1 Objectif

Présentation de l'add-in « Real Statistics » pour Excel (http://www.real-statistics.com/).

Excel – je dirais plutôt le tableur de manière générique - est un des outils favoris des « data scientist ». Les sondages Kdnuggets sur la question le confirment¹. Il arrive systématiquement dans les 3 premiers logiciels les plus utilisés ces dernières années. Les raisons de ce succès ont été maintes fois évoquées sur ce blog : il est très répandu, tout le monde sait le manipuler, c'est un instrument puissant pour la mise en forme et la préparation des données. Excel est moins à son avantage lorsqu'il s'agit d'effectuer des calculs statistiques. D'aucuns pointent du doigt son manque de précision et la relative pauvreté de sa bibliothèque de fonctions statistiques et d'analyse de données^{2,3}. Les add-ins (ou add-on, macros complémentaires) semblent alors constituer une solution privilégiée pour associer les calculs spécialisés aux fonctionnalités usuelles des tableurs.

Les add-ins agissent de différentes manières. Certains établissent un pont en transférant simplement les données vers les logiciels de data mining qui opèrent alors indépendamment, en stand-alone. C'est le cas de la macro « tanagra.xla » pour Tanagra⁴, ou du dispositif RExcel pour R⁵. D'autres logiciels fonctionnent en sous-main, de manière transparente, après réception des données et renvoient les résultats dans une feuille de calcul ou dans une fenêtre dédiée. C'est le cas de des add-ins de SAS⁶ et de SQL Server⁷. D'autres enfin intègrent directement les traitements, et procèdent aux calculs en les programmant en VBA (Visual Basic pour Applications) ou en les incorporant dans des DLL (librairies compilées) externes.

La librairie « **Real Statistics** » du Dr Charles Zaiontz appartient à cette troisième catégorie. C'est une solution simple comme je les aime. La copie d'un fichier « RealStats-2007.xlam » (pour la version 2007 d'Excel) suffit pour disposer pleinement de toutes les fonctionnalités. Il

¹ KDnuggets Polls, « <u>Analytics / Data Mining software used</u> ? », May 2013 ; « <u>KDnuggets 15th Annual Software Poll :</u> RapidmIner continues to lead », June 2014.

² K. Keeling, R. Pavur, « <u>Statistical Accuracy of Spreadsheet Software</u> », The Amercial Statistician, 65:4, 265-273, 2011.
³ IBM SPSS Statistics, « <u>The risks of Using Spreadsheets for Statistical Analysis</u> ». On sera un peut plus circonspect concernant cet article. Rédigé et publié par un éditeur de logiciel de statistique, on pourrait croire qu'il n'est pas dénué d'arrière-pensées ; les références utilisées sont anciennes, on imagine qu'Excel a évolué positivement depuis.

⁴ « <u>L'add-in Tanagra pour Excel 2007 et 2010</u> », Août 2010. La liaison est unidirectionnelle mais, les sorties de Tanagra étant en HTML, il est possible de les copier dans une feuille de calcul Excel.

⁵ « <u>Connexion entre R et Excel via RExcel</u> », Décembre 2011. Notons que la connexion joue dans les deux sens, il est possible, via le même dispositif, de récupérer des objets R dans Excel.

⁶ « SAS add-in 4.3 pour Excel », Avril 2012.

⁷ Microsoft, <u>Data Mining Add-ins</u>. Voir un <u>exemple</u> d'utilisation sur un site de partage de vidéos célèbre.

n'y a pas d'installation fastidieuse à réaliser, avec des bibliothèques à tiroirs que l'on est obligé de chercher à droite et à gauche. La macro complémentaire se suffit à elle-même, elle ne repose pas sur une DLL compilée. Grâce à cette autonomie, il a été possible de multiplier les versions pour les différentes configurations d'Excel (des add-ins existent pour Excel 2013, 2010, versions antérieures à Excel 2003, version pour Mac)⁸. Les résultats des calculs statistiques sont insérés dans les feuilles de calculs sous forme de formules s'appuyant sur des fonctions standards d'Excel (ex. les opérations matricielles, nous pouvons ainsi retracer les étapes des traitements) ou de nouvelles fonctions spécifiques intégrées dans la librairie, que nous pouvons appeler directement dans d'autres feuilles de calculs. Il y a donc deux manières d'utiliser l'add-in : soit, comme nous le ferons dans ce tutoriel, exploiter les boîtes de dialogue dédiées permettant de spécifier les données à traiter et paramétrer les méthodes ; soit en appelant directement les nouvelles fonctions disponibles.

« Real Statistics » est une excellente librairie, à conseiller aux personnes qui souhaitent travailler exclusivement dans l'environnement Excel pour réaliser les traitements statistiques. Elle est d'autant plus intéressante qu'elle est accompagnée d'une documentation particulièrement riche, permettant de comprendre dans le détail la teneur de chaque méthode. Nous décrivons dans ce tutoriel le mode opératoire de l'add-in et, dans certains cas, nous comparons les résultats avec ceux de Tanagra 1.4.50.

2 Chargement et installation de la librairie

L'add-in « Real Statistcs » est accessible sur le web (Figure 1). Plusieurs pages retiennent notre attention :

- La page de téléchargement. Plusieurs variantes relatives aux versions d'Excel sont disponibles (http://www.real-statistics.com/free-download/real-statistics-resource-pack/).
- Une page décrivant l'installation de la ressource dans Excel (<u>http://www.real-statistics.com/free-download/real-statistics-resource-pack/#install</u>). Il faut absolument la lire attentivement parce que l'utilisation initiale n'est pas évidente pour les non-initiés.
- Une page contenant des classeurs exemples (<u>http://www.real-statistics.com/free-download/real-statistics-examples-workbook/</u>).
- Les pages détaillant les traitements sous-jacents aux méthodes. Leur contenu pédagogique est particulièrement intéressant (ex. la description du test Box's M -<u>http://www.real-statistics.com/multivariate-statistics/boxs-test-equality-covariance-</u> matrices/boxs-test-basic-concepts/, avec notamment les transformations suivant la loi du

⁸ http://www.real-statistics.com/free-download/real-statistics-resource-pack/

KHI-2 utilisée par Tanagra, et la loi de Fisher fournie par « Real Statistics » en rapport avec les caractéristiques des données ; voir section 4.7).

• La liste des fonctions portées par la librairie (<u>http://www.real-statistics.com/excel-</u> <u>capabilities/supplemental-functions/</u>), utilisables dans tout classeur Excel.

Figure 1 - Site web de la librairie "Real Statistics"

3 Données

Nous traitons le fichier utilisé lors de la présentation du tableur Gnumeric dans ce document. Il décrit n = 30 demandeurs de crédits à l'aide de p = 9 variables, 5 quantitatives et 4 qualitatives : reason (motif de la demande), guarantee (existence d'une garantie), insurance (assurance), male.wage (salaire du demandeur), female.wage (salaire de sa conjointe), inc.household (revenus du ménage, formée par l'addition des deux salaires), family.size (nombre de personnes dans le ménage), inc.per.head (revenu par tête = revenu / nombre de personnes ; age (âge du demandeur de crédit), acceptation (décision de l'établissement prêteur).

Voici les 5 premières lignes du classeur « credit_approval_real_statistics.xlsx ».

reason	guarantee	insurance	male.wage	female.wage	inc.household	family.size	inc.per.head	age	acceptation
Furniture	yes	yes	1238	1021	2259	2	1130	31	no
HiFi	yes	yes	2398	1740	4138	2	2069	43	yes
Furniture	no	yes	1941	1228	3169	2	1584	54	yes
Furniture	yes	yes	1740	1579	3319	4	830	30	yes
Furniture	yes	yes	1926	1426	3352	3	1117	37	yes

4 Traitements avec Real Statistics

Dans ce qui suit, nous décrivons méthodes statistiques proposées par la librairie « Real Statistics ». Nous détaillons les sorties en mettant parfois en contrepoint celles de Tanagra. A chaque analyse correspond une feuille de calcul distincte dans le classeur Excel.

Pour afficher la boîte de dialogue de démarrage, nous activons l'onglet Développeur (**1**), nous actionnons le bouton « MACROS » (**2**). Nous introduisons la commande InitStats dans la fenêtre de lancement (**3**) et nous cliquons sur le bouton « Exécuter » (**4**)⁹. **Remarque** : Avec la version **2.15**, un menu est maintenant disponible dans l'onglet « Compléments » ; nous pouvons également lance la boîte de démarrage avec le raccourci CTRL+M.

credit_approval_real_statistics.xlsx - Microsoft Excel	
Accueil Insertion Mise en page Formules Données Révision Affichage Dév	eloppeur complynets @ - 🗖 🗙
Propriétés Propri	étés du mappage 📑 Importer
Visual Macros Insérer Macro	Exporter
Basic Nom de la macro :	
InitStats	Exécuter
	as à pas
1 reaskiniter, giéaranteu	per.head age
2 Furniture yes 2 Lic Appuyez sur F1 pc	
4 Furniture no	Chéer 2003
5 Furniture yes	Supprimer 830
6 Furniture yes	Ontions
8 Furniture ves	1773
9 HiFi yes Macros dans : Tous les dasseurs ouverts	796
10 Furniture yes Description	1098
11 Furniture yes	632
13 Furniture ves	742
H ← → H dataset chi-sq	Annuler
Prët 🔚	

Une boîte de sélection des traitements statistiques apparaît. Nous pouvons choisir dans la liste le type d'analyse que nous souhaitons mener.

⁹ Sur son site web, l'auteur décrit comment créer, une fois pour toutes, un raccourci dans le ruban de menus d'Excel afin d'éviter cette manipulation qui peut se révéler fastidieuse à la longue. Voir <u>http://www.real-statistics.com/excel-</u> <u>capabilities/supplemental-data-analysis-tools/accessing-supplemental-data-analysis-tools/</u>; section « **Quick Access Toolbar** ».

Figure 2 - Liste des méthodes activables interactivement avec Real Statistics

4.1 Test d'indépendance du Khi-2

Nous mettons en œuvre un test d'indépendance du Khi-2 en croisant les variables ACCEPTATION et INSURANCE (feuille « **chi-square test** »). Nous devons dans un premier temps former le tableau de contingence. Puis, nous sélectionnons, dans la fenêtre de lancement des méthodes, le « **Chi-Square Test** ». Une boîte de dialogue apparaît, nous spécifions la plage de données (**A1...C3**), et la coordonnée de la plage de sortie (on se contente d'indiquer le coin en haut et gauche de la plage, **E1**).

C	C		credit_approva	l_real	I_statistics.xlsx - I	Microsoft Ex	cel			×	
l C	Accueil Inse	ertion Mise en p	age Formules D)onn	ées Révision	Affichage	Développeur	Compléme	ents 🕜 –	•	x
	🌳 📩 🔁		🚰 Propriétés	-	Chi-Square Test				×	η	
Vis	sual Macros	Insérer Mode Création	ᡇ Visualiser le cod 🖞 Exécuter la boîte	e (Input Range	-square t	esť!\$A\$1:\$C\$3		ОК		
	Code		Contrôles		Alpha	0.05			Cancel		
	E1	- (0	$f_{\mathbf{x}}$		Column/row	headings inc	duded with data		Help		¥
4	A	B	C		- Input Forma	t					
2	acceptation.no	Insurance.no 4	5		• Excel forma	at 🔿 St	andard format				
3	acceptation.yes	1	20								
4					Output Range	E1 <		New			
6				Ľ							
7											
8	teactch H 4	chi-square te	at these sin	nlo f	factor anova						
Prê	t 🔚	<u>z en square te</u> :		gicin	accontantova 🔬		III III 100	% Θ		•	.::

4.1.1 Lecture des résultats

Real Statistics nous fournit : le tableau sous l'hypothèse d'indépendance (**Expected Values**) ; un rapide diagnostic du tableau de contingence (effectifs, nombres de lignes et de colonnes) (**SUMMARY**) ; et deux versions de la statistique du Khi-2, celle de Pearson et celle du rapport de vraisemblance. La normalisation de Cramer est affichée (**CHI-SQUARE**).

Expected Values

Chi-Square Test

Values	insurance.no	insurance.yes	Total
acceptation.no	1.5	7.5	9
acceptation.yes	3.5	17.5	21
Total	5	25	30

SUMMARY		Alpha	0.05
Count	Rows	Cols	df
30	2	2	1

CHI-SQUARE

	chi-sq	p-value	x-crit	sig	Cramer V	Odds Ratio
Pearson's	7.1429	0.0075	3.8415	yes	0.4880	16
Max likelihood	6.6277	0.0100	3.8415	yes	0.4700	16

A titre de comparaison, voici les valeurs proposées par le composant CONTINGENCY CHI-SQUARE de TANAGRA. Les valeurs présentées sont absolument cohérentes.

Row (() Column (X)	Statistical		C	ross-tab		
		Stat	Value		yes	no	Sum
		d.f.	1	no	5	4	9
		Tschuprow's t	0.487950	yes	20	1	21
		Cramer's v	0.487950	Sum	25	5	30
acceptat	tion insurance	Phi ²	0.238095				
		Chi² (p-value)	7.14 (0.0075)				
		Lambda	0.333333				
		Tau (p-value)	0.2381 (0.0086)				
		U(R/C) (p-value)	0.1808 (0.0100)				

La statistique du maximum de vraisemblance est accessible avec le composant THEIL U.

Theil's U (Uncertainty Coefficient) for nominal attributes

Y	X	Theil's U	Chi ²	d.f.	p-value	sigma	95% C.I.
acceptation	insurance	0.180829	6.63	1	0.0100	0.134790	-0.0834 ; 0.4450

4.1.2 Détail des calculs avec Real Statistics

L'énorme intérêt de Real Statistics réside dans la possibilité d'accéder aux formules directement insérées dans la feuille de calcul Excel. Reprenons notre exemple ci-dessus.

C	a) 🖬 🤊 - (°		credit_approval_r	eal_statis	tics.xlsx - M	licrosoft Exc	el			X
	Accueil Inser	tion Mise en page	Formules Do	nnées R	évision Aff	fichage Dé	veloppeur	Complém	ents 🞯 🗕	⊐ x
Pre	Coller V sse-papiers V	ial • 10 i Z <u>S</u> • A /] • <u>O</u> • <u>A</u> • Police	× = = = E = = F # # ≫ Alignement	nt S	Standard	000 Style	Bra Insé Bra Sup Brom Cel	rer * primer * nat *	$\Sigma \stackrel{*}{\rightarrow} \stackrel{A}{Z} \stackrel{T}{\rightarrow} \stackrel{*}{\longrightarrow} \stackrel{*}{\rightarrow} \stackrel{*}{\longrightarrow} \stackrel{*}{\rightarrow} \stackrel{*}{\longrightarrow} \stackrel{*}{\rightarrow} \stackrel{*}{\longrightarrow} \stackrel{*}{\rightarrow} $	
	F4 • f* {=PRODUITMAT(H4:H5;F6:G6)/H6} =SOMME(B2:C2) ;									
	A	В	С	D		E 💦	F	G	Н	
1	Values	insurance.no	insurance.yes		Expe	ected 🔪 Iı	les			
2	acceptation.no	4	5							
3	acceptation.yes	1	20		Value	es <u>in</u>	s ance.no	insurance.y	<u>ye:</u> Total 🥆	
4					accep	ptation.no	1.5	7.	.5	9
5	_				accep	ptation.yes	3.5	17.	.5	21
6					Total		5	2	25	30
7										` _
	Chi-squ	iare test / t.test	s 🧹 t.tests pai	red samp	les sir					
Prê	t 🛅							» 😑 —		-+ .:

En **H4** a été insérée la formule "=SOMME(B2 :C2)" permettant d'obtenir les effectifs marginaux ; en **F4**, le calcul matriciel produit les effectifs sous indépendance. Real Statistics s'est chargé de les insérer, mais nous aurions pu le faire nous-mêmes manuellement.

Voyons maintenant comment est produite la statistique de test.

	credit_approval_real_statistics.xlsx - Microsoft Excel									
Accueil Ins	ertion Mise en page F	ormules Données Révi	sion Affichage Dév	eloppeur Compléments						
Coller			Nombre *	Mise en forme Mettre sous forme Styles conditionnelle + de tableau + cellule	de s → Insérer → Supprimer → Format →	Σ · Z · Trier et Rechercher et Z · filtrer · sélectionner ·				
Presse-papiers 🕞	Police 🕞	Alignement 🕞	Nombre 🕞	Style	Cellules	Édition				
К9		AT2(<mark>B2:C3;F4:G5</mark>)				:				
A	B C	D E F	G H	J K L	M N	0 P				
1 Values ins	surance.no insurance.ye	s Expected Values		Shi-Square Test						
2 acceptation.no	4 5		T : 1							
3 acceptation.yes	1 20	Values insurance.r	no insurance.ye: Otal	SUMMARY Alpha	0.05					
5		acceptation.no 1.	5 17.5 5	30 2	2 1					
6		Total	5 25 30							
7				CHI-SQUARE						
8				chi-sq p-value	x-crit sig	Cramer V Odds Ratio				
Pearson's 7.1429 0.0075 3.8415 yes 0.4880 16										
10				Max likelihood 6.6277 0.0100	3.8415 yes	0.4700 16				
H → H _ chi-squar	e test / t.tests / t.tests r	aired samples / single.factor	r.anova / linear.regression	n logist 4	Ш	► I				
Prêt 🛅						00 % 😑 🗸 🖓				

Le KHI-2 de Pearson est calculé à l'aide d'une fonction CHI_STAT2(.) propre à Real Statistics. Elle prend en entrée les effectifs observés (surlignés en orange) et théoriques (sous indépendance, surlignés en bleu). Ainsi, la libraire propose un grand nombre de nouvelles fonctions statistiques que nous pouvons utiliser directement, pour peu que l'on sache les paramétrer correctement. La liste des fonctions est accessible en ligne¹⁰.

4.2 Test de comparaison de 2 moyennes (échantillons indépendants)

Pour illustrer le test de comparaison de moyennes de 2 échantillons indépendants, nous utilisons les variables INCOME.PER.HEAD et ACCEPTATION. Nous souhaitons savoir si, en moyenne, les revenus par tête sont identiques dans les deux groupes définies par l'acceptation c.-à-d. les personnes qui se voient accepter (vs. refuser) leur demander de crédit. Nous copions les données dans la feuille « **t.tests** ». Nous les organisons de manière à pouvoir effectuer les calculs à l'aide de la procédure de Real Statistics. Nous créons pour cela 2 colonnes : les valeurs observées de income.per.head pour les personnes dont la demande a été refusée (acceptation = no), idem pour ceux qui ont été approuvés (acceptation = yes). Nous actionnons l'item « **T Tests and Non-parametric equivalents** » dans la fenêtre de lancement. Une boîte de paramétrage apparaît.

¹⁰ Fonctions statistiques, <u>http://www.real-statistics.com/excel-capabilities/supplemental-functions/</u>; Analyse multivariée, <u>http://www.real-statistics.com/excel-capabilities/real-statistics-multivariate-functions/</u>; Traitement des données manquantes, http://www.real-statistics.com/excel-capabilities/real-statistics-advanced-missing-data-functions/

4	A	В	С	D	E	F	C=
1	accep.no	accep.yes			1		-
2	470	479	-				
3	632	558	T Tests and	Non-paramet	ric Equivalents		×
4	697	659		a construction of the		M	
5	809	725	Input Ran	ge 1	t.tests!\$A\$1:\$A	\$10 Fil	ОК
6	871	742					
7	1029	796	Input Ran	ge 2	t.tests!\$8\$1:\$8\$	22 76 51	Cancel
8	1086	807					
9	1130	830	Colum	n headings inclu	uded with data		Help
10	1160	969	Aloha				
11		977	Alpha	L	0.05		
12		1098	Hvp Mean	/Median	0		
13		1117			0		
14		1182	- Options	5		Test type	
15		1358	0	One sample		🔽 T test 🗸	
16		1427					
17		1516		wo paired samp	ples	I✓ Non-paramet	
18		1584	- OF	wo independer	nt samples		
19		1773					
20		1882	Output Ra	nge 🛛	DI	New	
21		2069		1			
22		2790	L				
23							
24	A M datas	at chi coupra	toot to	nto cinali			

Nous indiquons : les 2 plages de données à traiter (Input Range), nous menons un test pour échantillons indépendants (Options : two independent samples), nous effectuons les tests paramétriques (Test type : T test) et non-paramétriques (Test type : Non-parametric), les sorties sont placées en D1 (output range).

SUMMARY. Cette section indique les statistiques descriptives conditionnelles (effectifs, moyennes, variances). Le D de Cohen correspond au rapport entre la différence des moyennes et l'écart-type commun. C'est une mesure normalisée, descriptive, permettant d'évaluer l'importance de l'écart entre les moyennes¹¹.

SUMMARY			Hyp Mean C	0
Groups	Count	Mean	Variance	Cohen d
accep.no	9	876.00	59201.00	
accep.yes	21	1206.57	331747.96	
Pooled			253877.40	0.656

T TEST : Equal Variances. Elle indique le résultat des tests de comparaison unilatéraux et bilatéraux sous l'hypothèse d'égalité des variances conditionnelles (T-TEST, onglet STATISTICS dans TANAGRA).

T TEST: Equal Variances				Alpha	0.05				
	std err	t-stat	df	p-value	t-crit	lower	upper	sig	effect r
One Tail	200.7436	1.6467	28	0.055396	1.7011			no	0.2971
Two Tail	200.7436	1.6467	28	0.110792	2.0484	-741.7761	80.6332	no	0.2971

T TEST : Unequal Variances. On s'affranchit de l'hypothèse d'homoscédasticité ici (T-TEST UNEQUAL VARIANCE dans Tanagra ; attention, la p-value est légèrement différente parce que

¹¹ <u>http://en.wikipedia.org/wiki/Effect_size#Cohen.27s_d</u>; nous y reviendrons plus bas (section 4.3).

Tanagra utilise l'entier le plus proche pour les degrés de liberté fractionnaires, il est vraisemblable que Real Statistics s'appuie sur une interpolation linéaire).

T TEST: Unequal Variances				Alpha	0.05				
	std err	t-stat	df	p-value	t-crit	lower	upper	sig	effect r
One Tail	149.5841	2.2099	27.9906	0.017729	1.7011			yes	0.3854
Two Tail	149.5841	2.2099	27.9906	0.035457	2.0484	-636.9806	-24.1622	yes	0.3854

MANN-WHITNEY TEST for Two Independent Samples indique les résultats du test non paramétrique de comparaison de populations¹².

	-
Mann-Whitney U	64.00000
E(U)	94.50000
V(U)	488.25000
Z	1.38032
P(> Z)	0.16749

Les résultats¹³ sont cohérents avec le composant MANN-WHITNEY COMPARISON de Tanagra. Ce dernier affiche uniquement la p-value du test bilatéral.

4.3 Test de comparaison (échantillons appariés)

Pour illustrer le test pour échantillons appariés, nous utilisons les variables MALE.WAGE et FEMALE.WAGE. L'objectif est de comparer les salaires à l'intérieur des ménages des demandeurs de crédit. On répond à la question : dans les couples, l'homme et la femme ontils - en moyenne - des niveaux de salaires différents ?

Nous copions les 2 colonnes dans la feuille « t.tests paired samples ». Nous sélectionnons l'item « T Tests and Non-parametric equivalents » dans la fenêtre de démarrage. Nous paramétrons la méthode comme suit.

¹² R. Rakotomalala, « Comparaison de populations – Tests non paramétriques », Août 2008.

¹³ Le U critique est disponible à partir de la version 2.15 de Real Statistics.

	А	В	С	D	E	F	G
1	male.wage	female.wage					
2	1238	1021					
3	2398	1740					
4	1941	1228					
5	1740	1579					
6	1926	1426	T Tests a	and Non-param	etric Equivalen	ts	23
7	1378	1653					
8	2230	1316	Input	Range 1	ed samples'!\$A	\$1:\$A\$31	
9	2307	1674			1		
10	2236	2154	Input	Range 2	red samples'!\$B	\$1:\$B\$31 _ F	Cancel
11	3492	2088			,		
12	927	1600	Co	olumn headings in	cluded with data		Help
13	1566	1400				~	
14	1361	1571	Alpha		0.05		
15	1500	896	Hum N	loon Median			=
16	2600	3107	Пуріч	lean/Median	0		
17	2600	2833	- 00	tions		- Test type -	
18	1799	1496		C			<
19	2540	1335		One sample		I T test	
20	1909	1178		• Two paired sa	amples	Non-para	ametric 🔨 📗
21	2976	1753			lent camples		
22	947	1226		 Two independ 	ient samples		
23	1442	734	Outer	ut Donne			
24	834	1399		it Kange	sts paired samp	les'!\$D\$1	ew .
25	1063	1257					
26	2266	1499					
27	1127	1661					
28	1425	1001					
29	778	964					
30	459	480					
31	1229	2000					
i di di	→ > / chi-	square test 📝	t.tests t.t	ests paired sa	amp 🛛 🖌 📃		► T
Enti	rer 🛅					100 % 🕞	
							• •

Test paramétrique. La première partie des résultats concerne le test paramétrique. Real Statistics affiche les p-value pour les tests équilatéraux et bilatéraux.

SUMMARY			Alpha	0.05		Hyp Mean Diff	0	
Groups	Count	Mean	Std Dev	Std Err	t	df	Cohen d	Effect r
male.wage	30	1741.1333	514328.1885					
female.wage	30	1508.9667	302040.0333					
Difference	30	232.1667	596.8388	108.9674	2.1306	29	0.3956	0.3679
-								
T TEST								
	p-value	t-crit	lower	upper	sig			
One Tail	0.0209	1.6991			yes			
Two Tail	0.0417	2.0452	9.3034	455.0299	yes			

T Test: Two Paired Samples

Note : Taille d'effet (effect size). Arrêtons-nous un instant sur le tableau de résultat. J'avais remarqué que Real Statistics affichait systématiquement le d de Cohen et la taille d'effet corrélation r. Pourquoi ? C'est une pratique peu usuelle dans les ouvrages francophones. La taille d'effet mesure l'intensité d'un phénomène (relation entre 2 variables, différences entre 2 valeurs estimées). Il s'agit d'un indicateur et non pas une statistique inférentielle permettant de conclure ou pas à l'existence du phénomène dans la population. Je note surtout qu'elle annihile le rôle de la taille de l'échantillon dans les calculs. Et on comprend pourquoi. On

reproche souvent à la statistique inférentielle de produire des résultats systématiquement significatifs (rejet de l'hypothèse nulle) dès que la taille de l'échantillon augmente un tant soit peu. Avec une mesure normalisée, nous évitons cet écueil. Mais elle est purement descriptive. Concernant le *d* de Cohen par exemple, on admet généralement que l'effet est faible autour de 0.2, moyen autour de 0.5, fort autour de 0.8. Mais ce sont des repères très grossiers, tout dépend du domaine étudié^{14,15}. Il n'en reste pas moins que ces mesures sont en relation directe avec la statistique de test **t**, mais déflatée de la taille de l'échantillon n = 30. En posant df = n - 1 = 29, les degrés de libertés, les formules utilisées ici s'écrivent (elles sont visibles dans les cellules contenant les résultats) :

$$d = \frac{|t|}{\sqrt{df}} = \frac{2.1306}{\sqrt{29}} = 0.3956$$

Et

$$r_p = \sqrt{\frac{t^2}{t^2 + df}} = \sqrt{\frac{2.1306^2}{2.1306^2 + 29}} = 0.3679$$

L'écart des salaires est modéré, même il s'avère significatif à 5% sur un échantillon de n = 30 observations avec un p-value = 0.0417.

Test non-paramétrique. Real Statistics exploite le test des rangs signés de Wilcoxon.

On remarquera que la taille d'effet « r » s'écrit différemment dans ce cas :

$$r_{w} = \frac{|z|}{\sqrt{2 \times n}} = \frac{1.8203}{\sqrt{2 \times 30}} = 0.2350$$

¹⁴ http://www.tea.state.tx.us/Best_Practice_Standards/How_To_Interpret_Effect_Sizes.aspx

¹⁵ http://www.leeds.ac.uk/educol/documents/00002182.htm (la présentation est particulièrement étayée).

4.4 Analyse de variance (Anova) à 1 facteur

En schématisant, on peut considérer l'ANOVA à 1 facteur comme une généralisation du test de comparaison de moyennes pour (K > 2) échantillons indépendants. Nous cherchons à savoir si l'âge moyen des personnes est différent selon le type d'achat motivant la demande de crédit. Nous copions les variables REASON et AGE dans la feuille « **single.factor.anova** ». Nous réorganisons les données en identifiant liste des valeurs d'AGE pour chaque modalité de REASON. Nous activons alors l'item « Single Factor Anova » dans la fenêtre de démarrage et nous paramétrons la méthode comme suit.

Qu'importe si certaines cellules sont vides (les effectifs conditionnels ne sont pas forcément identiques). L'outil s'adapte automatiquement. Nous demandons en plus le test non-paramétrique de Kruskal-Wallis, et le test de comparaison des variances conditionnelles de Levene. Nous laissons de côté en revanche les comparaisons multiples de moyennes (Contrasts, Tukey HSD, etc.).

Analyse de variance à 1 facteur. Nous disposons du tableau des statistiques conditionnelles (DESCRIPTION) (moyenne, variance, etc.), puis celui de la décomposition de la variance incluant la statistique de test F et la probabilité critique (p-value).

ANOVA: Single I	Factor							
DESCRIPTION					Alpha	0.05		
Groups	Count	Sum	Mean	Variance	SS	Std Err	Lower	Upper
Furniture	14	550	39.2857	91.4505	1188.8571	2.7339	33.3795	45.1919
HiFi	13	505	38.8462	93.3077	1119.6923	2.8371	32.6647	45.0276
HouseHold	3	140	46.6667	258.3333	516.6667	5.9059	21.2558	72.0775
ANOVA								
Sources	SS	df	MS	F	P value	F crit	RMSSE	Omega Sq
Between Groups	156.9505	2	78.4753	0.749972	0.481966	3.3541	0.4295	-0.0170
Within Groups	2825.2161	27	104.6376					
Total	2982.1667	29	102.8333					

Test de Kruskal-Wallis. Il s'agit du pendant non paramétrique de l'ANOVA à 1 facteur.

Real Statistics

Kruskal-Wal	lisTest					
	Furniture	HiFi		HouseHol	d	
median	36.5	;	37		40	
rank sum	215	;	192.5	5	7.5	
count	14	ł	13		3	30
r^2/n	3301.7857	28	50.4808	1102.08	333	7254.3498
н						0.604514
df						2
p-value						0.739148
alpha						0.05
sig						no

Tanagra

		Description		Statistical test			
Value	Examples	Average	Rank sum	Rank mean	Statistics	Value	Proba
Furniture	14	39.2857	215	15.3571	Kruskal-Wallis	0.604514	0.739148
HiFi	13	38.8462	192.5	14.8077	KW (corr.ties)	0.605997	0.738600
HouseHold	3	46.6667	57.5	19.1667			
All	30	39.8333	465	15.5			

Real Statistics utilise bien les rangs moyens pour les ex-aequos (les sommes des rangs sont identiques à ceux de Tanagra). Il fournit en revanche la statistique non corrigée H = 0.604514. Nous distinguons la formule utilisée dans la cellule V8.

V8 ▼ (<i>f</i> _x =12*V7/(V6*				/(V6*(V6+1))	-3*(V6+1)	
	R	S	Т		U	V
1	Kruskal-Wal	lis Test				
2						
3		Furniture	HiFi		HouseHold	
4	median	36.5		37	40	
5	rank sum	215	19	92.5	57.5	
6	count	14		13	3	30
7	r^2/n	3301.7857	2850.4	808	1102.0833	7254.3498
8	Н					0.604514
9	df					2
10	p-value					0.739148
11	alpha					0.05
12	sig					no

Effectivement, elle ne comporte pas la correction pour ex-aequos¹⁶.

Test de Levene. Il est destiné à vérifier l'égalité des variances conditionnelles. Ce test est autrement plus robuste que celui de Bartlett. 3 variantes sont proposées : celle basée sur la moyenne dans les groupes, sur la médiane, et sur la moyenne tronquée (trimmed mean)¹⁷.

¹⁶ Voir <u>http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance</u>

¹⁷ http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm

Levene's Tests					
type	p-value				
means	0.3731				
medians	0.8573				
trimmed	0.3731				

Les observations sont compatibles avec l'hypothèse d'égalité des variances au risque 5%.

4.5 Régression linéaire multiple

On cherche à expliquer la taille de la famille en fonction du revenu du ménage et de l'âge du demandeur de crédit pour illustrer la régression. Je suis d'accord, ça n'a pas vraiment de sens. L'objectif est simplement de détailler les sorties de Real Statistics.

Nous copions les 3 colonnes - dans l'ordre FAMILY.SIZE, INC.HOUSEHOLD, AGE - dans la feuille « **linear.regression** ». Nous sélectionnons « **Linear Regression** » dans la fenêtre de démarrage. Nous spécifions les paramètres suivants.

	A	В	С	D	E	F	G	н			
1	family.size	inc.household	age								
2	2	2259	31								
3	2	4138	43								
4	2	3169	54	Linear Reg	ression			23			
5	4	3319	30					OK			
6	3	3352	37	Input Ra	ange X 🕴 regre	ession!\$A\$1:\$A\$	31 _ Fill				
7	2	3031	28								
8	2	3546	50	Input Ra	ange Y f.regre	ession!\$B\$1:\$C\$3	31 _ 50	Cancel			
9	5	3981	41								
10	4	4390	45	IM Colu	mn headings inclu	uded with data		Help			
11	2	5580	44	Alaba		-					
12	4	2527	25	Alpha	1 0.0:	2					
13	4	2966	35	Opt	ions						
14	3	2932	53	3 Regression Analysis							
15	5	2396	46	46							
16	4	5707	30	30 Residuals and Cook's D							
17	4	5433	30								
18	5	3295	36	Output							
19	4	3875	40	Ouputr	kange linea	ar.regression:şEş	1 _ New				
20	3	3087	47		1	1	1				
21	4	4729	36								
22	2	2173	56								
23	3	2176	27								
24	4	2233	35								
25	2	2320	36								
26	2	3765	55								
27	4	2788	37								
28	3	2426	26								
29	2	1742	65								
30	2	939	34								
31	4	3229	43					`			
14 4	Sin Sin	gle.factor.anova	linear.reg	ression log	gistic.regr 🛛 🖣			▶ [

Les colonnes des variables explicatives doivent être contigües, comme pour la fonction DROITEREG d'Excel. L'option « Residuals and Cook's D », non cochée dans notre exemple, produit les indicateurs permettant de détecter les points atypiques et/ou influents (levier, résidus studentisés, distance de Cook, etc.). Attention, la taille du tableau est conséquente si le nombre d'observations est élevé. Avec les options que nous avons sélectionnées, Real Statistics fournit un diagnostic global de la régression (R, R² ajusté, écart type estimé de l'erreur, etc.), le tableau d'analyse de variance, et le tableau des coefficients incluant les tests de significativité et les intervalles de confiance.

Regression Analys	is					
OVERALL FIT						
Multiple R	0.3979					
R Square	0.1583					
Adjusted R Square	0.0960					
Standard Error	1.0112					
Observations	30					
ANOVA				Alpha	0.05	
	df	SS	MS	F	p-value	sig
Regression	2	5.1934	2.5967	2.5396	0.0976	no
Residual	27	27.6066	1.0225			
Total	29	32.8				
	coeff	std err	t stat	p-value	lower	upper
Intercept	3.8423	0.9562	4.0181	0.0004	1.8802	5.8043
inc.household	0.0002	0.0002	1.2649	0.2167	-0.0001	0.0006
age	-0.0333	0.0185	-1.7959	0.0837	-0.0713	0.0047

Mine de rien, notre régression n'est pas si désastreuse que cela. Elle est globalement significative à 10%. Pour un si faible effectif (n = 30), ce n'est pas anodin. Après, interpréter les résultats est une autre histoire, je ne m'y risquerai pas.

4.6 Régression logistique

Avec la régression logistique, nous cherchons à expliquer les valeurs prises par une variable dépendante qualitative binaire (ACCEPTATION) à partir de variables indépendantes quantitatives (INC.PER.HEAD et AGE). Un recodage préalable de ACCEPTATION est nécessaire, nous posons 1 lorsque le crédit est refusé (acceptation = no), 0 dans le cas contraire. Nous avons fait ce choix parce que nous souhaitons mettre en évidence les mobiles du refus d'une demande de crédit.

Les données préparées sont copiées dans la feuille « **logistic.regression** », nous actionnons l'item « **Logistic Regression** » dans la fenêtre de démarrage.

	Α	В	С	D	E	F	G	Н
1	inc.per.head	age	acceptation					
2	1130	31	1					
3	2069	43	0					
4	1584	54	0	Logistic Reg	gression			
5	830	30	0					
6	1117	37	0	Input Ran	ige f.regres	sion!\$A\$1:\$C\$3	1	OK
7	1516	28	0					
8	1773	50	0	Colum	n headings includ	led with data	\diamond	Cancel
9	796	41	0	- Input F	ormat			
10	1098	45	0	@ Daw	lata	C Summary data		Help
11	2790	44	0	, Raw C	Jata		•	
12	632	25	1	Applusi	ia Turna			
13	742	35	0	Analys	is rype	• •		
14	977	53	0	• Newto	on's method	Solver		
15	479	46	0					
16	1427	30	0	Alpha		0.05		
17	1358	30	0			-		
18	659	36	0	Classificat	tion Cutoff	0.5		
19	969	40	0					
20	1029	47	1	List of var	iables to exclude	•		
21	1182	36	0	# of Itors	tions			
22	1086	56	1	(Newton's	method only)	20		
23	725	27	0	0.1.10		1		
24	558	35	0	Output Ra	ange E1		New	
25	1160	36	1					
26	1882	55	0					
27	697	37	1					
28	809	26	1					
29	871	65	1					
30	470	34	1					
31	807	43	0					
14 4	l ▶ ▶l / line	ar regression	logistic reg	rection ma				

INPUT RANGE désigne la plage de cellules des données, sans distinction du rôle des variables. Pour que la procédure fonctionne, la variable cible doit être située en dernière colonne (la plus à droite), et codée 0/1 (laisser les valeurs yes/no fait échouer la procédure). Les résultats sont touffus et disséminés à plusieurs endroits. Essayons d'y voir plus clair.

LL0	-18.3259
LL1	-16.5698
Chi-Sq	3.5123
df	2
p-value	0.1727
alpha	0.05
sig	no
R-Sq (L)	0.0958
R-Sq (CS)	0.1105
R-Sq (N)	0.1566
Hosmer	27.0050
df	28
p-value	0.5180
alpha	0.05
sig	no

Evaluation globale de la régression. Ce tableau regroupe les résultats globaux de la régression. Nous observons, entres autres, la log-vraisemblance du modèle (LL1 = -16.5698), la log-vraisemblance du modèle trivial réduit à la constante (LL0 = - 18.3259). A partir de ces informations, Real Statistics calcule la statistique du test de pertinence globale (Chi-Sq). La régression n'est pas significative à 5% avec une p-value de 0.1727. Différentes valeurs de pseudo-R2 sont proposées (McFadden, Cox and Snell, Nagelkerke). Le test de Hosmer Lemeshow sert à confronter les scores observés et prédits. La « p-value » est égale à 0.5180, le modèle est compatible avec les données¹⁸.

¹⁸ Ricco Rakotomalala, « Pratique de la Régression Logistique – Régression Logistique Binaire et Polytomique », 2014.

Matrice de confusion. La CLASSICATION TABLE confronte les valeurs observées et prédites de la variable dépendante ACCEPTATION. « Accuracy » correspond en réalité à la sensibilité. Par ex., il y a 9 « acceptation = no » observées (Suc-Obs), 1 a été classé correctement, 8 a été attribuée à l'autre classe (acceptation = yes, Fail-Pred). La sensibilité est de donc de 0.111. Le taux de succès (1 – taux d'erreur) du modèle est de 0.7 (surlignée en brun).

Nous pouvons modifier interactivement le seuil d'affectation (CUTOFF, surlignée en bleu), la matrice de confusion est automatiquement remise à jour. Par ex., pour améliorer la sensibilité du modèle, nous pouvons abaisser cette valeur seuil à CUTOFF = 0.3. La sensibilité s'améliore (0.778), mais au détriment de la performance globale (taux de succès = 0.6).

Coefficients estimés. Le tableau des coefficients estimés inclut leurs écarts-type, les statistiques de Wald, les p-value associées, les odds-ratio [exp(coefficient)], et leurs intervalles de confiance.

	coeff b	s.e.	Wald	p-value	exp(b)	lower	upper
Intercept	0.4389	1.8613	0.0556	0.8136	1.5510		
inc.per.head	-0.0020	0.0013	2.4925	0.1144	0.9980	0.9955	1.0005
age	0.0188	0.0429	0.1916	0.6616	1.0190	0.9368	1.1083

Ni le revenu par tête (inc.per.head), ni l'âge, ne semblent influer sur le rejet des demandes. Le modèle n'étant pas globalement significatif, on pouvait s'attendre à ce résultat.

Courbe ROC. Real Statistics produit d'autres tableaux, l'une destinée au calcul de la statistique de Hosmer et Lemeshow, l'autre à la courbe ROC, laquelle est automatiquement dessinée dans un graphique « nuage de points ».

4.7 MANOVA

La MANOVA (multivariate analysis of variance) est une généralisation multivariée de l'ANOVA. On cherche à percevoir les différences entre les groupes, en prenant en compte le rôle simultané de plusieurs variables. Dans notre exemple, nous cherchons à savoir si les caractéristiques des personnes (MALE.WAGE, FEMALE.WAGE, FAMILY.SIZE, AGE) sont différentes selon le type d'achat motivant la demande de crédit (REASON).

Nous copions les variables dans une nouvelle feuille « manova ». Nous actionnons « Single Factor Manova » dans la fenêtre de démarrage.

	A	В	С	D	E	F	G	Н	- I	J	-
1	reason	male.wage	female.wage	family.size	age						
2	Furniture	1238	1021	2	31						
3	HiFi	2398	1740	2	43						_
4	Furniture	1941	1228	2	54						
5	Furniture	1740	1579	4	30	Manova: S	Single Factor	47		23	
6	Furniture	1926	1426	3	37						וור
7	HiFi	1378	1653	2	28	Input Ran	nge mano	va!\$A\$1:\$E\$31	Fill	ОК	
8	Furniture	2230	1316	2	50	Option	s				
9	HiFi	2307	1674	5	41	Signif	icance Analysis			Cancel	
10	Furniture	2236	2154	4	45						
11	Furniture	3492	2088	2	44		of Squares and C	ross Product Mat	trices	Help	
12	Furniture	927	1600	4	25	Cova	riance Matrices	Multiple Ano	va		
13	Furniture	1566	1400	4	35			Rov's Test			
14	Furniture	1361	1571	3	53		ers 🔔	I. DOX'S TESU			
15	HiFi	1500	896	5	46	Group	o Means <	Contrast			
16	HiFi	2600	3107	4	30						
17	HiFi	2600	2833	4	30	Alpha	0.05	_			
18	HiFi	1799	1496	5	36		,				
19	HouseHold	2540	1335	4	40	Output Ra	ange mano	va!\$G\$1	_ New		
20	Furniture	1909	1178	3	47		,				
21	Furniture	2976	1753	4	36			-45-			-11
22	HiFi	947	1226	2	56						
23	Furniture	1442	734	3	27						
24	HouseHold	834	1399	4	35						
25	Furniture	1063	1257	2	36						
26	HiFi	2266	1499	2	55						
27	HiFi	1127	1661	4	37						
28	HiFi	1425	1001	3	26						
29	HouseHold	778	964	2	65						
30	HiFi	459	480	2	34						
31	HiFi	1229	2000	4	43						
32											-
14	🕩 🕨 📈 line	ar.regression	logistic.regr	ession man	ova 🖉 pca 📈	圮 🚺	•				► I

Nous spécifions toute la plage de cellules dans INPUT RANGE. La variable définissant les groupes doit être située en première colonne (la plus à gauche). Selon les options sélectionnées, nous obtenons plusieurs blocs de résultats.

Group Means indique les moyennes conditionnelles.

Group Means													
	male.wage	female.wage	family.size	age	Count								
Furniture	1860.50	1450.36	3.00	39.29	14								
HiFi	1695.00	1635.85	3.38	38.85	13								
HouseHold	1384.00	1232.67	3.33	46.67	3								
Total	1741.13	1508.97	3.20	39.83	30								

MANOVA fournit les tests de significativité globale. Plusieurs statistiques sont proposées.

MANOVA						
	stat	F	df1	df2	p-value	eta-sq
Pillai Trace	0.22396	0.78815	8	50	0.61530	0.11198
Wilk's Lambda	0.78787	0.75965	8	48	0.63934	0.11238
Hotelling Trace	0.25423	0.73091	8	46	0.66362	0.11278
Roy's Lg Root	0.16087					

Box's test diagnostique l'égalité des dispersions conditionnelles.

Real Statistics

Box's Test	
М	235.2691
F	7.1465
df1	20
df2	281.0313
p-value	0.0000

Tests results									
Stat	Value	p-value							
T [CHI-2 (20)]	42.7890	0.0022							

Tanagra s'appuie sur l'approximation du KHI-2, Real Statistics sur celle de Fisher¹⁹. Cette dernière est plus appropriée sur un effectif aussi faible.

4.8 Analyse en composantes principales (ACP)

Pour illustrer l'ACP, nous utilisons la plupart des variables quantitatives, à savoir : MALE.WAGE, FEMALE.WAGE, FAMILY.SIZE, INC.PER.HEAD et AGE. Nous les copions dans la feuille « **pca** » et nous actions l'item « **Factor Analysis** » dans la fenêtre de démarrage. Nous demandons la construction des 2 premiers facteurs, avec une rotation VARIMAX.

¹⁹ http://www.real-statistics.com/multivariate-statistics/boxs-test-equality-covariance-matrices/boxs-test-basic-concepts/

	Α	В	С	D	Е	F	G	H		- I	J	K
1	male.wage	female.wage	family.size	inc.per.head	age							-
2	1238	1021	2	1130	31			-				
3	2398	1740	2	2069	43							
4	1941	1228	2	1584	54				17			
5	1740	1579	4	830	30	Factor A	Analysis	¥	//			
6	1926	1426	3	1117	37						<u>^</u>	
7	1378	1653	2	1516	28	Input	Range	pca!\$A\$1:\$8	E\$31	Fil		ОК
8	2230	1316	2	1773	50					_	. 💶	
9	2307	1674	5	796	41		olumn head	ings included wit	h data	∼	Varimax	Cancel
10	2236	2154	4	1098	45	- Extr	action —		- Max	# of Iterations		
11	3492	2088	2	2790	44	6						Help
12	927	1600	4	632	25		rincipal Con	ponents	Facto	or Extract	25	
13	1566	1400	4	742	35	O P	rincipal Axis	5	Varim	nax 🗌	100	
14	1361	1571	3	977	53						100	
15	1500	896	5	479	46	# of Fa	actors	2 📿	Eigen	ivalues	100	
16	2600	3107	4	1427	30							
17	2600	2833	4	1358	30	Output	Range			New		
18	1799	1496	5	659	36				_			
19	2540	1335	4	969	40	_						
20	1909	1178	3	1029	47							
21	2976	1753	4	1182	36							
22	947	1226	2	1086	56							
23	1442	734	3	725	27							
24	834	1399	4	558	35							
25	1063	1257	2	1160	36							
26	2266	1499	2	1882	55							
27	1127	1661	4	697	37							
28	1425	1001	3	809	26							
29	778	964	2	871	65							
30	459	480	2	470	34							
31	1229	2000	4	807	43							
14 4	IF H Z	linear.regres	sion 🖌 lo	gistic.regressi	on 🔏	manova pc a	a / 🔁 /	I 4 📃				→ Ū

Les résultats sont décomposés en plusieurs sections.

Descriptive s	Descriptive statistics												
	male.wage	female.wage	family.size	inc.per.head	age								
Mean	1741.133	1508.967	3.200	1107.400	39.833								
Std dev	717.167	549.582	1.064	518.520	10.141								
Skewness	0.413	1.049	0.125	1.450	0.597								
Kurtosis	-0.238	2.155	-1.387	2.605	-0.218								

Correlation matrix. La matrice des corrélations.

Correlation	Correlation Matrix												
	male.wage	female.wage	family.size	inc.per.head	age								
male.wage	1	0.58374	0.13338	0.67598	0.03897								
female.wage	0.58374	1	0.32019	0.39480	-0.15946								
family.size	0.13338	0.32019	1	-0.55074	-0.32933								
inc.per.head	0.67598	0.39480	-0.55074	1	0.26341								
age	0.03897	-0.15946	-0.32933	0.26341	1								

Inverse of Correlation Matrix. L'inverse de la matrice des corrélations.

Inverse of Correlation Matrix								
	male.wage	female.wage	family.size	inc.per.head	age			
male.wage	6.14724	1.10400	-5.26376	-7.54008	0.18910			
female.wage	1.10400	2.62204	-2.72757	-3.38039	0.36725			
family.size	-5.26376	-2.72757	7.33245	8.70155	-0.10709			
inc.per.head	-7.54008	-3.38039	8.70155	12.39351	-0.64410			
age	0.18910	0.36725	-0.10709	-0.64410	1.18559			

Elle servira surtout à calculer la matrice des corrélations partielles qui suit.

Partial Correlation Matrix. Elle indique la liaison nette entre les variables, en retranchant l'influence de toutes les autres.

Partial Correlation Matrix								
	male.wage	female.wage	family.size	inc.per.head	age			
male.wage	1	-0.2750	0.7840	0.8639	-0.0700			
female.wage	-0.2750	1	0.6221	0.5930	-0.2083			
family.size	0.7840	0.6221	1	-0.9128	0.0363			
inc.per.head	0.8639	0.5930	-0.9128	1	0.1680			
age	-0.0700	-0.2083	0.0363	0.1680	1			

KMO. L'indice KMO (Kaiser – Mayer – Olkin, connu également sous l'appellation MSA, measure of sampling adequacy) indique le degré de compressibilité des données c.-à-d. la redondance des variables, et la possibilité de la (cette redondance) prendre en compte dans l'ACP²⁰. En rouge, nous avons l'indice KMO global.

	КМО						
		male.wage	female.wage	family.size	inc.per.head	age	
L		0.36176	0.42139	0.22467	0.33466	0.72457	0.33889

Eigenvalues and eigenvectors. Les valeurs propres sont situées sur la première ligne (en bleu) ; les vecteurs propres sont situés en dessous (en vert), elles sont organisées en colonnes c.-à-d. la 1^{ère} colonne correspond au 1^{er} vecteur propre, etc. Real Statistics utilise une fonction dédiée **eVectors(.)** pour les produire.

Eigenvalues and eigenvectors								
	2.13244	1.71007	0.74148	0.37538	0.04063			
	0.59878	0.20713	0.10561	-0.62300	0.44640			
	0.46557	0.43743	0.05546	0.74213	0.19513			
	-0.14051	0.67091	0.46648	-0.20546	-0.51993			
	0.62071	-0.26395	-0.22910	-0.03236	-0.70108			
	0.14029	-0.49595	0.84598	0.13365	0.02831			

Full load matrix. Cette matrice correspond aux corrélations des variables avec les composantes principales.

Full Load Ma	atrix				
	1	2	3	4	5
male.wage	0.87440	0.27086	0.09094	-0.38170	0.08998
female.wage	0.67987	0.57202	0.04776	0.45469	0.03933
family.size	-0.20518	0.87734	0.40168	-0.12588	-0.10480
inc.per.head	0.90641	-0.34517	-0.19727	-0.01983	-0.14131
age	0.20487	-0.64855	0.72847	0.08189	0.00571

²⁰ « <u>ACP sous R – Indice KMO et test de Barteltt</u> », Mai 2012.

Le carré des valeurs correspond au cosinus carré (COS²), leur somme en ligne vaut 1 forcément.

Scree plot. Ce tableau fournit les valeurs propres et les proportions d'inertie restituées par les axes. Real Statistics lui associe l'éboulis des valeurs propres (scree plot).

Scree Plot				Scree Plot
	eValue	%	Cum %	45.00%
	2.1324	42.65%	42.65%	30.00%
	1.7101	34.20%	76.85%	20.00%
	0.7415	14.83%	91.68%	15.00%
	0.3754	7.51%	99.19%	5.00%
	0.0406	0.81%	100.00%	

Factor matrix. Ces matrices représentent aux corrélations des variables avec les axes, avant (unrotated) et après (rotated) la rotation varimax. « Commun » correspond aux « communalities », la part de variance de variable traduite par les facteurs sélectionnés ; « specif » = 1 -« commun », la part d'information des variables non prise en compte par les facteurs sélectionnés.

Factor Matrix	x (unrotated)				
	1	2		Commun	Specific
male.wage	0.8744	0.2709		0.8379	0.1621
female.wage	0.6799	0.5720		0.7894	0.2106
family.size	-0.2052	0.8773		0.8118	0.1882
inc.per.head	0.9064	-0.3452		0.9407	0.0593
age	0.2049	-0.6486		0.4626	0.5374
	2.1324	1.7101		3.8425	1.1575
Factor Matrix	x (rotated Var	imax)		Commun	Creatita
malo wago	0.0140	2	Г	0 8270	0 1621
fomale wage	0.9149	0.0304		0.0379	0.1021
family size	0.0297	0.3178		0.7094	0.2100
inc per head	0.0933	-0.6230		0.0110	0.1002
age	-0.0188	-0.6799		0.4626	0.5374
-	2.0871	1.7554	L	3.8425	1.1575

Reproduced correlation matrix et Error matrix. La première représente l'information (les corrélations) reproduite sur les axes sélectionnés. Nous avons les « communalities » sur la diagonale principale. La seconde confronte la matrice des corrélations originelle avec la matrice estimée. Elle indique la fidélité de la représentation.

Reproduced Correlation Matrix							
	male.wage	female.wage	family.size	inc.per.head	age		
male.wage	0.83794	0.74941	0.05823	0.69907	0.00347		
female.wage	0.74941	0.78943	0.36237	0.41880	-0.23171		
family.size	0.05823	0.36237	0.81182	-0.48880	-0.61104		
inc.per.head	0.69907	0.41880	-0.48880	0.94072	0.40955		
age	0.00347	-0.23171	-0.61104	0.40955	0.46259		
Error Matrix							
male.wage	0.16206	-0.16567	0.07515	-0.02309	0.03551		
female.wage	-0.16567	0.21057	-0.04218	-0.02399	0.07225		
family.size	0.07515	-0.04218	0.18818	-0.06194	0.28171		
inc.per.head	-0.02309	-0.02399	-0.06194	0.05928	-0.14614		
age	0.03551	0.07225	0.28171	-0.14614	0.53741		

On notera par exemple que l'information véhiculée par la variable AGE est mal représentée sur les 2 premiers facteurs.

Factor Scores. Ces coefficients permettent de calculer les coordonnées factorielles des individus à partir des variables originelles. Plusieurs formulations sont proposées : Regression Method, Bartlett's Method, Anderson-Rubin's Method²¹.

Factor Scores Matrix - Regression Method							
	1	2					
male.wage	0.43931	0.01537					
female.wage	0.41079	0.21165					
family.size	0.07711	0.51626					
inc.per.head	0.33552	-0.32992					
age	-0.03343	-0.38980					
Factor Scores	Matrix - Bartlet	t's Method					
	1	2					
male.wage	0.38061	0.18059					
female.wage	0.32362	0.29080					
family.size	0.20232	0.49583					
inc.per.head	0.48895	-0.61239					
age	-0.04710	-0.12829					
Factor Scores	- Anderson-Ru	bin's Method					
	360.55181	-194.01169					
	-194.01169	197.94014					
	1	2					
male.wage	0.37899	0.17772					
female.wage	0.32148	0.28381					
family.size	0.19927	0.48105					
inc.per.head	0.49150	-0.58808					
age	-0.04632	-0.12443					

²¹ http://www.real-statistics.com/multivariate-statistics/factor-analysis/factor-scores/

5 Conclusion

L'add-in Real Statistics pour Excel est un travail remarquable à plusieurs égards. D'un point de vue fonctionnel, il permet de mener des études réelles. La manipulation est très simple. Les différentes sections des sorties sont parfaitement identifiées. Les calculs sont précis, du moins en ce qui concerne les procédures que j'ai pu tester. Mais le plus intéressant à mon sens est la documentation disponible sur le site de l'auteur (<u>http://www.real-statistics.com/</u>). Les méthodes sont parfaitement décrites, avec force exemples sur des petits jeux de données. Les fonctions spécifiques sont énumérées. Il est possible de les appeler directement dans notre classeur sans passer par l'interface dédiée de l'add-in. J'ai réellement eu beaucoup de plaisir à découvrir cette librairie.

Remarque : L'add-in est constamment mis à jour, j'invite les utilisateurs à consulter régulièrement le site web pour suivre les dernières améliorations. L'auteur m'a récemment signalé (version 2.15) l'introduction d'outils dédiés aux calculs de puissance statistique des tests.