases_for_mining\logiciels_dataset\pspp\autos_pspp.bin									

Nous n'énumérerons pas les traitements ci-dessus. Je l'ai fait par ailleurs, les résultats sont complètement conformes. Nous nous contenterons de reproduire le test d'indépendance du KHI-2

¹² http://tutoriels-data-mining.blogspot.com/2011/05/regression-avec-le-logiciel-lazstats.html

entre « fuel_type » et « aspiration ». Attention, nous devons utiliser les indicatrices lors du paramétrage du logiciel.

Comme PSPP, les techniques statistiques disponibles sont regroupées dans le menu ANALYSES. Nous sélectionnons l'item NONPARAMETRIC. La liste est longue !

i 🔒 Ope	nStat Feb 24	, 2012											***				x
FILES	VARIABLES	EDIT (ANALY	SES	SIMULA	TION	UTILITIES	OPTIC	ONS	HEL	Р						
ROW	COL.		D	escripti	ive			+) A:	SCII	STATUS	3:					
1	9		C	Comparisons •				Press F1 for help when on any menu item.									
UNITS	normalize	d_r mał	A	nalyses	s of Varia	ance		•	piratio	n_as	num_of_door	body_style	drive_wheeld	engine_locae	wheel b	ase	len 🔺
CASE 1	106	- niss	C	orrelati	ion			+	H	-	four	hatchback	fwd	front	97		17:
CASE 2	74	tovr	M	lultiple	Regress	sion		•	⊢		four	hatchback	fwd	front	96		159
CASE 3	168	niss	In	terrupt	iste	e Series	s Analysis		⊢		hwio	hardton	fund	front	95		160
	102	uali	N	oppara	ametric				-	Con	abinations a	nd Permuta	tions	nonk			102
	- 103		M	leasure	ment			, ,		Compinations and Permutations						ł	100
CASE D	33	mer	м	latrix M		ation				Fisher's Evact Test						ł	131
CASE 6	145	doc	St	atistica	al Proce	ss Cont	trol	•		Runs Test						ŀ	17:
CASE 7	106	niss	Fi	Financial •						Chi-Square Test							173
CASE 8	188	bmv	N	Neural Network					Wilcoxon Matched Pairs, Signed Ranks Test							177	
CASE 9	125	mits	Li	Linear Programming (SIMPLEX)					Kruskal-Wallis Test							172	
CASE 10	118	dodg	lge gas 1 std 0				Friedman Test							157			
CASE 11	95	volve	o gas 1 turbo		1		Kendall's Tau Test							189			
CASE 12	122	bmw	,	gas 1 std		0		Kendall's Coefficient of Concordance							189		
CASE 13	103	nissa	an	gas	1		std	0		Sign Test						-	170
CASE 14	148	dodg	je	gas	1		std	0		Mann-Whitney U Test						į.	157
CASE 15	164	audi		gas	1		std	0		Q Test						t	177
CASE 16	94	volka	swagen	gas	1		std	0		Kanlan-Meier Survival Test						t	172
CASE 17	102	suba	aru	gas	1		turbo	1		Sen's Slope Estimate (series data)					ł	172	
CASE 18	91	toyot	ta	diesel 0 std 0		0		Kolmogorov-Smirnov Test						ł	166		
CASE 19	154	plym	outh	th gas 1 std 0			Kappa and Weighted Kappa						ł	157			
CASE 20	122	merc	edes-be gas 1 std 0				Generalized Kappa						ł	208 🚽			
							RIDIT Analysis						•				
Addy	riable	DUD		Datat						Scheirer-Ray-Hare Two-Way ANOVA on Ordinal Data							
	FILE:		amining	vDataba	ases_ror_	_mining	viogicieis_dat	aset\ps		Med	lian Polish A	Analysis			ل		

Pour le test du KH-2, nous spécifions les paramètres suivants puis nous cliquons sur COMPUTE.

Contingency Chi-Squared Test Input Options: Count cases classified by ro CUse frequencies in a variable Use proportions in a variable Variables: Normalized_normali make fuel_type aspiration num_of_doornum_i aspiration num_of_docaengine wheel_base length width height curb_weightcurb_v engine_typeengine	w and column variables in the data e for a given row variable value and for a given row variable value and Row Variable: [fuel_type_gfuel_type_gas Column Variable: [aspiration_aspiration_turbo	grid. d column variable value. l column variable value. Options: I Show Observed Frequencies Show Expected Frequencies Show Row and Column Proportions Show Cell Chi-square Values Use Yates' Correction for 2x2 table Save as a File of Frequency Data
Reset Ca	ancel	Compute Return

Une fenêtre de visualisation est affichée. Les résultats sont identiques à ceux de PSPP, Tanagra et R. OpenStat propose des indicateurs supplémentaires.

Contrairement à PSPP, OpenStat est piloté exclusivement par menu. Il n'est pas possible de conserver sur un support externe la séquence des commandes associées aux traitements réalisés. Reproduire l'analyse à l'identique sur une mise à jour du fichier (ex. de nouvelles observations ont été recueillies) n'est pas très aisé.

7 Conclusion

PSPP est un outil en devenir. La structure a manifestement bien été pensée. La possibilité de retranscrire dans la syntaxe PSPP les commandes définies par menu est un atout indéniable. C'est, entres autres, une excellente manière de faire l'apprentissage du langage de programmation. Je m'en suis d'ailleurs inspiré pour créer le fichier script décrit dans la section 3.2. Par exemple, pour l'analyse de variance (One Way Anova) de la section 5.6, PSPP génère la commande suivante.

```
ONEWAY /VARIABLES= horsepower BY body_style
/STATISTICS=HOMOGENEITY .
```

D'autres méthodes statistiques sont accessibles dans PSPP (statistiques non paramétriques – ex. test des rangs signés de Wilcoxon, test de Friedman ; classification automatique avec la méthode des K-Means ; analyse en composantes principales). Le logiciel couvre déjà une bonne partie des techniques usuelles. Il sera certainement complété au fil du temps. C'est un logiciel que je suivrai avec beaucoup d'intérêt.